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On an oscillator equation for tides in almost enclosed basins of non-uniform

depth

Leo R.M.Maas
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ABSTRACT: The essential elements in the derivation of an oscillator equation governing the Helmbholtz
response of an almost-enclosed tidal basin are given. The restoring term becomes nonlinear when the basin
has non-uniform depth. Consequences of this non-linearity are briefly discussed.

INTRODUCTION

An enclosed basin has (eigen) modes which are all
characterized by the fact that they necessarily
conserve mass. Thus, there will always be a zero-
elevation line somewhere in the basin, separating
regions with opposite phases (180 degrees phase-
difference) and they are therefore referred to as
sloshing modes (Fig. 1a).

The sole mode added to this system when the basin
communicates with a sea through a narrow strait is
the "pumping” or Helmholtz-mode, characterized by a
periodic mass-exchange through the strait and
spatially-uniform elevation change within the basin,
see Fig. 1b. This mode occurs when the basin is both
deep, so that the flow and therefore frictional effects
within the basin are of negligible strength, and short,
so that the tidal wave can cross the basin almost
instantaneously (LeBlond and Mysak 1978; Mei
1989). As such, this mode may govern the response of
(constricted) fjords, although it may also play a
contributing role in shallower basins.

When such a basin has vertical side walls it
responds linearly to a change in volume transport
through the entrance (Fig. Ic); a change that may be
either due to natural variability in the tides (e.g. the
fortnightly cycle), or to wind effects. The elevation
within this linear Helmholtz resonator, in response to
a sinusoidal elevation-change in the connecting sea,
may thus change amplitude, e.g. due to resonant
effects, and phase, due to frictional effects, but will
remain sinusoidal in time. Therefore, when the

observed basin elevation is not simply a delayed
and stretched version of the tide at open sea this
points at nonlinear effects. For example, tidal
elevations in the Wadden Sea — a complex of tidal
basins, seperated by tidal flats and water sheds —
(see Fig. 2a) are deformed when compared with
tides in the connecting North Sea. Although the tide
in these shallow, frictional basins is not of pure
Helmholtz-type, maximum delay times amount
only to about an hour, much less than a half tidal
period which would go with pure sloshing modes,
which makes the idealisation to a pure Helmholtz
basin of some interest. Within the basin nonlinear
bottom-friction and nonlinear advection together
with bottom-friction in combination with variations
in depth will leads to tidally-rectified, residual
current patterns (Zimmerman 1980; Ridderinkhof
1988), but nonlinear behaviour of the Helmholtz
mode proper (with its feeble basin flow) is more
likely due to nonlinear bottom-friction in the
connecting channel (see Zimmerman 1992). Green
(1992) suggested that a nonlingar response may
also simply be due to the fact that the side walls are
not vertical, see Fig. 1d. In here we want to focus
just on the essentials of this nonlinear restoring
mechanism, both conceptually (Fig. 1), as well as in
its derivation. We will also briefly address the
consequences of the nonlinearity for the tidal
elevations within the basin. A more detailed
ccount of this can be found in Maas (1997),
hereafter referred to as M.
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Figure 1: (a) Schematic top view of oscillation in closed basin. Si

gns indicate positive or negative elevations. (b) Same as (a) but

for an almost enclosed basin, showi ng that water-level displacements can be single-signed. (c) Side-view of a basin with
vertical side walls (left) and channel which connects to an open sea (right), showing that equal amounts of subsequently
entering packets of fluid induce equal vertical displacements. The basin thus responds linearly to an influx of water. (d)
Same as (c) but for a basin with sloping side wall, showing that the vertical displacements induced by equal packets of
fluid is now different and depends on the height of the water present when the packet initially flows in. The response of
the basin is thus nonlinear. It is relevant to monitor the elevation of the fluid within the basin, because its difference with
the tidal height at open sea is driving the flow through the connecting strait.

