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The behaviour of inertial waves in a rotating spherical container, filled with
homogeneous fluid, is here investigated by means of a three-dimensional ray tracing
algorithm, in a linear, inviscid framework. In particular, the classical, two-dimensional
association between regular modes and periodic trajectories is addressed here for
the first time in a fully three-dimensional setting. Three-dimensional, repelling
periodic trajectories are found and classified on the basis of the associated frequency
and spatial structure, although associated frequencies are hardly reconcilable to
Bryan’s (Proc. R. Soc. Lond., vol. 45, 1889, pp. 42–45) classical solutions for inertial
waves in the sphere. The normalized squared frequency ω2 = 1/2 appears to divide
the frequency range into two different trajectory regimes, where critical latitudes
play a different role. Chaotic orbits are not found, as expected, while invariant,
non-domain-filling orbits (whispering gallery modes) constitute the majority of the
trajectories in the sphere. From ray tracing alone, the wavefield is still far from
being completely reconstructed, and a study performed in such a simplified setting is
clearly far from any realistic application, however, it appears that three-dimensional
ray dynamics constitutes a valid approach to infer information on the spectrum and
regularity properties of a system, and is then able to bring new insight in a variety
of fundamental problems of geophysical and astrophysical relevance, once its power
and limitations have been recognized.
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1. Introduction
Internal waves have long been the subject of numerous studies, motivated by

their fundamental character and the variety of possible applications. In fact, they are
present in all stratified and/or rotating fluids, including astrophysical and geophysical
fluids, where they are considered a key mechanism contributing to internal mixing
and dynamics (Dintrans, Rieutord & Valdettaro 1999; Ogilvie & Lin 2004; Wunsch
& Ferrari 2004; van Haren & Gostiaux 2012).

Interestingly, internal gravity waves and internal inertial (or gyroscopic) waves
share many aspects in their dynamics and mathematical description, irrespective of
the nature of the acting restoring force (gravity or Coriolis acceleration, respectively).
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In this work we will restrict ourselves to the study of pure inertial waves propagating
in a homogeneous fluid, but it follows that results that are valid for one type of
internal waves are generally of relevance for the whole class.

Despite the recent progress, especially regarding high-resolution numerical models
(Baruteau & Rieutord 2013; Nurijanyan, Bokhove & Maas 2013; Favier et al. 2014),
one key challenge is still limiting our ability to satisfyingly comprehend propagating
internal waves: their hyperbolic character is hardly reconcilable with their confinement
to a fully enclosed domain, resulting, for an arbitrarily shaped container, in a
paradigmatic, mathematically ill-posed Poincaré problem (see Cartan (1922) and,
for example, Stewartson & Rickard (1969) and Rieutord, Georgeot & Valdettaro
(2000) for the case of a spherical shell container).

Owing to this difficulty, regular, analytic solutions (smooth functions, finite in all
points of the domain) for inertial wave problems in enclosed domains are known only
for homogeneous fluids contained in exceptionally symmetric geometries, such as for
two dimensions, the rectangle and the circle (see for example Barcilon 1968), and for
the three-dimensional case, the axial cylinder (Lord Kelvin 1880b; Høiland 1962), the
axial ellipsoid (Kudlick 1966) and the full sphere (Bryan 1889; Zhang et al. 2001).
Quasi-analytical methods have also been used to compute regular inertial wavefields in
the case of an untilted rectangular parallelepiped (Maas 2003; Nurijanyan et al. 2013).

In order to study the propagation and the properties of internal waves in differently
shaped, two-dimensional domains, where analytical solutions are unavailable, ray
theory has been developed (Whitham 1960, 1974). When the amplitude of the
propagating wave is assumed to be slowly varying in space and time compared with
variations in the phase function and in the conditions of the supporting medium,
it is possible to treat these slowly modulated waves as nearly planar waves, and
solve the original equation in the short wavelength limit, often referred to as the
Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) approximation. This simplified approach
is not only valid for describing internal waves, but has been also frequently used to
describe the dynamics of inviscid, short surface gravity waves. Since surface waves
are exponentially trapped to the surface, they propagate strictly in the horizontal plane
and their velocity potential is described by a Helmholtz equation (Maas 2005). It
follows that for waves that are short compared with the scale over which water depth
and radius of curvature of the wall change, WKBJ theory determines approximate
solutions to the Helmholtz equation. Short surface waves propagating over flat
bottoms, as well as two-dimensional inertial waves, trace then straight ray paths in
real space, similar to the paths traced by balls bouncing elastically on a billiard.

In the case of internal waves, the tracing is performed by following the propagation
of corresponding energy rays, whose inclination with respect to the restoring force
direction (gravity or rotation axis) is determined by the ratio of the perturbing
frequency and a frequency representing the local environmental conditions (density
stratification and/or rotation). Rays are then supposed to provide a (partial) view on
the energy distribution in the domain and on the regularity of the associated wavefield
(or the lack of it).

The correspondence between characteristic curves of the original partial differential
equation and approximated, geometrical, internal wave energy rays is not trivial
(Eckart 1960). However, the correspondence is exact for two-dimensional internal
waves, propagating obliquely in the vertical plane, under a wide range of
circumstances (Harlander & Maas 2006). Remarkably, despite the strong assumptions
underlying ray tracing, this investigation tool has been proven useful even in applied,
realistic cases, where the ray approach has been tested against laboratory observations
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(Maas et al. 1997; Manders & Maas 2004; Hazewinkel et al. 2008; Hazewinkel,
Grisouard & Dalziel 2010), numerical simulations (Dintrans et al. 1999; Rieutord,
Georgeot & Valdettaro 2001) or analysed in a selection of geophysical applications
(Broutman, Rottman & Eckermann 2004); in all of these cases, ray tracing has been
generally recognized to provide a unique contribution to the understanding of the
spatial structure and spectra of internal wavefields.

As we have seen, in the short wavelength limit, surface waves over flat-bottom
basins also follow straight ray paths, which on non-trivially shaped domains are
either periodic, invariant (never closing orbits, infinitely repeating the same spatial
structure, while being slightly offset) or chaotic (Berry 1981; Kudrolli, Abraham
& Gollub 2001). While the periodic paths, and the invariant modes, have measure
zero amongst the chaotic paths, they dominate the response of higher modes, and
are therefore referred to as scars (Heller 1984). By contrast, three different types
of ray trajectories are observed when internal waves are obliquely propagating in
two-dimensional vertical domains (John 1941; Maas & Lam 1995; Dintrans et al.
1999). A trajectory can be closed and periodic after a finite number of reflections
on the boundary. A trajectory can be ergodic and plane filling, or, lastly, a trajectory
can be attracting, meaning that there exist one or more limit cycles towards which
neighbouring trajectories are attracted.

The first two kinds of trajectories are usually associated with the presence of
regular modes in the system and with a dense spectrum, such as occurs in the
untilted rectangular domain, or the circle (Barcilon 1968). In these domains, periodic
ray trajectories occur at frequencies corresponding to eigenfrequencies of the system,
while rays corresponding to other frequencies fill the fluid domain ergodically.

In addition to being dense, the spectrum of two-dimensional regular systems is
also infinitely degenerate (Münnich 1996): consequently, for each eigenfrequency, an
infinite number of periodic orbits exist, that together cover the whole domain.

By contrast, the occurrence of attracting trajectories (‘wave attractors’) is the
signature of the singular nature of solutions. Attractors can be observed in all
‘symmetry breaking’ domains (e.g. trapezoidal, parabolic, tilted rectangular or annular
domains), so called because the reflecting walls are not all parallel nor perpendicular
to the restoring force. In this case, energy is collected from the whole basin and
trapped onto the asymptotically closed trajectories (the attractors), focusing towards
smaller and smaller scales until wave breaking, other nonlinearities and viscous
effects come into play (Maas & Lam 1995; Ogilvie 2005; Harlander & Maas 2007;
Hazewinkel et al. 2008; Scolan, Ermanyuk & Dauxois 2013). Exceptionally, in the
case of a toroidal shell in the limit of long radius, analytical solutions are also known
for modes focused along the emerging attractors (Rieutord, Valdettaro & Georgeot
2002).

