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Inertial waves propagate in homogeneous rotating fluids, and constitute a challenging
and simplified case study for the broader class of inertio-gravity waves, present in all
geophysical and astrophysical media, and responsible for energetically costly processes
such as diapycnal and angular momentum mixing. However, a complete analytical
description and understanding of internal waves in arbitrarily shaped enclosed domains,
such as the ocean or a planet liquid core, is still missing. In this work, the inviscid,
linear inertial wave field is investigated by means of three-dimensional ray tracing
in spherical shell domains, having in mind possible oceanographic applications. Rays
are here classically interpreted as representative of energy paths, but in contrast to
previous studies, they are now launched with a non-zero initial zonal component
allowing for a more realistic, localized forcing and the development of azimuthal
inhomogeneities. We find that meridional planes generally act in the shell geometry
as attractors for ray trajectories. In addition, the existence of trajectories that are not
subject to meridional trapping is here observed for the first time. Their dynamics was
not captured by the previous purely meridional studies and unveils a new class of
possible solutions for inertial motion in the spherical shell. Both observed behaviours
shed some new light on possible mechanisms of energy localization, a key process that
still deserves further investigation in our ocean, as well as in other stratified, rotating
media.
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1. Introduction
Internal waves are ubiquitously present and of great importance in astrophysical

and geophysical fluids as present in stars or planetary atmospheres and oceans, where
they are considered responsible for a substantial part of the dynamics and mixing
in the interior of the supporting medium (Ogilvie & Lin 2004; Wunsch & Ferrari
2004). They propagate in all kinds of stratified fluids, and are generally referred to
as internal (gravity) waves when the stratification in the fluid is built by means of
vertical density changes, and as inertial waves when the supporting stratification is
in angular momentum (homogeneous, rotating fluid). In this paper, we will use the
generic term internal waves to refer to both situations, or to a combination of the
two, stressing that we deal with a propagating perturbation whose maximum amplitude
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occurs in the interior of the fluid domains, instead of at the boundary, as for surface
waves. Improving our theoretical understanding of internal wave behaviour in stratified
fluids naturally confined to enclosed domains bears, as we may expect, important
consequences for our general understanding of ocean or atmosphere dynamics.

Despite their broad interest and fundamental character, the nature of internal waves
in confined domains is still largely unknown due to a variety of difficulties that
undermine the study of these oscillations. For example, mathematical difficulties arise
because of the combination of the hyperbolic character of internal waves (or of the
mixed elliptic–hyperbolic nature in the case of a stratified and rotating fluid) and
the confinement of motion to an enclosed domain. This problem, in particular in
a spherical shell, has been already presented as a paradigmatic mathematically ill-
posed Poincaré problem (Rieutord, Georgeot & Valdettaro 2000), and it is limiting
our capabilities of an analytical representation and comprehension of the mechanisms
involved.

Analytical solutions for internal wave problems in enclosed domains are mostly
known only for exceptionally symmetric geometries (such as the sphere, see Bryan
(1889)), in which they lead to regular solutions. For this reason, ray theory
(Whitham 1974; Broutman, Rottman & Eckermann 2004) has been developed to
study propagation of internal waves in arbitrarily shaped enclosed geometries. Ray
theory is based on the simple observation that in uniformly stratified, or uniformly
rotating fluids, internal waves propagate along beams whose direction is set by the
ratio of the perturbing frequency and a frequency representing the environmental
conditions (rotation and/or density stratification); see § 2 for the derivation. Wave
energy travels along these beams parallel to the group velocity (Harlander & Maas
2006, 2007), which can therefore provide a (partial) view on the energy distribution
in the domain and on the regularity of the associated wave field in cases where no
analytical solutions are available. It is worth noting that each different inclination
of the rays represents one frequency, and thus only linear phenomena, characterized
by a single frequency, can be described by means of ray-tracing studies. Owing to
its geophysical and astrophysical relevance, a two-dimensional meridional cut of the
spherical shell geometry (an annulus) has been largely explored by means of this
technique (Bretherton 1964; Hughes 1964; Dintrans, Rieutord & Valdettaro 1999;
Maas & Harlander 2007), and the pathological character of its inviscid solutions
has been established (Stewartson & Rickard 1969; Stewartson 1971, 1972). Singular,
discontinuous solutions have indeed to be expected in hyperbolic systems. These
interesting features of internal waves in enclosed domains, the so-called internal
wave attractors (Maas & Lam 1995), are easily captured by ray-tracing analysis: ray
trajectories in arbitrarily shaped containers are generally not closed but, by repeated
reflections off boundaries, converge to a limit cycle (the attractor), in which all of
the wave energy is concentrated (Maas 2005). Remarkably, in a two-dimensional
framework, ray tracing leads to exact, yet geometrically constructed solutions of the
inviscid, uniformly stratified fluid equations in arbitrarily shaped fluid domains. Only
one exceptional case is known (that of a square-shaped attractor in a trapezoidal
domain) where the singular solution is also expressed in terms of a Fourier series
(Maas 2009). The energy scars left in the domain by attractors are observed in quasi-
two-dimensional laboratory demonstrations both in density stratified fluids as well as
in homogeneous rotating fluids (Maas et al. 1997; Maas 2001; Manders & Maas
2003; Hazewinkel et al. 2008), and agree with two-dimensional numerical simulations
(Hazewinkel, Grisouard & Dalziel 2010a).
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High-resolution, weakly viscous numerical experiments performed in astrophysical
contexts (Dintrans et al. 1999; Rieutord, Georgeot & Valdettaro 2001; Ogilvie & Lin
2004; Ogilvie 2005; Calkins et al. 2010) have brought some new insight on the
occurrence of these attractors, in particular in the meridional cut of spherical shell
geometries, showing a remarkable agreement with trajectories evaluated using a simple
linear, geometrical ray tracing of the characteristics.

Interestingly, in the literature, investigation of the spherical shell geometries by
means of ray tracing has always been limited to rays constrained to meridional planes
only (any plane containing the rotation axis, gravity and the geometrical centre of
the domain). This is motivated by the symmetry of the problem in the azimuthal
coordinate (Bryan 1889; Friedlander 1982; Friedlander & Siegmann 1982; Dintrans
et al. 1999), present both in the domain’s geometrical shape, as well as in the
forcing mechanisms usually studied (tidal forcing, libration of the inner sphere). If
in an astrophysical framework this approach seems natural and representative of
the most common perturbations in the fluid, this appears less obvious when we
regard ocean phenomena. The presence of meridional boundaries (continents) limits
the assumption of axisymmetry of the domain; moreover, monochromatic (e.g. tidal),
point-like sources (local storms, local conversion of barotropic into baroclinic tide
on strong topographic features) play a role in the dynamics. Thus, in principle, and
especially if we are interested in the near-field response to a forcing, there is no
compelling reason why a single perturbation, locally and anisotropically forced, should
propagate in a two-dimensional meridional plane only and, in this way, lose the
possibility to show the occurrence of any zonal inhomogeneities.

For this reason the aim of the present study is to extend the use of the ray-tracing
technique for internal wave characteristics to fully three-dimensional spherical shell
domains, allowing also for zonal propagation. In this work we restrict ourselves to
the study of pure inertial waves, while the role of density stratification, and the
combination of the two mechanisms, will be briefly discussed at the end of the paper.
Results for a homogeneous rotating shell are modified locally when radial stratification
is present, where curved rays replace the straight characteristics considered here and
where turning surfaces may limit the part of the fluid domain accessible to waves
(Friedlander 1982; Friedlander & Siegmann 1982; Dintrans et al. 1999); on the other
hand, the pure inertial problem summarizes many of the difficulties and the features
of the gravito-inertial problem, and findings in this partial case are supposed to have
general validity.

