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Abstract--A two-layer model is used to examine the tides near a shelf-slope front that intersects 
both the bottom and the sea surface. Because of the presence of super-inertial eigenmodes in 
such a front, the semidiurnal tide is preferentially amplified (relative to the diurnal tide) by the 
generation of the baroclinic tide. Over the Mid-Atlantic Bight where the stratification is typically 
weak (i.e. the baroclinic radius of deformation is small compared with the width of the frontal 
zone), the baroclinic tide only slightly modifies the barotropic tide, it nevertheless causes a 
surface (bottom) intensification of the cross-shelf flow at the diurnal (semidiurnal) frequency. 
The model results compare favorably with observations and their implications on the tidal mixing 
in the frontal zone are discussed. 

1. I N T R O D U C T I O N  

IT IS well known that baroclinic tides can be generated by barotropic tides when the 
density surfaces are perturbed.  This per turbat ion occurs when the barotropic tide 
encounters  the topographic slope such as that near  the continental marginal areas 
(BAINES, 1982) or  when the density surfaces are slanted such as that in a frontal zone 
(CHuANG and WANG, 1981). In mid-latitudes, the baroclinic tide at semidiurnal frequency 
can radiate away from the generat ion area along characteristics and the outgoing energy 
flux depends on the local forcing as well as the ambient  stratification. 

In the Mid-Atlantic Bight, there is a density front situated near  the shelf-break that 
separates the less dense shelf water  from the slope water  (Fig. 1). In the winter time, 
intense mixing due to surface cooling and a tmospher ic  disturbances considerably weak- 
ens the stratification outside the frontal zone and hampers  the outward radiation of the 
baroclinic tide. Standing modes are thus generated in the frontal zone that can resonate 
with the tidal forcing when the condition is favorable and greatly amplify the tidal 
amplitude and hence mixing within the frontal zone. 

To assess this effect and, more generally, to examine the tidal fields near a shelf-slope 
front,  we consider a two-layer model  as formulated in Section 2. The eigenmodes of the 
front are discussed in Section 3 and the model results are compared  with observations in 
Section 4. 

2.  T H E  M O D E L  

Let us consider a model  configuration shown in Fig. 2. The  front  is approximated by a 
density interface that slopes in opposite sense f rom the topography and that intersects 
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Hydrographical sections showing the winter and summer frontal structure in the Mid- 
Atlantic Bight (data from SEEP--I, courtesy of C. Flagg and T. Hopkins). 
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Fig. 2. The model configuration. 
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both the top and bottom surfaces. The current fields are assumed to be vertically uniform 
within each layer and all the field variables are assumed to vary in the cross-shelf 
direction only. 

We assume the mean fields (denoted by overbars) to consist of a vanishing cross-shelf 
flow and a geostrophically balanced along-shelf flow so that, nondimensionally, 

01 = v2 = 0, (2.1) 

t~l - t~2 = -/~ly, (2.2) 

where subscripts I and 2 denote the variables in the upper and lower layer, respectively, 
and partial derivatives are indicated by subscripts throughout this paper. In the above 
equations, we have used the scaling rules (indicated by brackets) that [y] = L (the width 
of the frontal zone), [h] = H (the water depth at the shoreward edge of the front), and 
[t~] = g ' H( fL )  -l with g' being the reduced gravity across the frontal interface and f, the 
Coriolis parameter. 

For tidal motions, we assume that the fluid is inviscid, adiabatic and hydrostatic, and 
that the surface is rigid so that the cross-shelf tidal transport Q is constant in y, then the 
tides at frequency a ( ~ e  -/°t) satisfy the nondimensionalized equations, 

- i 6u l  + S2vt~ly - vl = 0, (2.3a) 

- i 6v l  + ul = -Ply,  (2.3b) 

- icu2 + S2v2a2y - v2 = O, (2.3c) 

-iow2 + u2 = -P2y, (2.3d) 

Pl - P2 = S2q, (2.3e) 

(/11vl)y - io-q = 0, (2.3f) 

/~lVl +/~2v2 = 1, (2.3g) 

where 1] is the downward displacement of the frontal interface, and the additional scaling 
rules that [6] = f ,  [u, v] = Q/H,  [p] = .[[v]L and [11] = [v]H(fL) -1 have been used. The 
only internal parameter is thus the Burger number S 2 defined as (Rc /L )  2, where 
R c  ~- (,g'l-l)U'zf -1 is the baroclinic radius of deformation. 