Once these two-dimensional ray tracing results were shown to be robust, an
increasing interest in the three-dimensional representation of internal waves in
three-dimensional containers has obviously arisen. In order to extend ray tracing to
three-dimensional, curved domains, however, a further consideration has to be made:
considering the WKBJ limit, and its assumption that the wavelength needs to be short
compared with the spatial scale of boundary variations, the propagating perturbation
bouncing from a curved boundary is further idealized as if reflecting from a local
tangent plane (see also Baines 1971). Given these approximations, a three-dimensional
ray tracing algorithm can then be developed and, in three-dimensional containers, rays
can be geometrically traced and their behaviour studied (Manders & Maas 2004; Maas
2005; Hazewinkel, Maas & Dalziel 2011; Rabitti & Maas 2013).
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In analogy with the two-dimensional correspondence, in the presence of internal
wave attractors, a relation between wave rays and energy paths in three-dimensional
geometries is supported by recent numerical work in a tidal channel (Drijfhout &
Maas 2007) and by laboratory experiments performed in a non-centrally forced
paraboloidal basin filled with a uniformly stratified fluid (Hazewinkel et al. 2011).

However, all three-dimensional studies so far have been devoted to the investigation
of symmetry-breaking geometries, because of the possibly crucial role played by
wave attractors in the energy distribution in the basin, and consequently in relevant
geophysical and astrophysical analogous contexts. But how robust is the analogy
between two- and three-dimensional ray tracing, and how tight is the association
between ray behaviour and properties of the underlying wavefield?

In this study, the case of pure inertial waves in a homogeneous fluid contained in
a three-dimensional, uniformly rotating full sphere is considered. For this setting, in
fact, three-dimensional analytic solutions are known (Bryan 1889; Zhang et al. 2001).
The ray tracing algorithm is the same as used by Rabitti & Maas (2013) in a rotating
spherical shell: it can be adopted here with little changes. Questions we wish to raise
are as follows. Do three-dimensional periodic inertial wave ray trajectories (‘scars’)
exist in a spherical domain? Is the classical, two-dimensional association between
regular modes and periodic trajectories still valid in three dimensions? How do the
frequencies associated with periodic trajectories relate to the analytical spectrum of
inertial waves in a sphere (Bryan 1889)? And to experimental observations? How can
real space trajectories in the sphere be classified in an appropriate phase space, in
terms used in the description of quantum chaos (Berry 1987)?

The plan of this paper is as follows. Methodologies are presented in § 2: analytical
solutions for inertial waves in a sphere are briefly recalled in § 2.1, a WKBJ
approach is sketched in § 2.2, whereas the geometrical formulation of the ray
tracing algorithm is described in § 2.3. A short review on the relations between
ray trajectories, eigenmodes and physical fields of a system is presented in § 2.4.
Results from the application of the ray tracing algorithm are presented in § 3.
Three-dimensional periodic trajectories are found in the full rotating sphere, and a first
attempt at classifying these orbits is presented, based on the associated frequency and
corresponding spatial structure. In § 3.9 the different class of real space trajectories
are analysed in their corresponding phase space (Berry 1981, 1987), where successive
reflections are followed using the polar angle at subsequent reflection points and
the angle of incidence of the ray relative to the normal at the same reflection point
(Nöckel 1997).

Even if a general picture is far from being complete, the significance of periodic
(and of non-periodic) orbits is discussed in § 4, both with respect to previous
two-dimensional comparisons in literature as well as to wavefield reconstruction. A
summary of the findings is given in § 5, while comparisons with previous experimental
studies and concluding remarks are presented in § 6.

2. Inertial waves in the sphere: methods
2.1. Analytical solutions

In a homogeneous, inviscid, uniformly rotating fluid, momentum and mass conservation
lead to the linearized equations of motion for small amplitude perturbations of velocity
u and pressure p:

∂u
∂t
+ ez × u=−∇p

∇ · u= 0

 (2.1)
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FIGURE 1. (a) Rotating fluid sphere in the Cartesian coordinate framework. (b) Side and
(c) top view of a short internal wavepacket that reflects subcritically (see the text for
explanation) from a sloping bottom. In (c) the rotation axis (coinciding with the z-axis) is
pointing towards the reader. Modified after Maas (2005). In (b), note that while incident
and reflected rays lie on the same cone (whose angle θ with the vertical is fixed by
the perturbing frequency), the angle with the vertical can differ in a projection on the
vertical plane perpendicular to the slope at the point of reflection. In (c), reflecting waves
refract, instantaneously changing the horizontal propagation direction from φi to φr. Here
θc denotes the critical latitude, where the bottom slope equals the wave ray inclination.

where the Coriolis parameter (2Ω)−1 is used as time scale, and the fluid is rotating
at rate Ω oriented parallel to the vertical z direction (unit vector ez, see figure 1a).
When all fields are assumed to have a e−iωt time dependency, the problem can then
be conveniently cast in terms of pressure only and described by the Poincaré equation
(Cartan 1922):

pxx + pyy − λ2pzz = 0. (2.2)

with

λ2 = 1−ω2

ω2
. (2.3)

Propagating inertial waves exist in the frequency range 0<ω< 1, when the Poincaré
equation is hyperbolic. Note that, compared with two-dimensional internal wave
problems, the additional second-order horizontal derivative lends some aspects of an
elliptic problem (such as surface wave problems) to the Poincaré equation. When the
fluid is fully confined, the boundary condition for internal waves requires vanishing
of the normal velocity component at the container’s walls. In the case of a spherical
container, this means vanishing of the radial velocity component ur= 0 at r= 1, where
the sphere’s radius is used as spatial scale. This implies that the pressure field has
to obey oblique derivative boundary conditions, that prohibits finding exact analytical
solutions in arbitrarily shaped containers. However, when the container possesses
some regularity and symmetry, the Poincaré problem is solvable. This happens, for
instance, when the sidewalls of the container are parallel to the rotation axis and the
vertical dependency can be split off, leaving a Helmholtz equation to be satisfied in
the horizontal plane (Maas 2003).

In the case of the spherical container, it was shown by Bryan (1889) that a
transformation of (2.2) from a cylindrical coordinate system (φ, r, z), initially
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chosen because geostrophic contours on the sphere correspond to circles of constant
cylindrical radii at fixed distances from the rotation axis, to a pseudo-spheroidal
coordinate system (φ, ξ, µ), where the radial and vertical coordinates are defined as
follows: 

r2 = (1− ξ
2)(1−µ2)

1−ω2

z= µξ
ω
,

(2.4)

provides solutions for the Poincaré problem. These are expressed in terms of separable
modal functions of the form

p= P|k|n (ξ)P
|k|
n (µ)e

ikφ, (2.5)

where P|k|n (ξ) and P|k|n (µ) are the associated Legendre functions of nth degree and
kth order and n and k are integers. Following Greenspan’s (1968) notation, the
eigenfrequencies can then be evaluated explicitly, and are distinguished by a triple
index ωn,m,k, where n and k vary over all integers and m (going from 1 to n− |k| if
n − |k| is even, and from 1 to n − |k| − 1 if n − |k| is odd) corresponds to the mth
solution of the transcendental eigenvalue equation:

kP|k|n (ω)= (1−ω2)
dP|k|n (ω)

dω
. (2.6)

For this set of modes, the three components of the velocity field are also explicitly
computable (Zhang et al. 2001). Experimental evidence of Bryan’s modes had to
wait 80 years, when Aldridge & Toomre (1969) directly measured inertial resonant
eigenfrequencies of a rotating sphere, lately numerically confirmed by Rieutord
(1991). Although the experimental results are highly dependent on the measurement
method (Zhang et al. 2013), they showed excellent agreement with those theoretically
predicted solving (2.6). Another experimental confirmation of the existence of inertial
modes in precessing spheroidal cavities (and of their propagation along conical
surfaces) is found in Noir et al. (2001).

2.2. The WKBJ limit
In the case of inertial waves in a spherical container, a new WKBJ formalism has
been recently developed in astrophysical context in order to solve an approximated
version of (2.6) and to investigate the inviscid spectrum and the spatial structure of the
associated normal modes (Arras et al. 2003; Wu 2005a; Ivanov & Papaloizou 2010).
This spectrum is well-defined despite the fact that inertial waves have a discrete but
everywhere dense spectrum (Lockitch & Friedman 1999).

One example of a spectrum obtained with this methodology is presented in Ivanov
& Papaloizou (2010). In order to meet the short wavelength limit, required by WKBJ
theory, the asymptotic form of the Legendre functions in the limit of large values
of n is used. They then compute the approximate first-order expression for the
eigenfrequencies from (2.6):

ωWKBJ
n,m,k = cos

(
π

m+ 1/4− |k|/2
n+ 1/2

)
. (2.7)

Remarkably, for large n, m and k, this expression explicitly shows the degeneracy
of the spectrum in terms of scale redundancy, obtained by replacing (n, m, k) →
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j(n, m, k). Eigenfrequencies obtained in the WKBJ limit have been tested against
previous numerical results (Lockitch & Friedman 1999; Dintrans & Ouyed 2001) and
have shown surprisingly good agreement even for the so-called ‘global modes’, whose
perturbation involves the whole domain, and for which the WKBJ approach is not
expected to constitute, in principle, a meaningful approximation.