The paper is built as follows: the three-dimensional geometrical ray-tracing
technique and its application to the case of the shell are described in § 2. In § 3 results
of the application of the methodology are presented; the main outcomes consist of: (i)
the general occurrence of meridional attracting planes, where ray trajectories (energy
paths) eventually converge, even when initially launched with a zonal component; (ii)
the existence of exceptional trajectories, representing waves that are not subject to
meridional trapping that reflect endlessly around the domain. Clearly the dynamics of
these waves is not captured by the classical, purely meridional approach and unveils
a new class of solutions. Consequences of attracting planes and edge waves are then
qualitatively discussed in § 4, with special attention to the possible oceanographic
implications.
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FIGURE 1. (a) Rotating fluid shell inserted into the Cartesian coordinate framework, rotation
vector indicated by Ω (b) side and (c) top view of a short internal wave packet that reflects
subcritically from a sloping bottom. In (c) the rotation axis (coinciding with the z-axis) is
pointing towards the reader. Modified after Maas (2005). While incident and reflected rays
lie on the same cone (whose angle θ with the vertical is fixed by the perturbing frequency),
their angles αi and αr differ in a projection on the vertical plane perpendicular to the slope
at the point of reflection. Reflecting waves refract instantaneously changing the horizontal
propagation direction from φi to φr.

2. Inertial wave three-dimensional ray tracing
2.1. Governing equations

In a Cartesian (x, y, z) reference frame (see figure 1a) the pressure field, p, of linear
inertial waves in a homogeneous, inviscid, uniformly rotating, Boussinesq fluid is
conveniently described by the Poincaré equation (Cartan 1922)

pxx + pyy − 1− ω2

ω2
pzz = 0 (2.1)

where the fluid is rotating at rate Ω oriented parallel to the z-direction and subscripts
denote partial derivatives. All fields are assumed to be proportional to eiωt and the
Coriolis parameter f = 2Ω is taken as the characteristic time scale. Frequencies ω are
thus regarded as normalized with respect to this parameter. Propagating inertial waves
exist in the frequency range 0 < ω < 1, therefore the Poincaré equation is hyperbolic
throughout the whole domain.

The momentum equations relate the velocity field to spatial gradients of the
pressure:

u= 1
ρ0

1
ω2 − 1

(iωpx + py) (2.2a)

v = 1
ρ0

1
ω2 − 1

(−px + iωpy) (2.2b)

w= 1
ρ0

i
ω

pz (2.2c)

where ρ0 is the density of the fluid. For an inviscid fluid, its boundaries are
impermeable, requiring vanishing of the normal velocity component at the outer
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sphere (x2 + y2 + z2 = 1) and at the inner sphere (x2 + y2 + z2 = η2). Here
η = rin/rout, 0 < η < 1, represents the ratio of the radii of the inner and outer shell,
constituting the surface and the bottom of our idealized ocean, respectively. Spatial
variables are rescaled by using rout as the length scale. The pressure field therefore
has to obey oblique derivative boundary conditions, which in general prohibits finding
exact analytical solutions. Some indications of the behaviour of internal waves in such
a domain can be obtained, as anticipated, by means of three-dimensional ray tracing in
the fluid gap.

2.2. Geometrical mapping
In this section we will first motivate the use of three-dimensional ray tracing, together
with the assumptions underlying the application of this methodology to the problem.
The horizontal scattering of a single inertial wave ray is then presented at the end of
the section as a map relating a reflected to an incident ray. The interested reader can
refer to the Appendix for the map construction and the computational details.

After horizontally reorienting the x-axis along the propagating direction of a single
ray, the system can then be described in two dimensions only: one vertical dimension
and one horizontal dimension. Substituting a wave-like solution p = ei(kx+mz) in the
appropriately rotated version of (2.1), the dispersion relation follows:

ω2 = m2

k2 + m2
(2.3)

that can be rewritten as

ω2 = sin2θ (2.4)

where the wave vector is now expressed in polar coordinates as k = κ(cos θ, sin θ),
with θ the angle between the wave vector and the horizontal. From (2.3) and (2.4) it
follows that for internal waves, group velocity (cg = ∇kω) is perpendicular to phase
velocity (c = (ω/κ2)k), and forms an angle θ with the vertical. Moreover the factor
preceding the second vertical derivative term in (2.1) is directly related to the ray’s
(group velocity’s) inclination since

1− ω2

ω2
= cot2θ. (2.5)

This explains why, differently from surface waves, internal wave group velocity
in stably stratified fluids is directed along beams, the internal wave rays, whose
inclination with respect to the restoring force is uniquely set by the frequency of
the perturbation, and the environmental condition (density stratification and/or rotation)
(Görtler 1943; Greenspan 1968), and this direction is conserved upon reflection at
the domain’s boundaries. Here, in analogy with the two-dimensional counterpart, we
assume that in a three-dimensional domain, a uniquely connected set of characteristics
(rays) exists. Therefore, the perturbation will travel now along characteristic cones
(given by the 2π rotation of the classical St. Andrew’s cross), whose aperture 2θ ,
centred at the rotation axis, is uniquely set by the perturbation frequency and the
stratification properties.

Tracing the geometrical trajectories of these rays in order to infer properties of
the wave field provides, of course, just a limited perspective on the phenomenon.
In parallel to the approach in geometrical optics for linear problems, in order
to successfully apply ray tracing in the three-dimensional case, the propagating
perturbation is idealized as a short, plane wave, reflecting on the curved boundary
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as if from the local tangent plane (see also Baines (1971)). It is clear that plane waves
imply an infinite lateral extension, and its neglect of the (locally) curved character
of the spherical domain’s boundary constitutes a severe approximation. However, it is
only under this strong (as well as popular; e.g. Whitham (1974)) assumption that the
geometrical effects can be isolated and studied from the whole complicated excited
wave field. It is remarkable though that the presence of an attractor strengthens the
validity of the short-wave hypothesis, consistently reducing the width of a wave beam
(wavelength) while it gets focused onto the limit cycle.

Now consider that we want to trace the behaviour of a perturbation at definite
frequency ω. In the literature, the behaviour of a ray in the spherical shell domain has
been traditionally inferred by employing a rotational symmetry of its two-dimensional
trajectory, which is therefore traced on a meridional cut of the shell domain solely.
By contrast, in this work, a single ray will be followed in its fully three-dimensional
trajectory, while it bounces around the domain. The perturbation is ‘launched’ at
one location on the boundary, at position x0 = (x0, 0,

√
η2 − x2

0), on the inner sphere
(bottom), or at (x0, 0,

√
1− x2

0), on the outer sphere (surface). It is clear that we can
choose y0 ≡ 0 because of axial symmetry of basin and equations. We will then be able
to trace one single ray at a time, and it will be uniquely defined by three parameters:
ω, x0 and its initial horizontal direction φ0, measured anticlockwise with respect to the
x-axis, which distinguishes it from other rays belonging to the same excited internal
wave cone.