If we define the barotropic (suffix T) and baroclinic (suffix C) tide as 

VT = (1~11"1 + fl2v2)[h, (2.4) 

and 

V C = 11 -- 1'2, e t c . ,  (2.5) 
then the equations governing the two components can be derived from (2.3), which yield 

vr  = l /h,  (2.6) 

and 

z Z . \  

- i o , , c  + s+ I - .  l, + r , . v c -  v+ = 
\ hi h2 ] 

- i o v c  + Uc + S2qy -- O, 

(f~eV c)y - ioal = -(/~lvT)y, 

(2.7a)  

(2.7b) 

(2.7c) 
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where /~e-  fttft2/h is the equivalent depth. It is seen that, because of the rigid lid 
assumption, the barotropic tide (vr) varies inversely with the water depth, which 
generates the baroclinic tide through the advection of the mean vorticity shear (r.h.s. of 
equation 2.7a) and the perturbation of the density interface (r.h.s. of equation 2.7c). 
Using (2.2), the above equations can be reduced to a single equation governing the 
variable Vc =- fteVc, 

VCyy + \ S-'~e + h"~ -I" f l 2 / r C  = F(y) =- --~---  ~ yy 

with the boundary conditions that (since/~e vanishes at the end points), 

Vc = 0 at y = 0 and 1. (2.9) 

The forcing by the barotropic tide (F) thus consists of two terms derived, respectively, 
from the two terms on the r.h.s, of (2.7). It is seen that, because the mean current is 
geostrophic, the two terms are comparable and neither can be arbitrarily neglected. In 
fact, if the bottom is flat, the two terms exactly cancel out; i.e. a frontal interface can be 
rather convoluted and yet there is no forcing of the baroclinic tide by the barotropic tide. 
The result should also apply to a continuously stratified fluid, which points to the 
importance of topography in the generation of the baroclinic tide even when the 
isopycnals are not level. For a typical shelf--slope front that slopes upward and a bottom 
that increasingly steepens in the offshore direction, one can show that F(y) is negative. 

Since the homogeneous part of (2.8) and (2.9) constitutes the Sturm-Liouville 
eigenvalue problem, 

+ [Xr(y)- q(Y)lVc = 0, Vc(0) = Vc(1) = 0, (2.10) Vcyy 

with 

o '2-1  1 
- rCY) -= 

and 
. 

uly u2y 
q(Y)-= h, h2' 

there exists a denumerable sequence of eigenvalues k,,, and the corresponding eigenfunc- 
tions V, form a complete orthogonal set. The forced solution can thus be expanded in an 
infinite series (COURAYr and HILBERT, 1937) 

o a  

V c =  c,, 

=_  $2c~ 
-- y_, V,, 

= 02-  ,771 

(2.11) 

where cn E f~FV.dy, and ¢,, = (1 + S2~.n) 112 is the eigenfrequency of the system. 
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Resonance occurs when the forcing frequency o approaches the eigenfrequency on and 
the forced solution will be dominated by the nth eigenmode. In practice, because of the 
presence of  dissipation, the denominator ir, (2.11) never really vanishes and since, for a 
slowly varying F(y), cn decreases rapidly with increasing n, generally only the first few 
terms need to be included in the expansion. To assess the resonance condition, we shall 
examine the eigenmodes in the next section. 

3. T H E  E I G E N M O D E S  

For a general model geometry and mean flow field, the eigenmodes need to be 
calculated numerically. But to characterize the modal properties, we shall first consider 
the simpler case of a flat bot tom and a mean flow with no lateral shear (within each 
layer), and then examine the effects of a varying topography and mean shear. 

