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On an oscillator equation for tides in almost enciosed basins of non-uniform
depth

LeoR.M.Maas
Nerherlands Institurefor Sea Research, Texel, Netherlands

ABSTRACT: The essential elements in the derivation of an oscillator equation governing the Helmholtz
response of an almost-enclosed tidal basin are given. The restoring term becomes nonlinear when the basin
has non-uniform depth. Consequences of this non-linearity are briefly discussed,

INTRODUCTION

An enclosed basin has (eigen) modes which are all
characterized by the fact that they necessarily
conserve mass. Thus, there will always be a zero
elevation line somewhere in the basin, separating
regions with opposite phases (180 degrees phase
difference) and they are therefore referred to as
sloshing modes (Fig. la).

The sole mode added to this system when the basin
communicates with a sea through a narrow strait is
the “pumping” or Helmholtz-mode, characterized by a
periodic mass-exchange through the strait and
spatially-uniform elevation change within the basin,
see Fig. 1h. This mode occurs when the basin is both
deep, so that the flow and therefore frictional effects
within the basin are of negligible strength, and short,
so that the tidal wave cm cross the basin almost
instantaneously (LeBlond and Mysak 1978; Mei
1989). As such, this mode may govern the response of
(constricted) fjords, although it may also play a
contributing role in shallower basins.

When such a basin has vertical side walls it
responds linearly to a change in volume transport
through the entrance (Fig. Ic); a change that may be
either due to natural variability in the tides (e.g. the
fortnightly cycle), or to wind effects. The elevation
within this linear Helmholtz resonator, in response to
a sinusoidal elevation-change in the connecting sea,
may thus change amplitude, e.g. due to resonant
effects, and phase, due to frictional effects, but will
remain sinusoidal in time. Therefore. when the

observed basin elevation is not simply a delayed
and stretched version of the tide at open sea this
points at nonlinear effects. For example, tidal
elevations in the Wadden Sea — a complex of tidal
basins, seperated by tidal flats and water sheds —

(see Fig. 2a) are deformed when compared with
tides in the connecting North Sea. Although the tide
in these shallow, frictional basins is not of pure
Helmholtz-type, maximum delay times amount
only to about an hour, much less than a half tidal
period which would go with pure sloshing modes,
which makes the idealisation to a pure Helmholtz
basin of some interest. Within the basin nonlinear
bottom-friction and nonlinear advection together
with bottom-friction in combination with variations
in depth will leads to tidally-rectified, residual
current pattems (Zimmerman 1980; Ridderinkhof
1988), but nonlinear behaviour of the Helmholtz
mode proper (with its feeble basin flow) is more
likely due to nonlinear bottom-friction in the
connecting channel (see Zimmerman 1992). Green
(1992) suggested that a nonlin,ar response may
also simply be due to the fact that the side walls are
not vertical, see Fig. ld. In here we want to focus
just on the essentials of this nonlinear restoring
mechanism, both conceptually (Fig. 1), as well as in
its derivation. We will also briefly address the
consequences of the nonlinearity for the tidal
elevations within the basin. A more detailed

,,ccount of this cm be found in Maas (1997),
hereafter referred to as M.
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Figure t: (a) Schematic top view of oscillation in closed basin. Signs indicate positive or negative elevations. (b) Same as (a) butfor an almosi enciosed basin, showing that water-level displacemenis can be single-signed. (c) Side-view of a basin withvertical side walis (left) and channel which connects to an open sea (nght), showing that equal amounis of subsequentlyentering packets of fluid induce equal vertical displacements. The basin thus responds linearly to an intiux of water. (d)Same as (c) but for a basin with sloping side wall, showing that the vertical displacements induced by equal packets of[luid is now different and depends on the height of the water present when the packet initially flows in. The response ofthe basin is thus rionlinear. It is relevant to monitor the elevation of the [luid within the basin, because its difference withthe tidal heighi at open sea is driving the flow through the connecting strait.
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The relevance of this model in explaining observed horizontal basin area at mean sea level, A0, multitidal characteristics of real bay-inlet systems is plied with maximum depth H, and mass flux issomething that might be approached, not by rigidly scaled by fiow-strength multiplied by A5.fixing the parameters present in the model, but rather Neglecting for the moment nonlinear advective andby comparing the particular phenomena that are due frictional effects, the fiow through the strait isto the nonlinear nature of the restoring mechanism driven by the pressure difference between entrancewith those found in nature. We can here pursue this and exit:
goal only to a very limited extent, as emphasis will be
on the modelling part.