Horizontal scattering of the ray from a reflecting boundary is assumed here to be
as simple as possible, the adopted scheme being the same as in Phillips (1963) and
in Hughes (1964), already successfully and repetitively used by Manders & Maas
(2004). Since the wave frequency does not change, the beam’s angle with respect
to the vertical will not change upon reflections at the boundaries: this is equivalent
to requiring that the incident and reflected waves obey the same dispersion relation,
while the boundary condition of vanishing normal flow at the reflection point is also
always satisfied. The mechanism of horizontal scattering of the ray is sketched in
figure 1, and explained in detail in Appendix. While the wave vector component in
the along-slope, tangential direction is unchanged, the wave vector component in the
cross-slope direction changes due to a focusing or defocusing reflection. The new
horizontal direction (φr) of the reflected ray is in fact completely determined by the
local bottom slope s= |∇H| and horizontal direction of the incoming wave, φi (which
equals φ0 plus the angle that the bottom gradient vector makes with the x direction).
Conservation and geometrical laws (Phillips 1963; Eriksen 1985; Gilbert & Garrett
1989; Manders & Maas 2004; Maas 2005) yield the following relation between φi and
φr, after the vertical has been correctly stretched to maintain tan θ = 1 (see Appendix
for derivation):

sinφr = (s2 − 1) sinφi

2s cosφi + s2 + 1
. (2.6)

When the reflection takes place where the local bottom slope is smaller than the
inclination of the ray (s < 1), the reflection is called subcritical and it leads to a
change in sign of the vertical component of the ray’s group velocity. In the opposite
scenario (s> 1), the reflection is called supercritical and no change in sign is involved.
Critical lines (latitudes) connect critical points at which the bottom slope equals the
ray slope (s= 1), and they lead to an exceptional reflection, when nonlinear effects are
likely to come into play (Thorpe 1997; Dauxois & Young 1999).
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FIGURE 2. Examples of purely meridional trajectories: (a) ergodic-like orbit, obtained with
parameter ω = √3/7, x0 = 0.7; (b) periodic orbit, ω = √1/2, x0 = 0.5; and (c) attractive
orbit, ω = 0.4051, x0 = 0.2. For all cases η = 0.35. Horizontal lines correspond to critical
latitudes. Black dot corresponds to the launching position x0. In (c) the thick line indicates the
wave attractor.

The inertial wave ray path for a given frequency ω and initial launching position
and direction (x0, φ0) can thus be followed as it bounces through the spherical
gap applying the known reflection laws and computing subsequent reflection points,
each characterized by ω, xn, φn. The behaviour of the ray path will provide us with
information about the features of the unknown solution of the corresponding Poincaré
equation.

In two-dimensional frameworks, it appears that the existence or absence of
eigenmodes in a system is related to the behaviour of these rays and their reflections
from the boundaries of the domain: when each characteristic is closed, eigenmodes
exist (although infinitely degenerate) (Münnich 1996). In more generic cases, when
limit trajectories (attractors) arise, these are the signature of singular, discontinuous
field solutions, as shown for the spherical shell (Harlander & Maas 2007).

A universal, meaningful relation between rays, energy paths and characteristics
in three-dimensional domains is not completely established yet. The existence of a
similar relation between wave rays and wave paths in three-dimensional geometries
is supported by recent numerical work (Drijfhout & Maas 2007) and in laboratory
experiments, performed in a non-centrally forced paraboloidal basin (Hazewinkel et al.
2010a), but definitely deserves further investigation.

A need for three-dimensional ray tracing also emerges from the work by Rieutord
& Valdettaro (2010), where the discrepancies between three-dimensional numerical
simulations, analytical solutions and the two-dimensional, meridional ray orbits clearly
show the limit of the latter approach.

3. Results
3.1. Summary of established results for meridional ray motion (φ0 = 0, π )

It is known that in two-dimensional domains, such as a meridional section of a
spherical shell (an annulus), ray trajectories show three possible kinds of behaviour
(John 1941; Maas & Lam 1995; Dintrans et al. 1999): (i) a single (or denumerable
set of) orbit(s) can be plane filling (ergodic, figure 2a) and represents an annihilating
solution; (ii) each orbit can be periodic (close onto itself after a number of reflections),
representing regular solutions in the domain (figure 2b); or (iii) each orbit can
eventually be trapped on one (or a denumerable set of) limit cycle(s), attractor(s),
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FIGURE 3. Poincaré plots for trajectories confined in a meridional section of a spherical shell
(η = 0.35, x0 = 0.2). On the horizontal axis, ω is running from 0.01 to 1 in steps of 0.0001.
On the vertical axis, the z coordinate of reflection points on the inner sphere (a) and on the
outer sphere (b) of the last 20 reflections (out of 200). Grey lines represent the locations of the
critical latitudes.

representing singular solution(s) (figure 2c), which may include point attractors. In
this annulus, periodic two-dimensional orbits are found when the critical latitude (λc),
where boundary slope equals ray slope, is commensurable with π. For example, in the
case depicted in figure 2(b), ω =√1/2 and λc = π/4 (Rieutord et al. 2001).

Attractors are found in frequency windows in the inertial range 0 < ω < 1, as
shown in Rieutord et al. (2001) and Maas & Harlander (2007). In figure 3, a typical
Poincaré plot for a meridional section of a spherical shell (η = 0.35) is presented,
where frequency is on the horizontal axis and the vertical axis shows the z coordinates
of the last 20 (out of 200) reflections on the inner (a) and on the outer sphere (b).
As noted by Maas & Lam (1995), critical latitudes seem to act as repellors for ray
trajectories, especially at the outer sphere (figure 3b). These Poincaré plots show a
much more complicated pattern than similar plots evaluated for the paraboloidal basin
(see, for example, figure 11 from Maas (2005)). The appearance of more elaborate
combinations of supercritical and subcritical reflections is due to the presence of both
convex (outer sphere) and concave (inner sphere) regions of the boundary (Dintrans
et al. 1999).

3.2. Three-dimensional ray behaviour in shell geometries (φ0 6= 0, π )
In the following part of this section, differently from the approach that has been
presented so far, ray motion will no longer be constrained to a meridional plane and
results will be presented for ray tracing of inertial waves in a fully three-dimensional
spherical shell geometry.

In doing so, we allow for azimuthal inhomogeneities to develop: waves, initially
forced with a zonal propagation component, are subject to focusing and defocusing
reflections from the boundaries and possibly refract towards a meridional plane,
eventually becoming trapped in that plane. This mechanism, hypothesized by
Maas (2001) and Maas & Harlander (2007), is here observed for the first time.
Three-dimensional trajectories can be interpreted as follows. If a trajectory (fully
determined by the domain geometry, launching position x0, launching direction φ0

and frequency ω) is launched in a meridional plane (at x0 = 0, ∀φ0, or alternatively
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FIGURE 4. Example of an ergodic orbit in a three-dimensional shell (η = 0.35). For
ω = √3/7 the ray is launched at the outer sphere at x0 = 0.15, φ0 = −7π/8 and followed
for 200 reflections: (a) meridional view (x, z plane), (b) top view (x, y plane), (c) full three-
dimensional view (x, y, z perspective). Black circles correspond to critical latitudes. The black
dot corresponds to the launching position x0.

at φ0 = 0,π, ∀x0), it will never leave the plane, even if a full three-dimensional
algorithm is used. This class of solutions corresponds to the known class of purely
meridional trajectories. On the other hand, if a trajectory is launched outside a
meridional plane (all other combinations of x0 and φ0), it will either never cross
the basin on a meridional plane (new class of zonally propagating solutions) or it will
asymptotically approach one particular plane (occurrence of a meridional attractor),
rendering the trajectory indistinguishable from a purely meridional trajectory after an
appropriate number of reflections.

Results from a three-dimensional analysis are hard to present effectively on a two-
dimensional sheet of paper. In this work three perspectives for each example of
trajectory are presented: a meridional view (usually the x, z plane), the top view (x, y
plane) and a full three-dimensional perspective view (x, y, z). Note that the apparent
change in vertical orientation of a wave ray is a visual effect due to the projection
only; the ray always obeys (2.4), but in a three-dimensional fashion. In analogy with
the two-dimensional studies, rays have different behaviour according to their launching
position x0, launching direction φ0, frequency ω and width of the spherical gap.
Moreover, the combination of x0 and φ0 influences the horizontal final orientation of
the possibly occurring meridional attracting plane. In the following, we will refer to
this final horizontal orientation of the meridional attractor as to φ∞, an angle measured
anticlockwise with respect to the x-axis, whose arbitrary orientation is defined by the
location of the initial launching point (x0, 0, z0).