In terms of direct comparison with eigenfrequencies computed solving (2.6) and
(2.7), we can take, as an example, the least-damped axisymmetric inertial mode
in the full sphere, ω4,1,0 = √3/7 (Dintrans et al. 1999; Rieutord et al. 2001). This
corresponds, in this WKBJ formalism, to ωWKBJ

4,1,0 = sin(2π/9). The difference between
the two values is O(2 %).

Using this WKBJ limit, solutions for the associated wavefield are computed (Wu
2005a; Ivanov & Papaloizou 2010), that can be compared with numerical and
analytical results. A noteworthy feature is that the largest pressure perturbations, as
well as the steepest spatial gradients for pressure and velocities, are to be found
near the surface of the sphere, and in particular at the ‘critical latitudes’, where the
inclination of the rays matches the inclination of the local tangent to the boundary.
These locations have turned particularly important in, for example, the tidal dissipation
problem (Wu 2005b). These hot spots are in general not visible for the low modes
computed using Zhang et al.’s (2001) explicit formula, but will play a crucial role
for ray trajectories, as we shall see in § 3.

2.3. Three-dimensional ray tracing
In addition to the analytical approach (§ 2.1), and in parallel to the WKBJ approach
introduced in § 2.2, geometrical ray tracing constitutes a third, useful technique for
the study of inertial waves in enclosed domains. We briefly review in this section the
three-dimensional ray tracing algorithm, while the interested reader is referred to § 2.2
and the appendix of Rabitti & Maas (2013) for the construction of the map that relates
a reflected to an incident ray.

In fact, in an appropriately rotated version of (2.2), a plane wave perturbation
can be described in two dimensions only, containing the vertical axis (z), aligned
with rotation, and one horizontal axis (x), aligned with the propagation direction.
Substituting a wave-like solution for pressure p ∝ ei(kx+mz), the dispersion relation
follows:

ω2 = sin2 θ, (2.8)

where the wavevector is now expressed in polar coordinates as k = (k, m) =
κ(cos θ, sin θ), with θ the angle between the wavevector and the horizontal. Since ω is
independent of wavevector magnitude κ (see (2.8)), it follows that for internal waves,
group velocity (cg= (cg,x, cg,z)=∇kω) is perpendicular to phase velocity (c= (ω/κ2)k),
and points along a direction having an angle θ with the vertical. In other words, this
reveals the interesting fact that internal waves are monoclinic and not monochromatic.

It follows that internal wave group velocity in stably stratified fluids is directed
along beams, the internal wave rays, whose inclination with respect to the restoring
force is uniquely set by the frequency of the perturbation, and the environmental
condition (density stratification and/or rotation) (Görtler 1943; Greenspan 1968), and
this inclination is conserved upon reflection at the domain’s boundaries.

Now we want to trace the behaviour of a perturbation at definite frequency ω. The
perturbation is thus ‘launched’ at one location, at position x0 = (x0, 0, z0). Note that
the x-axis is now defined by the position of the launching point, and not by the
propagation direction as for (2.8). It is clear that we can choose y0≡0 because of axial
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symmetry of basin and equations. We shall see in § 6 how this kind of experiment
would be practically feasible.

One crucial difference with respect to the usual two-dimensional setting has to be
pointed out. When a three-dimensional problem is studied, the launched perturbation
is then allowed to travel along characteristic cones, given by the 2π revolution of the
classical, two-dimensional St. Andrew’s cross, whose aperture 2θ is uniquely set by
the perturbation frequency and the stratification/rotation properties via the dispersion
relation (2.8).

One single ray will then be uniquely defined by four parameters: ω, which sets
the vertical propagation angle θ ; x0, which fixes the launching position; the initial
horizontal direction φ0 in the xy-plane, measured anticlockwise with respect to the
x-axis, which identifies one upward and one downward propagating rays from the
others belonging to the same excited internal wave double cone; and γ0 = sign(cg,z),
that finally and unequivocally distinguishes either the upward or the downward
propagating ray.

In the subsequent ray path computations, we adopt a vertical coordinate stretching:

z′ = z
λ
= z

cot θ
(2.9)

in order to fix the ray’s inclination to an angle θ ′ = 45◦ with respect to the vertical,
for any perturbation frequency. This change of variable implies a strong simplification
in the calculations, the only price being the vertical compression or elongation of
the spherical domain into an oblate (ω < 1/

√
2) or prolate (ω > 1/

√
2) spheroid. To

facilitate the reader, all figures in this paper have been subsequently restretched back
to the original spherical geometry, without compromising the validity of the results.

The new direction into which the ray (representing the energy propagation direction
of an incident wave beam) scatters upon reflection from a sloping boundary is
determined as follows (Phillips 1963; Hughes 1964). Since the wave frequency does
not change, also the beam’s angle with respect to the vertical does not change at
reflections from the boundaries: this is equivalent to requiring that the incident and
reflected waves obey the same dispersion relation (2.8), while the boundary condition
of vanishing normal flow at the reflection point needs to be also always satisfied. The
mechanism of horizontal scattering of the ray is sketched in figure 1, and explained in
detail in the appendix of Rabitti & Maas (2013). While the wavevector component in
the along-slope, tangential direction is unchanged, the wavevector component in the
cross-slope direction changes due to a focusing or defocusing reflection, depending
on the local bottom slope s= |∇H|. The new horizontal direction (φr) of the reflected
ray is, in fact, completely determined by the horizontal direction of the incoming
wave, φi and the local bottom gradient itself (see figure 1c).

When the transformation in (2.9) is used, conservation laws and geometrical laws
(Phillips 1963; Eriksen 1985; Gilbert & Garrett 1989; Manders & Maas 2004; Maas
2005) yield the relation between φi and φr:

sin φr = |s2 − 1| sin φi

2s cos φi + s2 + 1
. (2.10)

When the reflection takes place where the local bottom slope is smaller than the
inclination of the ray (s< tan θ ′ = 1), the reflection is called subcritical and it leads
to a change in sign of the vertical component of the ray’s velocity γr =−γi. In the
opposite scenario (s> 1), the reflection is called supercritical and no change in sign is
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involved. Critical latitudes (θc) connect critical points at which the bottom slope equals
the ray slope (s = 1), and they lead, in the projection on the horizontal plane, to a
specular reflection of the incident ray. A detailed description of the different reflection
mechanisms in the different parts of the domain, with special attention to the critical
latitudes, is given in the appendix of Rabitti & Maas (2013).

The inertial wave ray path for a given frequency ω and initial launching position
and direction (x0, φ0, γ0) can thus be followed as it bounces through the sphere
applying the known reflection laws by computing subsequent reflection points.

2.4. Ray tracing and wavefield reconstruction
An advantage of using ray theory in a two-dimensional context is that with simple
geometrical arguments, given a perturbation frequency and a container shape, one is
able to deduce properties of the corresponding internal wavefield, such as its regularity,
the nature of its spectrum and the spatial distribution of the energy in the domain.

In two-dimensional settings, the correspondence between closed trajectories and
regular solutions on the one hand, and between attracting trajectories and singular
solutions on the other hand, can be exploited also when reconstructing the physical
field (velocity, pressure) underlying the system in consideration. In fact, rays carry an
invariant quantity, called partial pressure, that can be set on specific intervals (so-called
‘fundamental intervals’) along the boundary, and pressure can be consequently
inferred at any location of a two-dimensional domain by summing the two partial
pressures carried by the two rays crossing that location and coming from/going to the
fundamental intervals (Maas & Lam 1995). With this perspective, it follows that a
two-dimensional ergodic orbit (that touches all points of the domain) corresponds to
the trivial, motionless solution, since it carries in all points of the domain the same
value of partial pressure, thus leading to a uniform pressure everywhere.

Similar arguments are also used in the case of two-dimensional surface gravity wave
and electromagnetic wave systems, where the wavefield is determined in any point
of the fluid domain, combining waves following rays crossing that point from any
direction. For periodic orbits this is a finite sum, for chaotic orbits a continuous sum
over all possible directions (Heller 1984). In the related field of quantum chaos such a
sum over chaotic orbits is determined by Gutzwiller’s trace formula (Gutzwiller 1990).