(2)
1. DERIVATION OF OSCILLATOR EQUATION

where 4’ is the spatially uniform elevation withinBecause of the spatial uniformity of the Helmholtz the basin and 4(t) = Fcosft is a nondimensionalmode the state of the tide within the estuary can be external ticie of amplitude F and frequency f Thischaracterized by a single state-variable; the excess frequency is nondimensionalized by the Helmholtzvolume V(t) (volume of water relative to mean water frequencylevel). Its evolution is due to an infiux of water, non
dimensionally given as

( gA
I/2

C,LeI , (3)dv t\A,L}
T” (1)

where L is the length of the entrance channel and gwhere u is the strength of the current in the entrance the acceleration of gravity. The evolution equationschannel (which, as its vertical, cross-sectional area, (1) & (2) complete the nonlinear, second-order,Ae, is assumed to be spatially uniform) The minus oscillator equation once we supply the functiönalsign at the right hand side of this expression is relationsbip between elevation 4’ and volume V.conventional as the strait direction is defined to be This excess volume V(t) is, by definition, given bypositive towards the open sea. Volume is scaled with the hypsometxy of the hasin (Boon and Byrne
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(z = 0:

v =f’A(z)a’z.

Fcosft

the form

A0dC/dt = —uA,,

restorihg term (Y) is dëtermined by the actual
hypsometry and the basin area A0Q) should thus not
be independently prescribed. Following Green
(1992), for didactical purposes, it is assumed here

(4) that this function is ilnear .throughout the deptli of
the basin, A = 1 + z, such as may be produced by a
linearly sloping side-wali. This assumption. implies
an elevation-volume relationship of the form

(V)=(1+2V)”2—1. (7)

This deseription indicates that the basin is “non
empty” as long as V > -½ (the dimensionless
volume of the basin at rest equals ½). At the right
hand side of (5) we find forcing and linear and
nonlinear friction terms. The forcing represents the
“extemal” tide, characterized by its nondimensional
volume-flux and tidal frëquency. Linear dainping
(c c) is due ti seaward radiation öf gravity waves
(Garrett 1975). Nonlinear damping (oc y) is both
due to bottom frictional drag in the connecting
strait (Zimmerman 1992), as well as form drag, i.e.
an asymnletty of in- and out-flow (Stommel and
Farmer 1953). For more details, see M.

(6) As the effects of nonlinear daxnping on basin
tides has been discussed in Méhta and Özsoy
(1978), van der Kreeke (1988) and DiLorenzo
(1988) and of both linear and nonlinear damping in
Zimmerman (1992), thesè will not bediscussed per
se. Rather we will put emphasis on the effects of
the nonlinear restoring term, aMiôugh we may
remark at the outset that the features to be
discussed have been obtained with either of the
damping mechanism independently present (as well
as in combination).

1981), the basin’s area A(z) integrated over depth,
from mean water level (z = 0) to the free surface

Combining (t) and (2), and adding the omitted non
linear advection and damping terms, we obtain the
following nonlinear, ordinary differential equation,
describing the evolution of the dimensionless excess
volume V:

(5)
dV dV dV—c----y--

This is a finite-amplitude, forced and damped
extension of Green’s (1992) model. Mehta and Özsoy
(1978) derive a similar lumped-parameter model buL
apply it to a basin whose cross-sectional area A(z) is
constant with height. In particular Eq. (1) then takes

where all terms are, for this moment, dimensional.
Van de Kreeke (1988) and DiLorenzo (1988) prag
matically adopted (6), rather than (1), to apply also to
cases where both basin area 4, as well as cross
sectional entrance area A6 were considered to possess
an (empirically determined) time-dependence, so that
the restoring term in (5) was replaced by a linear term
(albeit with a time-dependent coefficient). Eq. (1)
shows this to be unnecessary, as the nonlinear
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Figure 2: (a) Average spring and neap tidal elevation over one tidal period (T), as observed by Rijkswaterstaat in Lauwersoog atthe end of Zoutkamperlaag, a basin in the Dutch Wadden Sea. (b) Free response of the occupied area A = 1 + 4, relatedto the excess-volume by V = (A’ - 1 )t2, as given by the analytical solutions of the unforced and inviscid evolutionequation for V, for initial conditions varying from tinear to (large amplitude) fully nonlinear.
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2. SOLUTIONS OF OSCILLATOR EQUATION
Without forcing and friction Eq. (5), with (7), can besolved analytically and yields a parainetricdependence of volume on time in terms of Jacobianelliptic functions and elliptic integrals (see M). Since,given the same flux of water through the entrance, ittakes more time to change the water level when thewater is already high (and the occupied area thuslarge) than when the water is low (and the occupiedarea small), Fig. id, a typical nonlinear responsewithin the estuary consists of sea-level elevations thatare “coupled parabola’s”: long-lasting “highs” versusbrief “lows” (see Fig. 2b), not unlike the observedspring-tide elevation in Fig. 2a. Note that the period

of the free response (Fig. 2b) drops from 2it to 6 whenthe nonlinearity increases, in accordance with Green’s(1992) perturbative result. A change of the freeoscillation period in response to a change in itsamplitude is a common feature of nonlinearoscillators (Nayfeh and Mook 1979). It is unusualthough, that such a change occurs over a range assmall as found here. However, a similar decrease inthe basins observed period in response to the externaltide, should therefore not necessanly be acoincidence. (See the weakly discernable difference intime-span. between two successive low waters in Fig.2a, comparing neap and spring tide).
Although the similarity between Figs. 2aand 2bsuggests that the response of the forced and dampednonlinear oscillator is perhaps dominated by the freeresponse, in reality, tidal forcing and fiction canclearly not be neglected. Numerical integration bastherefore been employed to investigate these effeetsand suggests that several new features may arise. Thefirst two cases discussed below will only add forcing,

while, in the last case, also friction is incorporated.First, for fixed forcing (frequency and amplitudeof the extemal tide), the amplitude of the tidaloscillation within the basin may be varying on along timescale when the forcing frequency is nearresonance (see Figs 3a,b). This can be explained asfollows. Tidal levels are increasiflg due to the nearresonancy of the basin. However, the eigenfrequency of the basin is now a function, of theamplitude and thu changes (natural detutung) As aconsequence. the system is brought out-ofresonance and the tidal aniplitude drops, fromwhich point the cycle starts again.
Second, there is a tiny region in paranieter spacefor which nuniericaj. calculations of the forced,nonlinear Helniholtz oscillator suggest the solutionsto be chaotic (ee Fig. 3c): This leads to thecountenntuittve but lntrlgwng suggestion that onemay occasionally expect to observe chaotic tidesan expression that, in view of the extremeregularity of. the. tidal. forces, rnight at first look beheld as a contradiction in terms!

That tides in estuaries can at certain places behaotic is, however, strongly suggested by theobservations of Golmen et al. (1994), see Fig. 4,who, in a fjord in Norway, observed persistent“irregular” sea level ând, in particular, currentmodulatiöns of aboüt 45 minutes period,superposed on the tidë: The geometry of the t)ordseems to admit the presence of the Helmholtzmode. In contrast to Golmen et aL’s (1994)observation, the Helmholtz period, estimatedon thebasis of (3), seems to match the observed period.To what extent the “chaos” in their tidalobservations can be explalned by the above