Three kinds of behaviour are observed: the orbit can be domain filling (ergodic-like,
figure 4); it can be quasi-periodic, its path filling a portion of the domain only
(regular pattern, figure 5); or it can eventually be trapped, first onto a meridional plane
(meridional attractor) and subsequently, within that plane, on a two-dimensional limit
cycle (attractor, figure 6). It is worth noting that here only trajectories reflecting from
both inner and outer boundaries are listed. Of course, for certain combinations of
η, ω, x0, φ0, rays exist that do not touch the inner sphere at all. These trajectories can
be thought of as living in a full sphere (η = 0), and we will discuss them separately
in §§ 3.5 and 3.6. Differently from the two-dimensional case, no three-dimensional
periodic orbit has been observed so far. This is probably due to the appearance in
the three-dimensional framework of an extra parameter in the problem: the initial
launching direction. Whereas in the two-dimensional problem the only parameters
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FIGURE 5. As figure 4 for a quasi-periodic, non-converging trajectory. Here η = 0.8,
ω = 0.4051, x0 = 0.54, φ0 = 1.342, for 200 reflections. This trajectory corresponds to the
star in figure 9(a).
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FIGURE 6. As figure 4, but for a meridional attractor in the three-dimensional shell
(η = 0.35). Here the ray at ω = 0.4051 is launched at x0 = 0.8, φ0 = −7π/8. The thick
line marks the closed cycle of the final wave attractor. This trajectory also constitutes an
example of a polar three-dimensional attractor (see the text).

are η, ω and x0, and periodicity is determined by ω only (φi, at every xi, being
either 0 or π). Surprisingly or not, in the three-dimensional case the combination
of x0 and φ0 (and, therefore, subsequent pairs xn, φn) influences the occurrence of
meridional trapping (and, in case, the final orientation φ∞) and plays a crucial role
in preventing/allowing a trajectory to close exactly onto itself. No universally valid
relation between ω and φ0, x0 has been found so far to compute three-dimensional
periodic orbits in a spherical shell, but we cannot exclude their presence. Obviously,
because of the rotational symmetry of the problem and of the arbitrarily positioned
x-axis, if one combination of ω, x0, φ0 exists for which the trajectory is closed, an
infinite number of closed trajectories will exist in the same domain.

In analogy with the two-dimensional case, three-dimensional ray tracing thus allows
us to explore singular solutions occurring in the shell, but does not say anything about
the possible existence of regular modes in the domain. The occurrence of meridional
attractors in the inviscid model strengthens the validity of all previous studies on
inertial wave attractors in geophysical and astrophysical frameworks (Bretherton
1964; Friedlander & Siegmann 1982; Dintrans et al. 1999; Rieutord et al. 2001;
Maas & Harlander 2007). The focusing power of an attractor is not limited to its
two-dimensional plane, but can act in some geometries, such as the shell, in a
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three-dimensional fashion as well. The appearance of attractors in a spherical shell
resembles what has been shown for a paraboloidal basin by Maas (2005) with an
analogous ray-tracing study. The latter study has found confirmation in laboratory
experiments (Hazewinkel, Maas & Dalziel 2010b), and, for a parabolic channel
geometry, in a (viscous) numerical experiment (Drijfhout & Maas 2007). All of
these works corroborate the existence and the power of three-dimensional attractors,
and suggest they could play an important role in non-regular geometries (symmetry
breaking geometries, as opposed to spherical or ‘flat’ rectangular geometries), in
focusing energy onto specific and predictable locations, triggering crucial mixing
phenomena in all sorts of stratified, rotating fluids (Swart et al. 2010).

As can already be noticed from figure 6, the number of reflections needed for the
attractor to take place is relatively high, and the chances to see even one or two
reflections in realistic media are quite low. Apart from observations in laboratories,
there are no observations in nature, so far, except for the ubiquitously observed
peak at the local Coriolis frequency (2Ω sinφ, where φ is now the latitude of the
measurements) which bears evidence, in the stratified case, of a point attractor (Maas
2001; Gerkema & Shrira 2005). Nevertheless, as will be shown in the following
section, the trapped energy is collected over a broad range of possible latitudinal
input locations and initial launching directions of the perturbation, and this makes
unnecessary for the attractor to be fully developed in order to have a significant
increase of energy in a restricted longitudinal range (see corresponding experimental
evidences of complicated attractors in Hazewinkel et al. (2010b)).

3.3. Meridional attractors
In this section we will explore the parameter space for the shell case study, in order to
show that meridional attracting planes: (i) are not exceptional; (ii) have η (geometry),
ω (frequency), x0 and φ0 (initial conditions) dependencies; and (iii) occur after a
varying number of reflections (due to different focusing power of different combination
of η, ω, x0 and φ0).

It is worth stressing that the occurrence of meridional attractors constitutes only the
first step of the focusing process possibly experienced by inertial waves. Once the
ray motion is restricted to a meridional plane, ‘classical’ two-dimensional attractors
arise, confining wave energy to their limit cycles within that plane, from which they
can no longer escape. These ‘classical’ two-dimensional attractors have been broadly
explored for the spherical shell case since Stewartson (1972), in both homogeneous
and stratified rotating fluids (Maas 2001; Rieutord et al. 2001). Therefore, they will
not be subject of the current analysis.

The appearance of meridional attractors is evident from the Poincaré plots (figure 7
for three different η values) resulting after a three-dimensional ray tracing in the shell.
In these Poincaré plots, on the horizontal axis the inertial frequency range is scanned
(0 < ω < 1). On the vertical axes, the z coordinates of the reflection points on the
outer sphere (‘surface’) of the last 20 reflections (out of 100,1000 and 1000 reflections,
respectively) are depicted. Grey lines represent locations of the corresponding critical
latitude for each value of ω. Different frequency windows representing ‘simple’
attractors (characterized by a small number of boundary reflections) emerge for
different values of shell thickness, visible as white vertical bands. We observe
that even for the three-dimensional meridional attractors the critical latitudes act as
repellors for the rays, and their repelling power seems to increase with η. Note
that figures 7(a) and 3(b) are similar, but not identical, meaning that the frequency
windows of the attractors are the same in the two- and three-dimensional cases, but the
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FIGURE 7. Poincaré plots for shell thickness η = 0.35 (a), 0.8 (b) and 0.9 (c). Here x0 = 0.2
on the outer sphere, φ0 = 5π/4. On the x-axis, ω in the inertial range. On the y-axis, the z
coordinate of reflection points on the outer sphere (‘surface’) of the last 20 reflections (out of
1000). Grey lines represent the locations of the critical latitude for each ω.
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FIGURE 8. (Colour online) (a) Plot of φ∞ (colour, see legend in radians) as a function of
launching position and direction x0, φ0, for η = 0.35, after 1000 reflections. The perturbation
frequency ω is taken to be equal to 0.4051 (see the white vertical band in figure 7). On
the x-axis, all possible x0 are scanned, from zero to one. On the y-axis, φ0 is scanned just
between 0 and π, for symmetry reasons. Colours correspond to meridional trapping, white to
zonally propagating rays. The black star in figure 8(a) corresponds to the trajectory displayed
in figure 11. (b) Same as (a) where black corresponds to the coloured area in (a), hence
to meridional trapping, whereas colours now represent the equatorial type of attractors only
(see § 3.4 for details), and their final horizontal orientation φ∞. An example of an equatorial
attractor is visible in figure 10.

final attractor trajectories can show a different projection on the ẑ-axis, according to
the final orientation of the attracting plane.