When two-dimensional, vertically propagating internal waves in a regular domain
are considered, for any given eigenfrequency ω of the system, each trajectory is closed
(periodic), regardless of launching position (x0) and direction (φ0= 0,π, the only two
possible directions in two dimensions). It follows that each eigenfrequency presents an
infinite number of geometrically closed trajectories. Considering ω2= sin2(2π/3) in a
circular domain, four periodic trajectories (out of the corresponding infinite set) are
shown in figure 2. Their shapes depend on the position of the reflection points, so that
any point of the domain boundary is touched by one of these closed orbits. Since the
partial pressure on each trajectory can be set at will, this infinite ensemble of periodic
orbits indicates, as in (2.7), the infinite degeneracy of the eigenspectrum, characteristic
of symmetric internal wave problems (Münnich 1996), and allows calculation of the
wavefield at each point of the domain. It follows that in sufficiently symmetric two-
dimensional domains the value of ω is the only parameter controlling the existence of
closed ray trajectories and, consequently, of the regularity of the associated field. We
will see in § 3.1 that this ceases to be valid for three-dimensional settings, and other
parameters will come into play.

The complete three-dimensional reconstruction of the underlying physical fields,
using a three-dimensional analogue of the fundamental intervals (from segments to
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FIGURE 2. Four two-dimensional closed trajectories for ω2 = sin2((2π)/3) in the circle.
The orbits differ in launching position x0 (black dot): (a) x0 = 0, (b) x0 = 0.5,
corresponding to the critical latitudes for this frequency, (c) x0 = 0.6 and (d) x0 = 0.8.
Dashed lines mark the critical latitudes in the two hemispheres. One fundamental interval
is [x, √1− x2], x ∈ [0, xθc] (Maas & Lam 1995), where xθc corresponds to the radial
distance from the rotation axis at the critical latitude.

areas?) is far beyond the scope of this work. Thus, in the following, stress will
be posed on the qualitative description of the newly observed three-dimensional
orbits, while further effort is certainly needed towards a rigorous reconstruction of
the corresponding pressure and velocity fields from these geometrically computed
trajectories.

3. Results
3.1. Preliminary comments

In this section, results from the application of the three-dimensional ray tracing
algorithm in the fluid sphere are presented.

Before doing that, it is necessary to point out one fundamental difference
between two-dimensional and three-dimensional ray tracing. As seen in § 2.4, for
the two-dimensional setting, when an eigenfrequency is excited, any point of the
boundary can act as a source for a closed orbit. This leads to the results illustrated
in figure 2, where ω is fixed, rays are launched in the meridional plane: φ0 = 0 or
φ0 = π, corresponding to wave energy propagation along the ray path in one sense
or the other, and x0 can vary.

By contrast, when the full three-dimensional sphere is considered, φ0 can in
principle assume any value in [0, 2π[, γ0 can have both signs, and this generality is
lost. In practice, of course, couples of φ0 and γ0 are considered valid only if they
generate a ray lying inside the spherical domain, but this results, however, in multiple
possible combinations.

In order to generate a geometrically periodic trajectory, frequency ω, position (xn),
horizontal propagation direction (φn) and vertical propagating direction (γn) need to
be known in at least one reflection point (n) along the ray path. For convenience, we
will generally set such a point as the launching position (n= 0).

From this it is clear that the nature of three-dimensional periodic trajectories
is profoundly different from the known two-dimensional periodic orbits. Without
knowledge of the whole set of parameters (ω, x0, φ0, γ0), periodic trajectories are
impossible to visualize geometrically. Owing to this strong restriction it was initially
believed that three-dimensional periodicity was absent, even in fully symmetric
three-dimensional geometries, as hypothesized in Dintrans et al. (1999), where,
however, only two-dimensional (meridional) ray tracing was contemplated.
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FIGURE 3. Bow-tie periodic trajectory at ω2 = 2/3: (a) three-dimensional view (x, y, z),
(b) top view (x, y), (c) side (x, z) and (d) other side (y, z) view. Dashed lines correspond
to critical latitudes; black dot corresponds to launching position.

3.2. Finding one periodic orbit in the sphere
Given the reflection laws as presented in § 2.3, it is possible, in principle, to estimate
valid sets of parameters (ω, x0, φ0, γ0) representative of simple periodic trajectories
in a sphere. In fact, in some simple cases, when the shape of a closed trajectory
is known (or guessed), an ad hoc system of conditions on launching position (x0),
direction (φ0, γ0), and frequency of the perturbation (ω) can be solved analytically
and all parameters can be determined at one single reflection point.

We started our search with one of the simplest possible trajectories, a ‘bow-tie’
shaped trajectory (named after its top view appearance, figure 3b) and we solved the
associated system (see appendix A for details), finding a three-dimensional periodic
orbit in a sphere, associated with ω2 = 2/3 and displayed in figure 3.

Unfortunately, not all geometrically closed trajectories could be solved that easily,
since the orbit shape is not known a priori, and these periodic orbits do not possess
any attractive power, as we expect for a spherical geometry. However, the existence
of this single periodic orbit motivated the challenging quest for more.

3.3. Catalogue of periodic orbits in the sphere
In figure 4 the frequencies corresponding to periodic orbits observed so far are
presented. They are classified according to their appearance and their geometrical
properties: given a frequency ω, an initial launching position x0 and an initial
direction φ0, γ0, we can in fact define the winding number (w) of a trajectory
as the total number of times that the trajectory travels around the centre before
concluding a full period, defined after R reflections, when xR = x0, φR = φ0 and
γR = γ0. Whereas some of the frequencies associated with periodic orbits are known
algebraically (i.e. those found thanks to the solution of simple algebraic systems as
in appendix A or of (2.6)), the majority of the frequencies are known only up to
numerical precision. Analogously, periodicity of the orbit has also been tested up
to numerical precision, showing, however, its robustness and consistency, even when
inspected in the corresponding phase space (see § 3.9).

Different markers in figure 4 correspond to different geometrical features of the
orbits. A trajectory is called a ‘polygon trajectory’ when, in the (x, y) top view
it corresponds to a regular polygon (triangle, square, pentagon, hexagon, etc.), see
examples in figures 5–7. A trajectory is called a ‘star trajectory’ when, in top view,
it resembles a star, with its typical crisscross pattern, see examples in figures 8, 9
and 22. Both polygon and star trajectories live in what could be called the ‘inner



632 A. Rabitti and L. R. M. Maas

5 10
w

15 200

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0
Polygons
Stars
Flowers
Others

20 40 60 80 100 120
 

 

10 20 30 40 50
 

 

(a) (b) (c)

Azimuthal structure

FIGURE 4. Symbols denote squared frequency–azimuthal feature corresponding to
observed periodic orbits in the sphere. Different symbols indicate different shapes of the
orbits, according to the legend. Names of the categories are explained in the text. In the
three subfigures, the same frequencies are classified according to different aspects of their
geometrical behaviour. On the x-axis, in (a) we show the winding number, in (b) we show
the total number of reflections per period (R) over the winding number and in (c) we show
the number of corners (for polygons, stars) or lobes (for flowers and others) over the
winding number. The frequencies here presented do not represent the complete spectrum.
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FIGURE 5. Periodic polygon trajectory (triangle) at ω2 = 2
√

3− 3, as in figure 3.
Winding number is equal to 2.
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FIGURE 6. Periodic polygon trajectory (square) at ω2 =√2− 1, as in figure 3. Winding
number is equal to 1.

part’ of the full sphere, that is inside the cylindrical inset determined by the northern
and southern critical circles (indicated by dashed lines in the figures). By contrast, a
trajectory is called a ‘flower trajectory’ when, seen from above, it presents rounded
lobes (petals), as in figures 13, 14 and 23. These orbits live only in the ‘outer part’ of
the full sphere, defined as the part of the sphere outside the above-mentioned cylinder.
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FIGURE 7. Periodic polygon trajectory (hexagon) at ω2 = 1/3, as in figure 3. Winding
number is equal to 1.
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FIGURE 8. Periodic star trajectory at ω2 = 0.3083, as in figure 3. Winding number is
equal to 5.
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FIGURE 9. Periodic star trajectory at ω2 = 0.4473, as in figure 3. Winding number is
equal to 3.
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FIGURE 10. Periodic trajectory at ω2 =√3− 1, as in figure 3. Winding number is equal
to 1.