In the absence of lateral shear in the mean flow, q(y) vanishes, and, because of 
geostrophy (equation 2.2),_the frontal interface is straight with/~1 = 1 - y. A flat bottom 
(h = 1) then implies that he = y(1 - y) and the eigenvalue problem (2.10) becomes 

Vcyy + ~ Vc = O, Vc(O) -- Vc(1) = 0. (3.1) 
y(1 - y) 

Defining W = Vcy and z --- 2y - 1, then W satisfies the Legendre's equation, 

[(1 -z2)Wz]z + XW = 0, (3.2) 

with the constraints that W be finite at the end points z = -1 and 1. The eigenvalues are 
thus given by 

o r ,  

kn = n ( n  + 1), (3.3) 

~n = [1 + S2n(n + I)] I/2, 

and the eigenfunctions are the Legendre polynomials 

(3.4) 

1 d n 
W n = P n ( z ) ~ - - - - ( z  2 - 1 )  n. 

2nn! dz  n 

In terms of the original variables, we then have 

tin--1 
Vn = an ~ [y(1 - y)]n, 

where an is a normalizing factor such that 

(3.5) 

(3.6) 

0 ~ dy = Stun. (3.7) 

It is seen that the eigenfrequency on increases with the mode number n, as well as the 
number of  zero crossings (given by n - 1) of V,, within the interval (0, 1). Also, as 
expected, the eigenfrequencies have a lower cut-off at the inertial frequency and increase 
as the front stiffens (increasing $2). 
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With a sloping bottom,/~e is everywhere greater but the change is expected small due 
to the fact that he is bounded by the smaller layer depth and hence is not overly sensitive 
to large increase of the water depth (a classical analog is the resistance for a pair of 
resistors in parallel). There is a theorem (CouRAST and HILBERT, 1937, p. 411) stating 
that if r(y) of (2.10) varies in one sense over the whole domain, every eigenvalue varies in 
the opposite sense. We thus expect the steepening bottom, by increasing he and 
decreasing r(y), to slightly increase the eigenfrequency of (3.4). Physically, this is 
because the interface waves are travelling at a faster speed when he increases, resulting in 
higher frequency for the standing modes. 

Since the mean current shear enters (2.10) through both the function q(y) and, because 
of geostrophy, the function r(y), its effect on theeigenfrequency in more subtle. But if 
both layers have the same mean vorticity so that hl remains the same (see equation 2.2), 
then a cyclonic (anticyclonic) flow will increase (decrease) q(y) while keeping r(y) 
unchanged. Based on the theorem cited above which also states that if q(y) varies in one 
sense over the whole domain, every eigenvalue varies in the same sense, the cyclonic 
(anticyclonic) flow therefore will increase (decrease) the eigenfrequency of (3.4). 
Physically, a cyclonic (anticyclonic) flow effectively enhances (reduces) the restoring 
force associated with the earth's rotation and hence increases (decreases) the frequency 
of the eigenmodes. From the above discussions, it is also clear that eigenfrequencies can 
be sub-inertial if the mean flow is sufficiently anticyclonic. If the frontal configuration 
changes as a result of the mean current shear, the net effect is less certain. For example, 
if the cyclonic vorticity is greater in the upper layer so that the front is convex upward 
(i.e. I/~lyl decreases offshore), then/le is smaller which counters the effect of the cyclonic 
vorticity on the eigenfrequency. The net effect thus depends on the more detailed 
distribution of the flow field. 

4. A P P L I C A T I O N  

In the Mid-Atlantic Bight, the frontal zone typically spans a distance of a few tens of 
kilometers (see e.g. Fig. 1) while the baroclinic radius of deformation is a few kilometers 
(using g' ~ 0.2 cm s -2, H ~- 100 m and f ~ 10 -4 s -1, one estimates that Rc ~ 4.5 km), 
the Burger number is thus generally small. From the above discussions, we deduce that 
the eigenfrequency for the low modes is near inertial and resonance at tidal frequencies 
might not be predominant. Nevertheless, because of the cut-off of the eigenfrequency at 
the inertial frequency, we expect the semidiurnal tide to be preferentially amplified 
(relative to the diurnal tide). Is there any observational evidence for this model 
prediction? During SEEP--I  (Shelf Edge Exchange Processes), an array of thermistor 
chains were moored across the shelf-break south of Cape Cod to monitor the frontal 
motion. An empirical orthogonal function analysis in the frequency domain has been 
carded out to characterize the dominant thermal signals (O¢ et al., 1988). The analysis 
showed that the dominant modes at the diurnal and semidiurnal frequency have quite 
different structures. Specifically, the diurnal mode has large spatial scales, reflecting the 
barotropic forcing, while the semidiurnal mode has smaller spatial scales and is more 
tightly bound to the front. Despite the sharply reduced coherence scales, the semidiurnal 
mode nevertheless accounts for as much percentage of the total variance as the diurnal 
mode. The analysis is consistent with the preferential amplification of the semidiurnal 
tide by the generation of the frontal modes. 
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Retaining only the low modes, the forced solution (2.11), in the asymptotic limit 
S 2 ,~ 1, becomes 