In figure 8(a) (for η = 0.35), figure 9(a) (for η = 0.8) and figure 9(b) (for
η = 0.9) the fate of a whole characteristic cone is depicted after 1000, 5000 and
5000 reflections, respectively, for frequencies for which meridional attractors occur
according to figure 7. On the horizontal axis of these figures, all possible x0 are
considered, from zero to one. The perturbation is always launched on the surface
of the outer sphere, in the northern hemisphere, y0 = 0 and z0 =

√
1− x2

0, with an
initial negative vertical velocity. On the vertical axes of figures 8(a), 9(a) and 9(b),
for symmetry reasons, φ0 is considered between 0 and π only. Colours indicate the
presence of meridional trapping, and represent the orientation of the final attracting
plane (φ∞), following the colour legend. White areas correspond to trajectories that
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FIGURE 9. (Colour online) Same as in figure 8 for η = 0.8, ω = 0.4051 (a) and η = 0.9,
ω = 0.5842 (b), after 5000 reflections. On the x-axis, all possible x0 are scanned, from zero
to one. On the y-axis, φ0 is scanned just between 0 and π, for symmetry reasons. Colours
represent meridional trapping, white areas represent non-converging regions. The black star
in figure 9(a) corresponds to the trajectory displayed in figure 5. The black star in figure 9(b)
corresponds to the trajectory displayed in figure 12.

are not subject to meridional focusing and they are interpreted as zonally propagating
waves (see § 3.5 for comments). A single vertical column in figures 8(a), 9(a) and
9(b) can be read as the final longitudinal location of the energy for the whole
three-dimensional cone excited at a single point on the surface: the three figures
present all, for small x0 (‘polar’ source), a horizontally striped structure, meaning that
the meridional attractor of a single three-dimensional ray will preferentially approach
a plane that has the same horizontal orientation as the original launching direction
(φ∞ ≈ φ0). This, in principle, would lead to a zonally homogeneous distribution of
energy in the domain. Remarkably, the more towards the equator we move the source,
the more stripes are deformed and one final orientation of the attractors prevails (see,
for example, the range x0 = [0.7 − 0.8] for figure 9b, for which φ∞ ∼ π for φ0 & π/2
and no attractor occurs for φ0 < π/2). This tells us that, from the whole excited cone,
containing rays with initial directions φ0 ∈ [−π,π], most of the rays are meridionally
trapped on planes that will have approximately the same orientation in the x, y plane.
Higher energy values are therefore expected in correspondence with those specific
longitudinal ranges. This result is supported by observations performed in a three-
dimensional paraboloidal basin by Hazewinkel et al. (2010b). In this experiment, a
stable uniform stratification in density was disturbed by an off-centred oscillating
sphere, and internal gravity waves were excited in a paraboloidal basin. A three-
dimensional tomographic reconstruction of the amplitude (energy) distribution of these
waves in the basin has shown the occurrence of a preferential vertical trapping plane.
A centred wave source in the paraboloid would produce no preferential vertical plane,
since energy would spread equally along the longitudinal coordinates. This is true for
the shell as well, since a centred (‘polar’) launching position of the ray will result in a
purely meridional ray motion, that does not allow for longitudinal inhomogeneities.

We conclude that the present three-dimensional ray-tracing study therefore not only
confirms what was already shown by Bretherton (1964) and Stewartson (1971) and
Stewartson (1972), that is that singular solutions (corresponding to attracting orbits)
characterize the internal wave field in a shell domain. The present study extends the
validity of this finding to cases in which a local source is considered and three-
dimensional effects are taken into account.
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FIGURE 10. Same as in figure 4, but for η = 0.35, ω = 0.4051, x0 = 0.794, φ0 = −2.822,
showing an equatorial three-dimensional attractor. The wave attractor is drawn with a thicker
line.

Computing three-dimensional orbits clearly shows how, when decreasing the
thickness of the shell, a larger number of reflections is needed in order to completely
develop attractors in the domain. This can be interpreted as follows: the attracting
plane emerges after a combination of supercritical and subcritical reflections of the ray
throughout the domain. If the thickness of the shell is small, the ray has to experience
several reflections to reach a supercritical (subcritical) region of the domain, because
the possible path between two subsequent reflections is small compared with the extent
of these regions. Conversely, if the shell is thick, the path between two subsequent
reflections is large, and less reflections are needed for the ray to experience both
focusing and defocusing reflections. As already mentioned, this behaviour undermines
the attracting power of attractors in thin shells (as the ocean on an aqua planet) and in
more realistic (viscous, inhomogeneous) settings; nevertheless energy enhancement is
possibly detectable even in absence of a fully developed attractor. Other computational
experiments have shown that φ0 also affects the number of reflections needed for the
attractor to develop. This is because the amount of focusing depends on the incident
angle.

3.4. Equatorial and polar attractors
Figure 7 shows that singular meridional attractors occur in specific and predictable
frequency bands, when the width of the shell is given. As we have mentioned
above, the asymptotic shape of trapped, initially three-dimensional trajectories are two-
dimensional objects whose structure exactly corresponds to that found by a simpler
two-dimensional (meridional) ray study. Therefore, in analogy with the discussion by
Rieutord et al. (2001), we observe ‘simple’ attractors (so-called equatorial attractors,
in figure 10), for example in the frequency band around ω = 0.4 in figure 7(a),
characterized by only four reflections with the boundary), coexisting with more
‘complicated’ attractors (so-called polar attractors, in figure 6), characterized by a
larger number of reflections.

Equatorial attractors occur in the low-latitude range and take place when reflections
on the inner sphere occur below the inner critical latitude (supercritical reflections),
whereas polar attractors, spanning from equatorial to polar regions, take place when
reflections on the inner sphere occur poleward of the inner critical latitude (subcritical
reflections). Equatorial attractors appear more robust and energetically relevant than
polar ones, because of the fewer reflections needed to build their closed cycle, but
how often do they occur? Their occurrence surely depends on shell thickness, being
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FIGURE 11. As in figure 4, example of a non-converging trajectory, corresponding to star in
figure 8(a). Here η = 0.35, ω = 0.4051, x0 = 0.8, φ0 = 1.8 and 50 reflections are depicted.

more likely to hit inner supercritical regions if the inner sphere is larger. Moreover,
additional radial density stratification increases their frequency band width (Maas &
Harlander 2007). An example of the occurrence of equatorial attractors is shown in
figure 8(b), for the case η = 0.35: black represents general meridional trapping (and
corresponds exactly to the variously coloured areas in figure 8a); colours in figure 8(b)
represent instead equatorial type of attractors only, and their horizontal orientation
φ∞, according to the colour map on the right-hand side. As is clear by comparing
figure 8(a,b), equatorial attractors constitute the borders of the smooth areas in the
parameter space.

Because of their simple shape, equatorial attractors are good candidates to have a
strong influence on low-latitude dynamics. Moreover, oceanic equatorial regions are
among the longitudinally widest ocean basins, therefore energy contribution to this
kind of structures could be collected in principle from a wide range of possible
longitudinal atmospheric or tidal inputs, and is potentially of relevance to the still
largely unexplained equatorial dynamics.