Periodic orbits in the higher-frequency part of figure 4 (ω2> 1/2) present less obvious
and evocative geometrical properties, and examples are shown in figures 3, 10 and 11.
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FIGURE 11. Periodic trajectory at ω2 = 0.8660, as in figure 3. Winding number is equal
to 2.

It is worth noting here that as the frequencies depicted in figure 4 are certainly not
representative of all of the periodic orbits existing in the sphere, it is also possible that
entire other families of trajectory shapes live in the same domain, that have simply
not been visualized yet, because, for example, of a counterintuitive three-dimensional
behaviour.

In fact, even for simple shapes, as the triangle, the ray behaviour is complicated
by the three-dimensionality of the system. Looking from above is indeed not enough
to understand one orbit, and we have to move view point, from figure 5(b) to a
three-dimensional view as in figure 5(a) to fully appreciate the trajectory. For many
orbits, we observe that a ray needs to wind around the sphere multiple times before
completing a period. Comparing figures 5(a) and 6(a) it is easy to acknowledge the
difference between, respectively, an orbit characterized by w= 1 (the square) and one
characterized by w= 2 (the triangle).

In figure 4(a) frequencies are plotted against the winding number; in figure 4(b)
the same frequencies are plotted against the total number of reflections per period (R)
over the winding number, while in figure 4(c), they are plotted against the number
of corners (for polygons, stars) or lobes (for flowers and others) over the winding
number. Interestingly, looking at figure 4(b,c), polygon and star trajectories seem to
lie on certain lines, whose definition however remains obscure.

However, according to the geometrical behaviour of the trajectories it is possible to
distinguish between two fundamental frequency regimes: (i) ω2<1/2, when, according
to (2.9), the domain is compressed to an oblate spheroid; (ii) ω2 > 1/2, when it is
stretched to a prolate spheroid. In figure 4 the frequency ω2 = 1/2 is marked by a
dashed line.

We shall revisit each regime in §§ 3.4 and 3.5. The special case when ω2 = 1/2,
and the domain is thus maintained as a sphere, is presented in § 3.6. One geometrical
behaviour is observed both for ω2 < 1/2 and for ω2 > 1/2 and is presented in § 3.7,
whereas the great majority of the orbits, the non-periodic ones, is discussed in § 3.8.
We point out that all periodic orbits found so far in the sphere are ‘not isolated’ (Berry
1981), in the sense that, if one periodic orbit is given, a continuous family of new
periodic orbits can be produced by revolution of the domain. Noticeably, this is true
only if this revolution is performed around the stratifying direction (in this case, the
z-axis). The whole family is then constituting an ensemble of infinite periodic orbits,
filling however only a portion of the domain, and thus profoundly differing from
the infinite set existing in two dimensions and presented in § 2.4. Properties of the
observed orbits in their corresponding phase space are discussed in § 3.9. We remind
that we do not consider here frequencies of the kind ω= sin((pπ)/q), since they have
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already been studied extensively in two-dimensional (meridional) settings (Barcilon
1968; Dintrans et al. 1999; Rieutord et al. 2001).

3.4. Periodic orbits for ω2 < 1/2

Two classes of trajectories are found in the frequency regime ω2 < 1/2: polygon and
star trajectories.

Regarding the polygon trajectories, we observe that polygons with an even number
of vertices, are characterized by winding number w= 1 (see figures 6 and 7), while
polygons with an odd number of vertices have w= 2 (see figure 5). Two examples of
star trajectories are shown in figures 8 and 9.

Qualitatively, all trajectories in this frequency range present extremely regular
spatial patterns, from a triangle up to a 20-sided polygon, and similarly for the star
shapes. Moreover, in this regime, it is clear that the critical latitudes play a crucial
role in confining all trajectories to the equatorial belt of the cylinder inscribed in the
spherical domain, a role that is lost in the orbits in the higher-frequency range (see
§ 3.5). Exploiting the regularity of the trajectories and the prominent role played by
the critical latitudes in this regime, we have been able to deduce some general rules
that can be used to evaluate the parameters (ω, x0, φ0, γ0) needed to find a closed
orbit. These rules are listed in appendix B, and constitute the reason why periodic
orbits of polygon or star shapes are the most numerous in figure 4. Following these
rules it is easy to evaluate, for example, the parameters for the square trajectory
(figure 6). If we set as launching point P0 = {x0, 0, 0} (not on the boundary), as in
figure 6(b), and φ0=π/2, then the following conditions for the upper right corner P1
(in the xy-plane) follow: (i) x1 = x0; (ii) x2

1 + y2
1 = r2

θc
= 1− ω2, the point belongs to

the circle corresponding to the critical latitude (see appendix B for details); and (iii)
z2

1 = x2
1, the ray moves at π/4 with respect to the vertical. The system is then easily

solved and gives ω2 =√2− 1.
The other frequency regimes do not present such a regularity in the trajectory

patterns, thus no rules have been deduced and consequently less closed trajectories
have been visualized.

From a top view, these two orbit categories closely resemble the two types of orbits
present in a classical, two-dimensional ellipsoidal billiard (see § 6 of Berry 1981),
where the critical latitudes of the sphere act as the boundary of the two-dimensional
elliptical domain. The apparently inconsistent fact that we observe the same pattern
emerging from a perfectly circular two-dimensional projection (on the x, y-plane) of
the sphere is due, first, to the different reflection laws and, second, to the complexity
introduced here by the third dimension. More on this kind of comparisons will be
discussed in § 3.9.

3.5. Periodic orbits for ω2 > 1/2

In the prolate case, ω2 > 1/2, the closed trajectories here presented have been
evaluated analytically one by one, solving ad hoc systems of equations, in order to
construct geometrically simple closed trajectories (see an example of these systems in
appendix A). Examples of periodic trajectories for this regime are shown in figures 3,
10 and 11.

Due to their irregular patterns, no general rules have been deduced for closed
trajectories in this frequency regime, and this is also why orbits in this regime are
scarce and scattered (see figure 4). Moreover, in this case, the critical circles do not
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FIGURE 12. Closed trajectory at ω2= 1/2, as in figure 3. Winding number is equal to 1.

seem to play such a prominent role in the trajectories, meaning that rays are not
confined to the outside or to the inside of the cylindrical inset defined by the critical
latitudes (see, for example, figure 3).

In contrast to the general regularity and azimuthal symmetry characterizing
trajectories in the oblate regime, closed trajectories in the prolate spheroid show
a more asymmetrical behaviour, especially with regards to the reflection locations in
the northern and in the southern hemisphere (see figures 3d, 10d or 11c). We shall
come back to this aspect at the end of § 6.

3.6. Periodic orbit for ω2 = 1/2

A regular, three-dimensional periodic orbit is found at ω2= 1/2, corresponding to the
case when rays have a genuine inclination of 45◦ with respect to the vertical, and
the domain is therefore unstretched by (2.9). The trajectory is shown in figure 12.
Remarkably, the critical latitudes are not part of this orbit, nor constitute a spatial
barrier for the ray, rendering this orbit similar in features to those presented for ω2 >

1/2 in § 3.5.
Interestingly, the existence of a frequency value that separates two frequency

regimes (and, consequently, two different orbit dynamics) resembles the role of the
parameter δ in Berry (1981). The latter was used for the parametric definition of
the external boundary of the Snellian oval billiard, and also determines two different
regimes for periodic orbits in that setting.

3.7. Periodic orbits for ω2 ≶ 1/2

Only one family of trajectories is found both when ω2<1/2 and ω2>1/2: the ‘flower’
trajectory (examples in figures 13 and 14). Even for this type of trajectory, no general
laws have been deduced, although in this case, in parallel to the case of ω2< 1/2, the
critical latitudes are observed to constitute a spatial barrier for the orbit, confining in
this case the rays to the ‘outer’ part of the sphere, and to the equatorial belt.

Remarkably, all frequencies corresponding to flower trajectories, both with winding
number w= 1 (in the frequency regime ω2 < 1/2) or w> 1 (in the frequency regime
ω2 > 1/2), are also obtained as solutions of an eigenvalue problem of the kind (2.6)
with k= 0 (axisymmetric modes) and n∈N (Bryan modes). In figure 13, for example,
we are looking at the Bryan mode {4, 1, 0}, where ω2 = 3/7, a frequency that is of
particular interest because, as seen in § 2.2, it has been identified as the least-damped
axisymmetric inertial mode in the full sphere (Dintrans et al. 1999; Rieutord et al.
2001). This trajectory has winding number equal to 1.
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FIGURE 13. Periodic flower trajectory at ω2 = 3/7≈ 0.4286, as in figure 3. Winding
number is equal to 1.
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FIGURE 14. Periodic flower trajectory at ω2 = (15+ 2
√

15)/33≈ 0.6892, as in figure 3.
Winding number is equal to 4.