The relevance of this model in explaining observed
tidal characteristics of real bay-inlet systems is
something that might be approached, not by rigidly
fixing the parameters present in the model, but rather
by comparing the particular phenomena that are due
to the nonlinear nature of the restoring mechanism
with those found in nature. We can here pursue this
goal only to a very limited extent, as emphasis will be
on the modelling part.

1. DERIVATION OF OSCILLATOR EQUATION

Because of the spatial uniformity of the Helmholtz
mode the state of the tide within the estuary can be
characterized by a single state-variable: the excess
volume V(1) (volume of water relative to mean water
level). Its evolution is due to an influx of water, non-
dimensionally given as

dv

dr = (1
where u is the strength of the current in the entrance
channel (which, as its vertical, cross-sectional area,
A, is assumed to be spatially uniform). The minus
sign at the right hand side of this expression is
conventional as the strait direction is defined to be
positive towards the open sea. Volume is scaled with

1

horizontal basin area at mean sea level, Ao, multi-
plied with maximum depth H, and mass flux is
scaled by flow-strength multiplied by A..
Neglecting for the moment nonlinear advective and
frictional effects, the flow through the strait is
driven by the pressure difference between entrance
and exit:

du

=G @
where { is the spatially uniform elevation within
the basin and {(r) = Fcosft is a nondimensional
external tide of amplitude F and frequency £, This

frequency is nondimensionalized by the Helmholtz-
frequency
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where L is the length of the entrance channel and g
the acceleration of gravity. The evolution equations
(1) & (2) complete the nonlinear, second-order,
oscillator equation once we supply the functional
relationship between elevation { and volume V.
This excess volume V(#) is, by definition, given by
the hypsometry of the basin (Boon and Byrne

3)
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1981), the basin's area A(z) integrated over depth,
from mean water level (z = 0) to the free surface

=9
v=[ Aoz, 4)

Combining (1) and (2), and adding the omitted non-
linear advection and damping terms, we obtain the
following nonlinear, ordinary differential equation,
describing the evolution of the dimensionless excess-
volume V:

2
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This is a finite-amplitude, forced and damped
extension of Green's (1992) model. Mehta and Ozsoy
(1978) derive a similar lumped-parameter model but
apply it to a basin whose cross-sectional area A(z) is
constant with height. In particular Eq. (1) then takes
the form

A,d¢/ dt=—uA,, (6)

where all terms are, for this moment, dimensional.
Van de Kreeke (1988) and DiLorenzo (1988) prag-
matically adopted (6), rather than (1), to apply also to
cases where both basin area A, as well as cross-
sectional entrance area A. were considered to possess
an (empirically determined) time-dependence, so that
the restoring term in (5) was replaced by a linear term
(albeit with a time-dependent coefficient). Eq. (1)
shows this to be unnecessary, as the nonlinear
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restoring term {(V) is determined by the actual
hypsometry and the basin area A,(9) should thus not
be independently prescribed. Following Green
(1992), for didactical purposes, it is assumed here
that this function is linear throughout the depth of
the basin, A = 1 + ¢, such as may be produced by a
linearly sloping side-wall. .This assumption. implies
an elevation-volume relationship of the form

LVy=@+2v) -}, )

This description indicates that the basin is “non-
empty” as long as V > -Y2 (the dimensionless
volume of the basin at rest equals %). At the right-
hand side of (5) we find forcing, and linear and
nonlinear friction terms. The forcing represents the
“external” tide, characterized by its néndimensional
volume-flux and tidal frequency. Linear damping
(=< ) is due to seaward radiation of gravity waves
(Garrett 1975). Nonlinear damping (e P is both
due to bottom frictional drag in the connecting
strait (Zimmerman 1992), as well as form drag, i.e.
an asymmetry of in- and out-flow (Stommel and
Farmer 1953). For more details, see M,