3.5. Zonally propagating waves
As can be observed, for example, in figure 8(a), even for a frequency value that
gives rise to a meridional attractor, regions of the characteristic cone exist that are not
subject to meridional trapping (white areas). In figure 11 the trajectory corresponding
to the black star in figure 8(a) is displayed. This is representative of all of the orbits
in the white region on the right-hand side of figure 8(a), and it shows that these
orbits do not interact with the inner sphere, that is, they behave as living in a full
rotating sphere filled with fluid. As we expect from the known analytical solutions
for this case, the full sphere does not support any singular orbits (attractors), and
therefore the whole area of ‘spherical’ orbits living in the shell coherently shows
no trapping. We refer the reader to § 3.6 for comments on three-dimensional ray
tracing in the limit case of the full sphere. In this non-trapping area, the ray we are
following within the three-dimensional cone keeps on bouncing around the domain,
experiencing subsequently focusing and defocusing reflections. It resembles the ‘edge
waves’ observed by Drijfhout & Maas (2007) in the paraboloidal channel, with the
only difference that here the trajectory, instead of being trapped around a single
critical line, is now trapped in the equatorial belt, hugging both critical circles of
the outer sphere. As we can expect, the width of these non-trapping areas reduces
with increasing values of η (see analogous white lobes on the right-hand side of both
figure 9a,b): the larger the inner sphere, the more likely it is for the ray to touch it.
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FIGURE 12. As in figure 4, example of a non-converging trajectory, corresponding to the
star in figure 9(b). Here η = 0.9, ω = 0.5842, x0 = 0.139, φ0 = −2.042 and 1000 reflections
are depicted.

Interestingly, as we decrease the thickness of the shell, other white areas appear,
according to a regular and fascinating pattern. In these white regions we can now
distinguish two different kinds of behaviour. An example of non-converging orbits of
the first type, corresponding to the black star in figure 9(a), is shown in figure 5.
We can describe this kind of trajectories as ‘polar’ edge waves, in analogy with the
previous ‘equatorial’ ones, and, consistently, ‘polar’ edge waves are not periodic nor
do they present any attracting power. However, surprisingly, ‘polar’ edge waves do not
seem to interact with the outer nor with the inner critical latitudes. It can be at first
hypothesized that the ray would sense not only the gradient of the topography, but
also the gradient of the fluid depth, and it could behave like an edge wave around
this secondary ‘critical’ latitude. This does not seem to be the case for ‘polar’ edge
waves, whose nature remains unexplained. The second type of behaviour, displayed
in figure 12 (black star in figure 9b), contrasting with the ‘equatorial’ and ‘polar’
edge waves, involves the whole fluid domain. The ray is never trapped onto a unique
meridional plane, but it continuously and smoothly drifts in the zonal direction with no
preferred direction of propagation.

Remarkably, all types of edge waves are not subject to meridional trapping,
and therefore are invisible in a purely meridional (two-dimensional) ray tracing in
spherical shell domain. It may be argued that these trajectories do not represent
a physical solution in the domain, being the three-dimensional counterpart of the
two-dimensional, annihilating, domain-filling trajectories. On the other hand, numerical
results from Drijfhout & Maas (2007) show the same structures, and it has been
speculated they could provide an explanation to areas near the bottom of the ocean
where enhanced internal wave activity is detected (Horn & Meincke 1976). Moreover,
the existence of zonally propagating modes could provide a rationale for the otherwise
unexplained experimental results by Koch et al. (2012), where only 16 % of the total
energy measured in the wave field can be explained by purely meridional motion in
a homogeneous, rotating spherical shell. In analogy with electromagnetic phenomena
as electron orbits, we could expect to observe in a real fluid only those trajectories
that interfere constructively and show a periodic character, and close onto themselves
after one azimuthal revolution around the domain. These kind of periodic trajectories
would act as three-dimensional traps for rays, forced to travel endlessly along the
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respective periodic orbit (as in a three-dimensional attractor). Promisingly, all kinds
of edge waves show a regular pattern to a top view observer, but unfortunately no
periodic edge wave has been observed so far, suggesting that this class of solution, if
existing, does not posses any attracting properties.

It is fascinating how edge waves in the spherical shell reveal their strong
dependency on the thickness of the domain. As can be observed, comparing figures
9(a) and 9(b), the two structures are basically the same. Increasing the value of η, in
figure 9(b), we just witness an unfolding of the lobes already present in figure 9(a),
and a flourishing of a crown of smaller white areas around the central one, resembling
a fractal type of behaviour.

3.6. Limit cases: the full sphere and the infinitely thin shell

Analytical solutions to (2.1) in a spherical geometry, completely filled with
homogeneous or non-homogeneous fluid, are well-known since the work by Bryan
(1889), Friedlander & Siegmann (1982), Friedlander (1982) and Greenspan (1968),
and, more recently, explicit solutions for the corresponding velocity field have also
been derived by Zhang et al. (2001). Solutions are regular throughout the whole
domain: three-dimensional ray-tracing analysis applied to the full sphere does not
show any longitudinal inhomogeneity, and consequently neither two- nor three-
dimensional attractors occur. As anticipated in the previous section, because of its
regularity, the full sphere could be a domain where (possibly) three-dimensional
periodic trajectories appear, at frequencies corresponding to the known eigenvalues
of the system. These periodic orbits would constitute the exact three-dimensional
counterpart of the two-dimensional periodic trajectories, being representative of the
regular modes existing in the sphere.

Orbits such as that depicted in figure 11 seem appealing, but no three-dimensional
periodic orbits have been found in the sphere, so far. They could either not exist,
or they could be unstable, acting as repellors for the trajectories and in such
a way prevent their observation. Dintrans et al. (1999), using a combination of
two-dimensional ray tracing and a three-dimensional numerical model, have already
suggested that pure inertial modes in a sphere could constitute an example of the
association of regular modes to quasi-periodic (ergodic) orbits, breaking the usual
association valid in two-dimensional domains, between closed (periodic) orbits and
regular solutions. However, we cannot, in principle, exclude the existence of three-
dimensional periodic orbits in the sphere, and consequently in the spherical shell as
well, in which case the ray, because of its orientation, does not interact with the inner
boundary (see, again, figure 11). These orbits, if they exist, would represent a set of
exceptional non-annihilating edge waves in the fluid, and constitute an entire new class
of waves, neglected so far in the purely meridional studies, because of their intrinsic
three-dimensional nature.

The opposite scenario, the case of an infinitely thin shell (η→ 1) also deserves
some special attention. This case has been studied analytically by Stewartson &
Rickard (1969), Stewartson (1971, 1972), where for the first time a ‘pathological’
(singular) behaviour has been described as characterizing solutions in a rotating fluid
shell. Interestingly, frequency windows given by Stewartson (1972) are easily retrieved
as attractor frequency windows in the limit of a numerically infinitely thin shell, as
already verified in the two-dimensional meridional plane by Maas & Harlander (2007).
The singular nature of inertial wave solutions in shell geometries appears thus to bear
its evidences at all values of η > 0.
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4. Discussion and conclusions
Three-dimensional internal wave ray tracing has been systematically applied here to

rotating spherical shell geometries of arbitrary ratio between inner and outer radii. In
this work, the analysis is restricted to inertial waves only. Results for a homogeneous
rotating shell are likely to be locally distorted in the presence of radial density
stratification, but it is assumed that the pure inertial problem summarizes already
many difficulties and features of the gravito-inertial problem (with the exception of
the turning surfaces, occurring only in the density stratified case), and findings in
this partial case are supposed to have general applications. We are conscious of the
fact that a ray-tracing study allows us to explore the behaviour of the inviscid linear
solution only. However, even this partial perspective can be of help in improving our
poor understanding of internal wave field dynamics in arbitrarily shaped enclosed fluid
domains where, generally, no analytical (inviscid) solution is known, the spherical
shell constituting a paradigmatic example of this category. In spite of the azimuthal
symmetry of the domain, in this work and differently from literature, ray motion is
not restricted to the meridional plane only, but it is followed as it develops in a fully
three-dimensional environment, allowing, in the first place, for a better representation
of a local point source in the domain and, secondly, for subsequent development of
zonal inhomogeneities.