In figure 14, the Bryan mode {6, 1, 0}, ω2= (15+ 2
√

15)/33≈ 0.6892 is presented,
selected from the possible eigenfrequencies:

ω6,1−4,0 =±
√
(15± 2

√
15)/33. (3.1)

This trajectory has winding number equal to 4, differently from what it appears
looking at figure 14(b), that misleads the reader superposing points that belong to
different hemispheres (see figure 14a).

3.8. Non-periodic orbits
So far we have presented only periodic orbits of inertial wave ray trajectories in the
full sphere. However, the great majority of combinations of ω, x0, φ0, γ0 leads to non-
periodic orbits. In fact, initial conditions for each ray can be taken from two cubes,
spanning ω ∈ [0, 1], x0 ∈ [0, 1] and φ0 ∈ [0, 2π] with either γ0 = 1 or γ0 = −1, and
periodic orbits are observed to have a measure zero inside these two cubes. As already
mentioned in § 3.4, periodic trajectories so far have been found only because somehow
showing regular behaviour, an example of which is explained in appendix B for the
lower part of the frequency spectrum, while a random search would not lead to the
visualization of any closed trajectory.

Moreover, the periodic orbits found so far seem to act as repellors (and, thus,
provide a big contrast to the two-dimensional attractors found in Maas & Lam 1995
and to the three-dimensional attractors found in the spherical shell in Rabitti & Maas
2013), which is why the search has been so challenging. It seems that the sphere
exhibits some of the properties characteristic of quantum chaos encountered in elliptic
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FIGURE 15. Three-dimensional view of invariant trajectory at ω2 = 0.8100 after (a) 50,
(b) 100, (c) 500 and (d) 5000 reflections.

systems, in which repelling periodic orbits dominate the response. We shall come
back to this aspect in §§ 3.9 and 4.

Interestingly, chaotic and fully ergodic orbits are not found in the sphere. Even if
chaos and ergodicity cannot be proved numerically, and a behaviour of this type is
suggested by orbits such as that presented in figure 15, when the orbit is inspected in
the corresponding parameter space (Berry 1981; Nöckel 1997) it becomes clear that a
certain regularity persists, preventing the occurrence of chaotic areas (see § 3.9). With
ergodic orbits we mean orbits that fill the sphere homogeneously and, after an infinite
number of reflections, touch each point of the domain an infinite amount of times
(approaching it from all possible directions on the cone through that point). It follows
that ergodic trajectories, such as those present in the case of two-dimensional internal
wave rays in the circle, are domain filling, and this is not true for orbits such as that
in figure 15 nor for others.

The non-periodic orbits observed in the sphere are, on the other hand, of the
so-called ‘invariant’ type (see § 3.9). Invariant orbits are trajectories that, even if not
periodic, are confined to a portion of the domain only, which is usually the equatorial
belt (defined between the two critical latitudes), and are continuously repeating
themselves and circulating around the domain. An example of these trajectories is
given in figure 16. In this case the rays, given an infinite amount of reflections,
will densely touch only a subset of points of the full domain. Given a periodic
orbit, invariant orbits are easily found by slightly perturbing the frequency, launching
point or initial direction. It follows that, for frequencies corresponding to a periodic
orbit (as in figure 13), an associated invariant orbit (figure 16) can be obtained by
small alteration of x0 and it fills the same surface that rays would fill in case of
axisymmetric forcing at that frequency. This surface corresponds in fact to the subset
of boundary points touched by simultaneous excitation (azimuthally symmetric) of
the whole ensemble of non-isolated periodic orbits for that specific frequency (see
§ 6 for application to experimental results).

3.9. Phase space mapping of the orbits
So far we have been looking at ray trajectories in real space, however, an alternative
representation in the corresponding phase space is also possible, instructive and
already used for studying two-dimensional ray dynamics of different nature in closed
cavities (Berry 1981, 1987; Nöckel 1997).

In fact, successive reflections can be captured not only by direct ray tracing, as
in the previous sections, but also by monitoring the polar angle (χ ) at subsequent
reflection points as measured from the domain’s centre. Combining this polar angle χ
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FIGURE 16. Three-dimensional view of invariant trajectory at ω2 = 3/7 after (a) 50,
(b) 500, (c) 5000 reflections and (d) top view after 5000 reflections. This figure is obtained
using the same parameters as figure 13, but slightly changing the launching position x0.

at the reflection point with the angle of incidence of the ray relative to the local x-axis
(φi, see figure 1c) presents a phase space, in which ray dynamics can be conveniently
studied (Nöckel et al. 1996).

In this work, even if tracing three-dimensional trajectories, only a two-dimensional
projection of the orbit, on the x, y-plane, has been considered, the so-called Poincaré
surface of section (SOS, Nöckel 1997). This is motivated by the fact that the third
parameter defining each reflection, the inclination with respect to the vertical, is
here fixed by the inertial wave dispersion relationship (2.8). The neglect of the
three-dimensional representation of the reflection position certainly constitutes a
limit to the understanding of these orbits’ behaviour, however, we shall present
in the following the application of classic SOS to the three-dimensional inertial
wave ray trajectories presented in the previous sections, while a definition of a new,
three-dimensional phase space, perhaps more appropriate, is left for future work.

In classical mechanics, in phase space (SOS), a periodic orbit appears as a set
of isolated points. This is true for two-dimensional as well as for three-dimensional
periodic trajectories of internal wave rays. Examples of this phase space in the
sphere are shown in figure 17(a) for the oblate case (corresponding to the real space
trajectory in figure 7) and in figure 17(b) for the prolate case (corresponding to the
real space trajectory in figure 12); remarkably, all three-dimensional periodic orbits
found in the sphere are unstable, and thus referred to as repellors (as opposed to
attractors). This means that a small perturbation to the initial conditions is sufficient
to infinitely deviate the orbit from the periodic path. As seen at the end of § 3.8,
this behaviour is characterizing the majority of the inertial wave orbits in the sphere.
Examples of this behaviour are shown in figures 18 and 19, but similar plots (not
shown) would be also representative of orbits such as those displayed in figures 15
and 16. This kind of trajectory is characterized, in the corresponding phase space, by
the existence of a structure (although highly non-trivial) to which the orbit is confined,
and which is therefore called ‘invariant’. If looking at SOS of two-dimensional
surface gravity wave rays in the circle, these structures are simple straight lines (see
figure 3d in Berry 1981): in the sphere the regularity of the two-dimensional circular
case is probably destroyed by the presence of three-dimensional subsequent (and
compensating) focusing and defocusing reflections in a three-dimensional domain,
leading to the high level of complexity in figures 18(b) and19(b).

It is possible, however, to obtain simpler structures. The trajectory in figure 20(a) is
obtained from the real space orbit in figure 12, when the launching position is moved
to the critical latitude. It shows a relatively simple representation in the phase space
(figure 20b), although its real space azimuthal symmetry properties (figure 20a) appear
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FIGURE 17. (a) Poincaré SOS for the polygonal periodic orbits in figure 7. (b) SOS for
the high-frequency periodic orbits in figure 12. Here χ corresponds to the polar angle
pointing at subsequent reflection positions as measured from the domain’s centre. Here φi
corresponds to the local angle of incidence of the ray as measured from the local x-axis
(see figure 1c).
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FIGURE 18. (a) Top view of invariant trajectory (100 reflections) obtained from the
trajectory in figure 7 after perturbing the horizontal launching direction by 0.5 %. (b) SOS
for the trajectory in (a). (c) Same as (a), after 1000 reflections. (d) SOS for the trajectory
in (c).

to be exceptional when compared with the most common structures, similar to those
in figures 18(a) and 19(a).

Remarkably, this kind of pattern in phase space resembles that characterizing
two-dimensional ergodic internal wave orbits, propagating obliquely in the vertical
plane in a circle, as shown in figure 21(b). However, even if phase space structures
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FIGURE 19. (a) Top view of invariant trajectory (100 reflections) obtained from the
trajectory in figure 12 after perturbing the launching position by 0.5 %. (b) SOS for the
trajectory in (a). (c) Same as (a), after 1000 reflections. (d) SOS for the trajectory in (c).
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FIGURE 20. (a) Top view of invariant trajectory (100 reflections) obtained from the
trajectory in figure 12 after setting the launching position at the critical latitude. (b) SOS
for the trajectory in (a).

are similar in the two cases, in the real space three-dimensional invariant orbits
(figure 20a) profoundly differ from two-dimensional ergodic orbits (figure 21a). In
particular, the latter are by definition domain filling, while invariant trajectories are
clearly limited to a portion of the three-dimensional domain only. This hybrid aspect
of the trajectories would probably become clear once studied in an ad hoc defined
phase space, taking into consideration the full three-dimensional problem.