n~l S2cn V c ~  = ~ - 1  v" 

S2/]e 
- 02 - 1 F(y) (using the definition of cn and equation 3.7), (4.1) 

or ,  

S 2 

Vc -~ 02~-1 F(y). (4.2) 

This asymptotic solution can also be derived from (2.8) by dropping the Vcyy term, which 
is equivalent to retaining only the low modes in the expansion (2.11). Since F(y) is 
generally negative for the shelf-slope front (see Section 2), Vc is thus positive (negative) 
for the diurnal (semidiurnal) tide and the cross-shelf flow is surface (bottom) intensified 
(see equation 2.5). 

We should point out that the asymptotic solution (4.1), although derived for the case 
when the front intersects both the top and bottom surfaces, remains valid even when the 
front has open ends. Assuming a localized forcing, then instead of vanishing baroclinic 
transport, radiation conditions must be imposed at the end points. The general solution 
to (2.8) is composed of a particular solution (the forced wave, equation 4.1) and a 
homogeneous solution (free waves) needed to satisfy the radiation conditions. For small 
S, the free waves have small lateral scales (nondimensionally of order S due to the 
balance of the first two terms in equation 2.8) and to satisfy the radiation condition that 
matches both Vc and its spatial gradient (equivalently the frontal displacement) across 
the open boundary, the free waves must have small amplitude compared with the forced 
wave (the ratio being of the order S). This result applies for both the progressive 
(semidiurnal) and evanescent (diurnal) waves, the asymptotic solution (4.1) thus remains 
the dominant response for an open front. 

To check the model prediction regarding the vertical structure of the cross-shelf flow, 
we use the current data of the Nantucket Shoals Flux Experiment (BEARDSLEY et al., 
1983). We have plotted in Fig. 3 the location of the current meter measurements at their 
mooring 5 and the mean position of the winter front. Numbers listed alongside are the 
amplitude of the cross-shelf flow (in cm s -~) of the two dominant tidal constituents 
together with their averages within each layer. Notwithstanding large statistical errors, 
the diurnal tide does appear to be surface intensified while the semidiurnal tide bottom 
intensified, in agreement with the model prediction. Taking/]1 ~-/]2, estimates for the 
baroclinic tide, the barotropic tide and their ratio are also listed. According to the 
asymptotic solution (4.2), this ratio should be three times greater for the diurnal tide 
(with ¢ ~ 0.75) than for the semidiurnal tide (o ~- 1.5). The opposite trend observed is 
thus suggestive of the preferential amplification of the semidiurnal tide as discussed 
above. 

The preferential amplification and bottom intensification of the semidiurnal tide tend 
to enhance its role in the mixing process especially near the bottom. In addition, since the 
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Fig. 3. Location of the current meters (in solid dots) at mooring number 5 of the Nantucket 
Shoals Experiment, as well as the mean position of the front (in solid line). Numbers listed are 
the amplitudes of the cross-shelf flow (in cm s -t) at two dominant tidal constituents (taken from 
Table 11 of BEARDSLEY et al., 1983), their averages within each layer, the estimated baroclinic 

and barotropic component (assuming equal upper and lower layer depth), and their ratios. 

ampl i tude  of  the barocl inic  t ide depends  on  the  f ronta l  conf igura t ion ,  it can be regu la ted  
by  low-f requency  forcings.  Fo r  examp le ,  a downwel l ing  f avorab le  wind which s teepens  
the front  and  increases  the Burge r  n u m b e r ,  can ampl i fy  the t ide and  hence  the mixing 
within the f rontal  zone.  
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