It has been found that some frequency bands in the inertial wave range support
meridional trapping of the rays. In these bands, internal wave ray trajectories, whose
motion is initiated outside a meridional plane, are eventually trapped onto a meridional
plane, from which they can no longer escape. We call this meridional plane a
‘meridional attractor’, in analogy with the two-dimensional internal wave attractors
described in Maas & Lam (1995). Once on a meridional plane, rays are subject to
the occurrence of two-dimensional attractors, as it has been shown already in Dintrans
et al. (1999), Rieutord et al. (2001), and lately in Maas & Harlander (2007). The fact
that attractors in the shell act in a three-dimensional fashion comes as no surprise.
In fact they are representative of the singular nature of internal wave field solutions
in domains such as the spherical shell (Bretherton 1964; Stewartson 1971, 1972),
and they comfortably emerge not only in the purely meridional, two-dimensional
representation of those solutions, but also when full, three-dimensional effects are
taken into account.

If, on the one hand, the presence of meridional attractors justifies the use of ray
tracing on meridional planes only, the present work on the other hand also points
to the existence of zonally propagating waves in the inertial frequency range, whose
trajectories could be traced here for the first time thanks to the adoption of a three-
dimensional scheme. These ray trajectories constitute a new and interesting class of
possible solutions, so far neglected in purely meridional studies. Even if the physical
relevance of these type of orbits is not yet completely clear, they could help in the
interpretation of some laboratory (Hazewinkel et al. 2010b; Koch et al. 2012) and
numerical (Drijfhout & Maas 2007) three-dimensional results. It is worth noting that
trajectories that do not interact with the inner boundary constitute a subset within the
zonally propagating edge waves. They can be thought of as trajectories belonging to
the limit case of the full sphere, as the inner sphere is not sensed by the rays. One
of the main questions remaining about these edge waves, both living in the spherical
shell and in the sphere, concern three-dimensional orbit periodicity. It is appealing
to retrieve the usual association, valid in two-dimensional frameworks, that periodic
orbits would represent regular solutions (the modes) of the studied system, especially
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regarding the full sphere case, where eigenvalues are known. It is, however, beyond the
scope of this paper to address such a question.

In the present work, conditions for the occurrence of meridional attractors have
been explored, motivated by possible astrophysical and geophysical applications of the
results. In fact, singular (attracting) type of solutions are supposed to play a role in
diapycnal and angular momentum mixing, in regions where focusing reflections take
place, and energy is localized to confined areas in the domain.

4.1. Oceanographic implications
Results presented in this study, obtained by means of ray tracing, are restricted to
linear, inviscid fluid dynamics in three spatial dimensions and to a homogeneous
rotating fluid, which clearly restricts their direct application to a real geophysical fluid.
However, when it comes to geophysical applications, in the work of Broutman et al.
(2004) the ray approach has been analysed in a selection of case studies, where it
has been generally recognized to provide a unique contribution to the understanding
of spatial structures and spectra of atmospheric and oceanic internal waves (in the
usual Wentzel-Kramers-Brillouin (WKB) approximation). In the ocean, internal inertio-
gravity waves are generated near ocean boundaries, at the surface by atmospheric
perturbations, or over deep topographic features, by tidal forcing. These waves are
observed to travel as confined energetic beams that can propagate through the ocean
for thousands of kilometres (Zhao et al. 2010) and they constitute, by means of
breaking and other small-scale processes, one of the contributors to the deep ocean
vertical turbulent diffusivity, necessary for maintaining the stratification and, over
all, the global overturning circulation (Wunsch & Ferrari 2004). In case features as
internal wave attractors occur in nature, they could supposedly be responsible for
strong energy focusing in specific locations in the interior of the fluid domain, possibly
far from boundaries, with consequent local enhancement of wave breaking, mixing
and small-scale processes, because of the regularization of the associated solution
by means of enhanced viscous effects (Bretherton 1964; Maas 2001; Harlander &
Maas 2007; Maas & Harlander 2007). It is clear that various physical circumstances
in planets, stars, oceans and atmospheres, may not always permit the numerous
reflections that are needed by an attractor to develop. However, as already stated
at the end of § 3.2, it is not necessary to have a fully developed attractor to observe
an increase of energy in a limited portion of the domain. This hypothesis has been
confirmed in the three-dimensional laboratory experiments performed by Hazewinkel
et al. (2010b), and is at the base of any further speculations about the role of inertial
waves (or, more generally, gravito-inertial waves) in the ocean, as well as in other
media, and their possible interaction with the mean flow.

In fact, density and angular momentum mixing due to internal wave breaking has
already been observed to generate a mean flow (Maas 2001; Tilgner 2007; Morize
et al. 2010; Sauret et al. 2010; Swart et al. 2010; Grisouard & Bühler 2012). This
kind of mean flow generation process has been proposed as a feeding mechanism
for highly coherent (prograde) zonal currents (jets) in media (Maas 2001; Maas &
Harlander 2007), especially in the low-latitude regions, where trapped wave solutions
(Stern 1963) are generally focused onto periodic paths, leading to unstable regimes.
Local effects such as internal wave attractors and consequent angular momentum
mixing could thus be at the basis of general phenomena, such as the Equatorial Deep
Jets, observed in all equatorial oceans (Firing (1987) in the Pacific, Send, Eden &
Schott (2002) and Brandt et al. (2011) in the Atlantic, Dengler & Quadfasel (2002) in
the Indian Ocean) as well as in the atmosphere (Galperin 2004; Ogilvie & Lin 2004),
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or the variability in the rotation rate of rapid stars (Balona et al. 1996), phenomena
whose forcing and maintenance have not yet been understood completely.

With the results presented in this work, attractor occurrence and related processes
can now be understood afresh. Not only are they valid when a perfectly axisymmetric
forcing (and, consequently, wave motion) is present, but, due to the meridional
focusing power of geophysical domains as a shell-like ocean or atmosphere, they
are likely to take place even when point source and meridional inhomogeneities come
into play, certainly a more realistic condition for a medium such as our ocean.
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Appendix
We discuss here the algorithmic reconstruction of the three-dimensional path of

an inertial wave beam in a spherical gap, subsequently reflecting on the curved
boundaries of the convex (outer) sphere and of the concave (inner) sphere. The
reflection of internal/inertial waves from a linearly sloping bottom was considered
previously for plane waves by Phillips (1963), Phillips (1966), Greenspan (1968),
Wunsch (1968), Wunsch (1969), Eriksen (1982), Thorpe (1997), Thorpe (2001) and,
from a curved bottom, by Gilbert & Garrett (1989). Here we follow the derivation in
Phillips (1963), as proposed in Manders & Maas (2004). However, we will not use
as framework of reference the plane defined by the incident and reflected rays, useful
when studying a single reflection alone (Phillips 1963). When considering multiple,
subsequent reflections, it is much more convenient to choose a reference framework
having a fixed direction with respect to the restoring force acting in the system. Here
we thus align the vertical with the rotation axis, and the horizontal frame will be
reoriented at each reflection, the x-axis pointing in the direction of decreasing depth
(outward).