The third possible type of orbit, the chaotic orbit, would occupy an area in the phase
space. Chaotic trajectories are present in two-dimensional elliptical systems in non-
regular domains, such as the stadium (Berry 1981), and are likely to be found in three-
dimensional hyperbolic systems in symmetry breaking domains as well. On the other
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FIGURE 21. (a) Ergodic trajectory (250 reflections) in the circle corresponding to the
frequency ω=√1/3 (not an eigenvalue). (b) SOS for the trajectory in (a), here the angle
χ refers to the polar angle in the x, z-plane, and φi to the local angle of incidence relative
to the outward radial direction at the point of reflection.

hand, as expected from the overall regularity of the system in analysis, no genuinely
chaotic orbit is observed in the case of three-dimensional inertial waves in the full
sphere.

4. Discussion
In this work, we have established the existence of three-dimensional periodic orbits

for internal wave rays in the full sphere. However, several questions remain on the
nature of these orbits, of the associated frequencies and of the underlying wavefield.

In the last few decades, two-dimensional (meridional) ray tracing has been used
to investigate the inviscid limit case of inertial waves in the sphere and its known
analytical solutions (Dintrans et al. 1999; Rieutord et al. 2001). In this setting the
association between periodic orbits and eigenfrequencies has not been retrieved, for
reasons that we now understand. After all, looking at ray tracing only on a meridional
plane constitutes a strong limitation if one is interested in the behaviour of inertial
modes of the full three-dimensional sphere. In fact, in a spherical domain, if a
perturbation is excited within a meridional plane, even when three-dimensional effects
are included, it will never escape its original plane. Conversely, if a perturbation is
initiated outside a meridional plane, its spatial structure will never collapse onto a
meridional plane. But note that this behaviour is strictly representative of that in a
regular domain as the sphere, and it is not valid, for example, in a spherical shell,
where the interaction of the ray trajectory with the outer and inner sphere gives rise
to meridional attracting planes (Rabitti & Maas 2013).

Among all possible zonally propagating waves, existing also in the three-
dimensional fluid shell (Rabitti & Maas 2013) and in the parabolic channel (Drijfhout
& Maas 2007), the presence of periodic trajectories in the full sphere is suggestive
of the resonant character of inertial modes in a regular domain, where the term
‘resonance’ has here not been used in terms of amplitude of the response (see Zhang
et al. (2013) for a detailed, multi-approach analysis on this subject), but in terms of
trajectory coherency.

However, a direct correspondence between closed orbits and classical Bryan’s
modes is hardly retrieved (so far, only for the flower trajectories, described in § 3.7).
Moreover, the spatial structure of the orbits has been also suggestive of the existence
of a relation between the azimuthal wavenumber (when known) and one of the
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orbit features (winding number, number of reflections, lobes or corners). Even this
correspondence has not yet been retrieved.

One other, perhaps unexpected, aspect of these three-dimensional periodic orbits
is encountered if one is interested in the reconstruction of the underlying physical
wavefield using the ray’s structure. In fact, the observed winding numbers of many
trajectories present values larger than one, which is on the one hand puzzling, but
on the other hand suggestive of the possibility of adopting non-integer (azimuthal)
wavenumbers. We speculate that a pressure function of the separable form (2.5) with
rational wavenumbers n and k would also constitute a set of valid solutions for inertial
waves in a full sphere, provided that boundary conditions are satisfied (no energy
flux through the boundaries, and finiteness in the whole domain, rotation axis and
equatorial plane included).

Three-dimensional ray orbits could thus be not only possibly representative of non-
separable, zonally propagating solutions, but also of eigenmodes different from those
classically obtained from (2.6) using integer degree and order, whose completeness is
so far unknown. This would explain the difficulty in relating the periodic orbit with
the classic eigenfrequencies of the system.

Furthermore, it is worth noting that in the two-dimensional fluid dynamics case,
spatially coherent internal wave beams and trajectories become evident only as a result
of the superposition of several modes associated with a single frequency. Owing to the
lack of correspondence between rays and eigenfrequencies, and of the complexity of
the inversion of (2.6), a rigorous test in this direction could not been performed.

Matching of rays and modes, as also previously pointed out in § 2.2, is also usually
expected only in the case of short wavelength limit, and not in the case of large-scale
modes. For the higher modes, in fact, the scales of the underlying waves is much
smaller than the basin size. Since inertial waves of given frequency have no definite
scale, short waves have here to be intended not as, for example, in the quantum chaos
case, modes within a certain frequency range, but as modes characterized by large n
and k indices (including those of the Legendre functions having non-integer indices
n and k), for which it is possible to make good use of asymptotic expansions of
the associated Legendre functions. Again, the lack of understanding of the relation
between indices n and k and spatial trajectories prohibits to restrict the comparison to
high-index Legendre modes.

Interestingly, repelling and unstable periodic orbits such as those observed in
this study, profoundly differ both from the plane-filling ensemble of periodic orbits
characterizing regular, hyperbolic systems, as described in § 2.4 (see figure 2), and
from the classical annulus-filling non-isolated periodic orbits in the circular billiard
(elliptic system).

In fact, even if the closed orbits in the sphere are non-isolated under rotation around
the z-axis, they remain isolated in a three-dimensional sense, because of the strong
interdependency between the parameters (ω, x0, φ0, γ0).

In this sense, they resemble more the isolated, unstable ray trajectories found in
elliptic, classically chaotic systems, such as those describing surface waves in a
stadium (Berry 1981, 1987; Kudrolli et al. 2001). If we may continue the analogy,
it follows that, even if in three dimensions we have no one-to-one correspondence
between classic orbits and ‘quantum’ levels of the system (eigenfrequencies), we can
still use the behaviour of the rays as an ingredient for deriving general information
on the spectrum and on the regularity properties of a system. This would also
help in explaining why only few periodic orbits found their counterpart in terms
of Bryan’s (1889) modes. Moreover, when inspected in the corresponding phase
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space, three-dimensional invariant orbits show a similar behaviour to those of
two-dimensional ergodic orbits, although without the crucial characteristics of being
domain filling. This combination of different behaviours could be the result of tracing
trajectories in a highly anisotropic three-dimensional space, whose anisotropy is set
by the presence of the rotation axis (aligned in this case with the vertical). Focusing
and defocusing in the vertical direction coexist then with spreading and scarring in
the horizontal plane (perpendicular to the stratification/rotation), also because focusing
reflections in the vertical plane lead to a change in cross-slope momentum, while not
affecting the momentum in the along-slope, tangential direction.

In addition, we have seen from (2.2) that for general (non-symmetric) three-
dimensional domain shapes, the system acquires a hybrid character, in between
hyperbolic and elliptic problems. Consequently, it may well show asymptotically both
periodic attracting orbits, as in the spherical shell (Rabitti & Maas 2013), as well
as periodic repelling orbits, as the ones here observed in the sphere, characteristic
respectively of singular and regular wavefields. It is also worth noting that such
repelling periodic orbits are living in the spherical shell too, provided that rays do
not interact with the inner boundary, and that thus attractors, periodic and invariant
modes could in principle coexist in the same three-dimensional domain: in fact Maas
(2005), Drijfhout & Maas (2007) and Rabitti & Maas (2013) have already shown that
attractors and invariant modes (there also called ‘edge’ or ‘whispering gallery’ modes),
can indeed occur simultaneously in a stratified paraboloid, channel and spherical shell
(all symmetry-breaking geometries). In terms of energy content, however, attracting
orbits will always prevail over periodic orbits in symmetry breaking geometries,
because of the formers’ focusing power.

Despite the possible presence of all these different orbits, we are still far from
formalizing a field reconstruction on the basis of ray trajectories only. In fact, it is
clear that even if an annulus-filling ensemble of periodic orbits exists at a specified ω,
this does not constitute the three-dimensional counterpart of the domain-filling infinite
ensemble of periodic trajectories that occurs in two dimensions in regular domains for
each eigenfrequency (see § 2.4 and figure 2). The infinite three-dimensional periodic
orbits are all identical, and summed up they do not cover the whole basin. This
implies that evaluating the associated field in the whole domain from rays only
remains a non-trivial (if not impossible) challenge.