As the effects of nonlinear damping on basin-
tides has been discussed in Mehta and Ozsoy
(1978), van der Kreeke (1988) and DiLorenzo
(1988), and of both linear and nonlinear damping in
Zimmerman (1992), these will not be discussed per
se. Rather we will put emphasis on the effects of
the nonlinear restoring term, although we may
remark at the ‘outset ‘that the féatiires to be
discussed have been obtained with either of the
damping mechanism independently present (as well
as in combination).
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Figure 2: (a) Average spring and neap tidal elevation over one tidal

period (T), as observed by Rijkswaterstaat in Lauwersoog at

the end of Zoutkamperlaag, a basin in the Duich Wadden Sea. (b) Free response of the occupied area A = 1 + ¢, related
to the excess-volume by V = (4% - 1)/2, as given by the analytical solutions of the unforced and inviscid evolution
equation for V, for initial conditions varying from linear to (large amplitude) fully nonlinear.
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2. SOLUTIONS OF OSCILLATOR EQUATION

Without forcing and friction Eq. (5), with (7), can be
solved analytically and yields a  parametric
dependence of volume on time in terms of Jacobian
elliptic functions and elliptic integrals (see M). Since,
given the same flux of water through the entrance, it
takes more time to change the water level when the
water is already high (and the occupied area thus
large) than when the water is low (and the occupied
area small), Fig. 1d, a typical nonlinear response
within the estuary consists of sea-level elevations that
are "coupled parabola's"; long-lasting "highs" versus
brief "lows" (see Fig. 2b), not unlike the observed
spring-tide elevation in Fig. 2a. Note that the period
of the free response (Fig. 2b) drops from 27 to 6 when
the nonlinearity increases, in accordance with Green's
(1992) perturbative result. A change of the free
oscillation period in response to a change in its
amplitude is a common feature of nonlinear
oscillators (Nayfeh and Mook 1979). It is unusual
though, that such a change occurs over a range as
small as found here. However, a similar decrease in
the basin's observed period in response to the external
tide, should therefore not necessarily be a
coincidence. (See the weakly discernable difference in
time-span between two successive low waters in Fig.
2a, comparing neap and spring tide). ,
Although the similarity between Figs. 2a and 2b
suggests that the response of the forced and damped
nonlinear oscillator is perhaps dominated by the free
response, in reality, tidal forcing and friction can
~ clearly not be neglected. Numerical integration has
therefore been employed to investigate these effects
and suggests that several new features may arise. The
first two cases discussed below will only add forcing,

while, in the last case, also friction is incorporated.

First, for fixed forcing (frequency and amplitude
of the external tide), the amplitude of the tidal
oscillation within the basin may be varying on a
long timescale when the forcing frequency is near-
resonance (see Figs 3a,b). This can be explained as
follows. Tidal levels are increasing due to the near-
resonancy of the basin. However, the eigen-
frequency of the basin is now a function of the
amplitude and thus changes (natural detuning). As a
consequence, the system is brought. out-of-
resonance and the tidal amplitude drops, from
which point the cycle starts again,

Second, there is a tiny region in parameter space
for which numerical, calculations of the forced,
nonlinear Helmholtz oscillator suggest the solutions
to be chaotic (see Fig. 3c). This leads to the
counterintuitive, ut intriguing suggestion that one
may occasionally expect to observe "chaotic tides"-
an expression that, in.view of the extreme
regularity of.the. tidal forces, might at first look be
held as a contradiction in terms!

That tides in estuaries can at certain places be
haotic is, however, strongly suggested by the
observations of Golmen et al. (1994), see Fig, 4,
who, in a fjord in Norway, observed persistent
“irregular” sea level and, in particular,  current
modulations  of . about 45 minutes: period,
superposed on the tide: The geometry of the fjord
seems. to admit the presence of the Helmholtz
mode. In contrast to Golmen et al's: (1994)
observation; the: Helmholtz period, estimated-on the
basis of ¢3), seems to match the -observed period.
To what extent the ‘“chaos” in their tidal
observations can be explained by the above