Now consider that we want to trace the behaviour of a perturbation at definite
frequency ω. This will travel along a double cone (one propagating upward and one
propagating downward) of internal wave rays. We will trace one single ray at a time,
and it will be uniquely defined by the sign of its initial vertical velocity and three
parameters: ω, x0 and its initial horizontal direction φ0, measured anticlockwise with
respect to the x-axis, which distinguishes it from other rays belonging to the same
excited internal wave cone. Let the nth segment of the ray we are following be
defined by a line ln, and denote the time derivative of the position along this ray,
dx/dt = (u, v, w), which are the three components of the group-velocity vector. The
group velocity will by definition be parallel to ln. It is assumed further that the vertical
has been stretched according to the perturbation frequency so as to maintain the angle
of the ray with the vertical fixed at 45◦:

z′ = z
ω√

1− ω2
. (A 1)

This approach has general validity, and bears a strong simplification in the calculations,
the only price being the compression or elongation of the spherical shell domain
into an oblate (ω < 1/

√
2) or a prolate spheroidal (ω > 1/

√
2) shell. To facilitate
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the reader, all figures in this paper have been subsequently restretched back to the
original geometry. Moreover, in this study we are not interested in the group velocity
magnitude (Shen & Keller 1975), but in its direction only, therefore we can write,
without loss of generality,

cg = (w cosφi, w sinφi, w) (A 2)

where

w=±1 (A 3)

according to the initial launching direction. Here φi represents the ‘incoming’
horizontal direction of the ray approaching a boundary, after the x-axis has been
reoriented, pointing outward at the location where li intersects the boundary figure 1.
As shown in § 2.2, since the wave frequency does not change under reflection, the
internal wave beam’s angle with respect to the rotation axis (vertical) will also not
change under reflection with the boundary: this is equivalent to requiring that the
incident and reflected waves obey the same dispersion relation (2.3). However, the
group velocity vector changes magnitude upon reflection from the bottom, because,
in the cross-slope direction, rays change distance, as is clear from figure 1(a). This
unusual property, typical of internal waves and due to their anisotropic character,
causes the wavenumber to change under reflection and energy to be transferred
from one wavenumber to another. In an inviscid fluid, at reflection, the boundary
condition of vanishing normal flow of the group velocity (energy flow) also has to be
satisfied. This requires that in the incident and in the reflected ray the group velocity
component in the along-slope direction (along the y-axis in the rotated framework),
v, is unchanged and is aligned with the isobaths. No net group velocity at reflection
means that

(wr cosα + ur sinα)=−(wi cosα + ui sinα) (A 4)

where we define α as the angle which the bottom makes with the up-slope-directed
x-axis, where subscriptions r and i denote the reflected and incident ray respectively.
With s= |∇H| = tanα, this can be simplified to

wi + wr =−s(ui + ur). (A 5)

Since in this framework v is constant we can also write

v2
i = w2

i − u2
i = w2

r − u2
r = v2

r (A 6)

which can be rewritten as

(wi − wr)(wi + wr)= (ui − ur)(ui + ur) (A 7)

and, therefore, with (A 5), wi + wr can be eliminated:

ur + swr = ui + swi, (A 8)

where we assume no vertical wall (ui + ur 6= 0). The vertical wall case is treated later
in this appendix. From (A 5) and (A 8) wr and ur immediately follow

wr = −2sui − (1+ s2)wi

1− s2
(A 9a)

ur = (1+ s2)ui + 2swi

1− s2
. (A 9b)
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Together with the conditions ui,r = wi,r cosφi,r and vi,r = wi,r sinφi,r, this implies an
explicit relation between the incident and reflected angle:

sinφr = (s2 − 1) sinφi

2s cosφi + s2 + 1
(A 10)

(equation (2.6) in § 2.2) which conforms with the expression in Eriksen (1982). The
angle of reflection thus depends only on the angle of incidence of the ray, φi, and on
the bottom slope s. Regarding the sign of the vertical component of the group velocity
w, this is maintained when the bottom slope is locally supercritical (bottom slope
larger than ray inclination), and reverses otherwise. These transformations also apply
at the flat surface (s = 0), where they imply (ur, vr, wr) = (ui, vi,−wi), meaning that
the ray proceeds in the same horizontal direction while just reversing its vertical
motion, and at a vertical wall (s = ±∞), where (ur, vr, wr) = (−ui, vi, wi). It is
possible to investigate the focusing or defocusing nature of a single reflection looking
at the changes in the group velocity magnitude upon reflection. Owing to energy
conservation, after a focusing reflection, and the consequent decrease in wavelength
(see figure 1b for example: rays propagate according to the arrows), group velocity
magnitude must decrease. Conversely, after a defocusing reflection (see again figure 1b
for example, but with rays propagating in a direction opposite to the arrows), the
magnitude of the group velocity must increase. In the first case (focusing reflection)
the initial parameters are wi = −1, ui = 1 (case of normal incidence, vi = 0) and
s < 1. Applying (A 9) we obtain |wr| < |wi| and |ur| < |ui|. Knowing that |vr| = |vi|,
|cg,r| < |cg,i| follows, as expected. In the second case (defocusing reflection) the initial
parameters are wi = −1, ui = −1 and s < 1. Applying (A 9) we obtain the reverse
result, with |cg,r| > |cg,i| as expected. Interestingly, if we approach a critical reflection
(s = 1) in the first case, |cg,r| → 0, this means that all rays are reflected along one
single line approximately coinciding with the sloping wall itself; but if we approach
a critical reflection in the second case, |cg,r| → ∞, this means the incident ray is
already travelling approximately along the slope, and two neighbouring rays could, in
this limit, reflect infinitely far from each other. The geometrical mechanism of repeated
reflections of internal waves can thus be studied provided at each reflection point we
realign the x-axis with decreasing depth prior to application of the reflection laws.

Given the dimensionless topography, which defines the domain, determined by the
outer sphere, z = hout(x, y) = ±√

1− x2 − y2, and the inner sphere, z = hin(x, y) =
±√

η2 − x2 − y2, we choose an initial location (x0, y0, z0), on the outer or on the inner
sphere, an initial horizontal direction, φ0 (one ray on cone), and the initial sign of
the vertical group velocity component w0 =+1 or −1, in accordance with the location
of the initial point. The magnitude |w0|, not relevant to our problem, has arbitrarily
been set equal to 1 here, and |wi| is reset to 1 prior to each reflection. Consistently,
we thus do not reconstruct algorithmically the changes in wave amplitude along the
ray path. This problem has been investigated in detail in the work by Shen & Keller
(1975), in the specific case of oceanic or atmospheric propagating waves. We remark
that the topography is described in stretched coordinates, so that, as already mentioned,
the vertical inclination of the ray is always θ = 45◦. It is then possible to determine
iteratively the subsequent intersections with bottom and surface, (xn, yn, zn), as well as
the horizontal angle φn and group velocity un, vn, wn (of which only the direction is
relevant) applying the following algorithm.
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(a) According to the launching point and the direction of propagation, determine the
proper time t of intersection between the ray and the inner or the outer sphere:

(x, y, z)= (xn, yn, zn)+ wnt(cosφn, sinφn, 1). (A 11)

Care is needed in order to reject all trajectories passing through the core of
the shell. Denote that point by (xn+1, yn+1, zn+1). At the time of intersection tn+1,
zn+1 = hin,out(xn+1, yn+1), while wntn+1 = h(xn+1, yn+1)− zn, where h is intended from
now on to be the intersection with the appropriate boundary (inner or outer shell)
and the appropriate sign (northern or southern hemisphere). Then the horizontal
coordinates (xn+1, yn+1) follow from simultaneous solution of the equations

xn+1 = xn − (h(xn+1, yn+1)+ zn) cosφn (A 12)
yn+1 = yn − (h(xn+1, yn+1)+ zn) sinφn. (A 13)

(b) Determine the local gradient of the bottom:

∇h= (hx(xn+1, yn+1), hy(xn+1, yn+1)), (A 14)

which leads to slope s= |∇h| and direction σ = tan−1(hy/hx).
(c) Determine the along-slope velocity component

vn+1 = vn = wn sin(φn − σ) (A 15)

and the cross-slope velocity component

un = wn cos(φn − σ), (A 16)

from which follows

un+1 = (1+ s2)un + 2swn

1− s2
(A 17)

and the vertical velocity component is

wn+1 = −2sun − (1+ s2)wn

1− s2
. (A 18)

(d) The angle φn − σ is the angle of incidence φi with respect to the local up-slope
direction. From the horizontal velocity components in the cross- and along-slope
direction follows the new direction with respect to the original frame of reference

φn+1 = tan−1(vn+1/un+1)+ σ (A 19)

and the algorithm can be iterated.
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