Figure 3: (a) Numerical integration (up to t = 250) of the inviscid, forced evolution equation for the excess volume V, demonstratingresonant growth, natural detuning and subsequent decay for F = 0.01 and f = 1, as given by V versus time t fos V(0) = 0.2,dV/di (0) = - 02. The dotted curve gives a “stroboscopic plot”, as it displays the volume (up to t = 500) aL times that theexternal tide is al a minimum:ft = (2n + l),r, where n is integer. (b) Plot of same solution bul ina plane spanned by straitvelocity dV/dr versus volume V. Superimposed, dotted curve on the IeR side of this figure, gives stroboscopic plot, as in(a). (c) Stroboscopic plot in dV/dt V plane for forcing amplitude F = 0.6 and frequencyf= 1.92. Four orbits are given inwhich “traces of chaos” are evident in the erratic central orbit (the two inner “orbits” consist of a left and righi Segmentcach),

‘
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Figuur 4: Irregular observed sea level (a) and current (b) observations versus time in Moldetjord, Norway (from. Gohnen et ah
1994).

(inviscid!) mechanism is unclear as yet, in particular
so as the chaos in the theoretical model does’ not, in
general, seem to surviyc the addition of fiction. The
loss of chaos under the addition of damping is quite
common for perturbed Hamiltonian systerns. To
specify under what conditions the chaos survives
(and thus may perhaps be relevant to the fjord
observations ) is currently being investigated.
Third, if, more realistically, we do include friction,
direct integration of the system indicates that it setties
down into a stationary state (a response curve, V(t), of
particular amplitude Q, phae and shape), which is
usually independent of imtial conditions. The

L

Éemporal shape of these stationary, states may
inciude (but can also. be more complex than) the
free mode given in Fig, 2h. for instance eKhibit an
intermeijiate minimumImaxlmuz,. withh one
period, while it may also feature asymmotriç
profiles, of relevance far, net sediment transport.
However, the amplitude response curve.— giving
the amplitude of a stationary state as a function of
forcing frequency — need. not always indicat that
these is a unique state as it may sometines exhibt
multivaluednes for systems. closo to resonance, see
Fig. 5 and Ad. This means. that,, for the sains vakles
of the “parameters of the. system’ (charactgrizing

Figure 5: (a) Amplitude response V -curves against detuning frequency o The detuning frèqienoygies (anamplified View of) themismatch between the actual (f= 1 + ekt) and the resonance frequency (1). Here £ « 113 the detUalflgparametr Forcases of near-resonant forcing,f» 1 and a= 0(1), this curve bas “bent resonanci hornWl and thcretreimdUp1eequilibria.It exhibits an increased response with F increasing from F= 0.1 to 0.3 and 0.5, for frictional paÉamets y= OOt$ear0.5 threc equilibria are found, the smallest and largest of which are stable, The bent towarda. the righi classiflesocillator as a hardening spring (Nayfeh and Mook 1979) (b) Time evolutson of volume within basta in the twoequilibnum states. The low (high) range tide is approximately 1fl (out of) phase with the eanenial tidal elivation Fcos(ft).
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forcing and friction), the basin may respond with
either a small or large amplitude oscillation, which
states have their own “basin of attraction” that do
depend on initial conditions (Nayfeh and Mook
1979). These basins of attraction are separated from
cachother by a separatrix that emanates from the
unstable third equilibrium (the middlest one in
Fig. 5). This is a closed curve (whose location can be
computed) in inviscid circumstances, but it winds Out
when viscous effects are present, and may indeed lead
to fractal-shaped domains of attraction. The
implication of the existence of muliple equilibria is
that one of the two stable modes may cease to exist
for slightly changing parameter values. Thus, when
this parameter alters slowly, and passes a threshold —

the range of frequencies for which three equilibria
exist — it may force the system to rapidly change its
State of oscillation to the only remaining state, thereby
creating a strong response. Changes like these may
perhaps be triggered by changes in mean sea-level.
With reference to observations in the Strangford
Lough, Northern-treland, it has been suggested by Dr.
G. Savidge of the Queens University of Belfast
(personal communication) that evidence of such rapid
changes in estuarine tidal amplitudes may be hidden
in observed sedimentological zonation-patterns. This
abrupt drop in tidal range may ultimately form the
most dramatic demonstration that a tidal estuary with
sloping bottom constitutes a nonlinear oscillator.
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