Figure 3: (a) Numerical integration (up to 1 = 250) of the inviscid, forced evolution equation for the excess volume V., demonstrating
resonant growth, natural detuning and subsequent decay for F = 0.01 and f=1, as given by V versus time r for V(0) = 0.2,
dV/dt (0) = - 0.2. The dotted curve gives a “stroboscopic plot”, as it displays the volume (up to ¢ = 500) at times that the
external tide is at a minimum: ft = (2n + 1), where n is integer. (b) Plot of same solution but in a plane spanned by strait

velocity dV/dt versus volume V.,

Superimposed, dotted curve on the left side of this figure, gives stroboscopic plot, as in

(a). (¢) Stroboscopic plot in dV/d - v plane for forcing amplitude F = 0.6 and frequency f = 1.92, Four orbits are given in
which “traces of chaos” are evident in the erratic central orbit (the two inner “orbits” consist of a left and right segment

each),
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Figure 4: Irregular observed sea level (a) and current (b) observations versus time in Moldéfjord; Norwiy: (from: Gblnic!n etali:

1994).

(inviscid!) mechanism is unclear as yet, in particular
so as the chaos.in the theoretical model does-not; in
general, seem to survive the addition of friction. The
loss of chaos under the addition of damping is quite
common for perturbed Hamiltonian systems. To
specify under what conditions the chaos survives
(and thus may perhaps be relevant to the fjord-
observations ) is currently being investigated.

Third, if, more. realistically, we do include friction,
direct integration of the system indicates that it settles
down into a stationary state (a response curve, V(1), of
particular amplitude V', phase and shape), which is
usually independent of initial conditions. The

Figure 5: (a) Amplitude response V -curves against detuning frequency o. The detuning f’téquenc‘y* glvél
mismatch between the actual (f= | + £0) and the resonance frequency (1). Here & << 1 18 & de
cases of near-resonant forcing, f= 1 and o= 0 (1), this curve has "bent resonance horis? and thereforg m ultip
It exhibits an increased response with F i increasing from F = 0.1 to 0.3 and 0.5, for frictional parametersc =
o= 0.5 three equlhbna are found, the smallest and large:

-0.5

st of which are stable, The bent towa

include (but can. also'be more comp than). the
free mode given. i in an1 2by fm: instance exhibi¢. an

proﬁles, of relevance, for net sedxme; 't?transport.
However,. the amplitude response curve. = giving
the amphtuda of a statxonary stite as a funcn, n of

muluvaluednes& for systems cloé& to resona.nc see
Fig, 5 and Mr This means that; for the saime values
of the "parameters of the system" (charactenzing

0.5

0 ¢t e

oscillator as a “hardening spring” (Nayfeh and Mook 1979). (b) Time evolunon of volume wnihin asin i , two
equilibrium states. The low (high) range tide is approximately in (out of) pliase w:th the extamal tidal eléVation Fcos(ﬂ)
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forcing and friction), the basin may respond with
cither a small or large amplitude oscillation, which
states have their own “basin of attraction” that do
depend on initial conditions (Nayfeh and Mook
1979). These basins of attraction are separated from
cachother by a separatrix that emanates from the
unstable third equilibrium (the middlest one in
Fig. 5). This is a closed curve (whose location can be
computed) in inviscid circumstances, but it winds out
when viscous effects are present, and may indeed lead
to fractal-shaped domains of attraction. The
implication of the existence of muliple equilibria is
that one of the two stable modes may cease to exist
for slightly changing parameter values. Thus, when
this parameter alters slowly, and passes a threshold —
the range of frequencies for which three equilibria
exist — it may force the system to rapidly change its
state of oscillation to the only remaining state, thereby
creating a strong response. Changes like these may
perhaps be triggered by changes in mean sea-level.
With reference to observations in the Strangford
Lough, Northern-Ireland, it has been suggested by Dr.
G. Savidge of the Queen's University of Belfast
(personal communication) that evidence of such rapid
changes in estuarine tidal amplitudes may be hidden
in observed sedimentological zonation-patterns. This
abrupt drop in tidal range may ultimately form the
most dramatic demonstration that a tidal estuary with
sloping bottom constitutes a nonlinear oscillator.
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