However, we did find an example of one frequency (although numerical) presenting
two differently shaped closed trajectories (figures 22 and 23). It is therefore possible,
in principle, that an infinite set of differently shaped periodic orbits exists for
each eigenfrequency, mirroring a degeneracy of the associated spectrum. Only if
this is true it would be possible to reconstruct the underlying wavefield using a
two-dimensional generalization of the one-dimensional fundamental intervals arising
in the two-dimensional problems (Maas & Lam 1995).

It has to be clear, in fact, that our limited understanding on how to determine valid
parameters ω, x0, φ0 and γ0, necessary to visualize the ray pattern, restricts our ability
to geometrically check and visualize periodicity, but it does not reduce the number of
physically valid eigenvalues of the system and, with this, the number and degeneracy
of the modes in the system.

5. Summary

Understanding the behaviour of internal waves in fully enclosed domains constitutes
one of the big challenges in fluid dynamics, especially because of the numerous
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FIGURE 22. Periodic star trajectory at ω2 = 0.2890, as in figure 3. Winding number is
equal to 4.
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FIGURE 23. Periodic flower trajectory at ω2 = 0.2890, as in figure 3. Winding number
is equal to 4.

possible applications both in astrophysical and geophysical fluid dynamics. Since
analytical solutions for internal waves in arbitrarily shaped domains are not available,
numerical approaches or geometrical ray tracing techniques have been widely used
in order to infer properties of the underlying wavefield and energy distribution in
the container. Ray tracing, commonly used in two-dimensional settings, has recently
been extended as a three-dimensional tool, in the direction of a more realistic
representation of the corresponding wavefield and of the source of perturbation.
However, the significance of three-dimensional internal wave rays has not been
completely understood.

In this work, a three-dimensional algorithm of ray tracing has been applied for the
first time to the full homogeneous rotating sphere, in order to investigate the nature
of three-dimensional inertial wave ray orbits. The sphere in fact is one of the few
domains where analytical solutions are known for the linear, inviscid case, and where
WKBJ theory has also been commonly applied.

Three-dimensional periodic orbits have been then observed in the sphere. Moreover,
two main frequency regimes can be distinguished, according to the different behaviour
of the orbits: ω2 < 1/2 and ω2 > 1/2.

In the low-frequency regime, three ‘families’ of periodic orbits are found: polygon,
star and flower trajectories, classified because of their appearance in top view. In this
regime, the critical circles define an inscribed cylinder that acts as a physical barrier
for the orbits, confining the rays to the equatorial belt. This crucial role played in the
ray dynamics by the critical latitudes finds its counterpart in the model proposed by
Wu (2005a), where the critical circles are named ‘singularity belts’ and right so.

In the high-frequency regime, no regular pattern but of flower type is observed.
However, periodic orbits are still present, even if critical circles do not play such a
prominent role.
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Difficulties in relating the observed periodic trajectories to the simplest
eigenfrequencies computed using (2.6) (the Bryan modes) could be due to several
reasons, discussed in § 4. Perhaps the most intriguing one is the fact that when
a three-dimensional ray tracing algorithm is used, the absence of any assumption
on separability of the solutions could unveil the structure of intrinsically three-
dimensional modes in the sphere, which remained hidden so far because of the
particular form of solutions (2.5), and because of the requirement for the n and k
indices to be integer. This perspective certainly requires further investigation.

We are led to think that the periodic orbits observed so far have been limited by
our poor understanding of the geometrical properties of these trajectories, and by the
human tendency to prefer regular and repetitive patterns such as, indeed, polygons,
stars and flower shapes. We also know that the inertial wave spectrum in the sphere
is dense (Bryan 1889), therefore a complete catalogue of existing periodic orbits
would be of no practical use. In this work only the first proof of the existence of
such trajectories is given: further investigations would contribute to a more general
perspective on the geometrical features of these trajectories, and to a complete
understanding of plots such as those in figure 4 and of the emerging patterns.

Nevertheless, enough and differently shaped closed patterns have been found to
deduce some general properties on the periodicity of the orbits and the observation of
other trajectories would not change the overall picture of the system. The existence,
in fact, of inertial wave, periodic orbits in a regular three-dimensional container such
as the sphere allows to extend the usual two-dimensional correspondence between
modes and periodic ray trajectories, previously discarded (Dintrans et al. 1999), to a
three-dimensional setting.

Moreover, the presence of repelling periodic orbits, such as those observed here,
and of invariant orbits presenting ergodic aspects, points out the interesting fact that
the three-dimensional hyperbolic problem of inertial waves in the homogeneous full
sphere presents, in terms of quantum chaology (Berry 1987), some properties typical
of elliptic systems. The three-dimensional orbits found so far in the sphere seem to be
only of the periodic and of the invariant kind. However, the existence of two different
orbit regimes (as in the oval billiard Berry 1981), and of isolated orbits (isolated with
respect to rotation around an axis different from the z-axis), are suggestive of a more
heterogeneous dynamics. A three-dimensional phase space study will possibly provide
further insight in the hybrid nature of these trajectories.

6. Final remarks

We are conscious that geometrical patterns constitute a widely general and
fascinating feature of several fluid dynamical systems, including geophysical (Lewis
& Hawkins 1982) and astrophysical (Godfrey 1988) contexts. It is therefore worth
pointing at the immediate association that arises between the closed hexagonal
trajectory in figure 7 (corresponding to an exact frequency ω2= 1/3), and the famous
hexagonal vortex observed over Saturn’s North Pole (Godfrey 1988). Experimental
results in a differentially rotating spherical gap (Hollerbach et al. 2004), as well
as in cylindrical systems (Barbosa Aguiar et al. 2010), have shown that polygonal
patterns may arise from destabilization of a zonal jet, in the case of meandering
of the Stewartson layers that form tangent to the inner boundary, a situation that
substantially differs from the configuration object of the present study. To the best
of the authors’ knowledge, no polygonal pattern has been experimentally observed in
a full sphere so far. However, this evidence does not tell much about the possible
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existence of resonant periodic orbits in the full sphere for axisymmetric forcing
mechanisms such as, for example, libration. In this context, in fact, a single periodic
orbit as the ones presented in this study cannot be visualized, since it implies not
only a point source of the disturbance, namely, a single launching position x0, but
also the selection of a single ray (identified by φ0 and γ0) within the excited double
cone. In practice, this would need an oscillating source, setting the frequency of
the radiating perturbation. The selection of a single ray (in two dimensions), or at
least of a portion of one of the two cones (in three dimensions), could be then
achieved putting the forcing oscillator in one basin (basin 1) that is different from
the container in analysis (basin 2), and orienting an aperture between the two basins
such that only one single beam, or a portion of one of the cones, is able to propagate
from basin 1 to basin 2. In the case of axisymmetric forcing (given by an azimuthal
revolution of the launching position), rays will on the other hand occupy a surface,
given by the azimuthal revolution of the corresponding periodic trajectory, resembling
the corresponding invariant orbits, see figure 16. In this regard, the prominent role
played by the critical latitudes in the ray trajectories is in agreement not only with
the three-dimensional numerical simulations such as those in Wu (2005a), but also
with some laboratory experiments in rotating sphere and shell, such as those by Noir
et al. (2001), Le Bars, Le Dizès & Le Gal (2007) and Koch et al. (2013).

Another possible association between previous findings and the newly observed
periodic trajectories arises when we look at their symmetry properties. As we have
already noticed at the end of §§ 3.4 and 3.5, the geometrical patterns of periodic
trajectories of the rays show a strong difference in the two frequency regimes. The
low-frequency case (ω2 < 1/2) shows a strong regularity in the azimuthal and in the
vertical direction, while this is not true for the high-frequency case (ω2 > 1/2). We
recall that when we use the variable transformation (2.9), and we do not restretch
back our domain, this results in a deformation of the spherical domain into an oblate
or a prolate spheroid respectively, according to the frequency explored, while the ray
inclination is fixed to 45◦ with respect to the vertical. This observation recalls some
old, and so far not completely explained, experimental results from the end of the
19th century (Lord Kelvin 1877, 1880a), when Lord Kelvin and assistants performed
a series of experiments to investigate gyroscopic properties of respectively a rotating
oblate and prolate spheroidal domain filled with liquid. While the oblate container
behaved not noticeably different from the ordinary solid gyrostat, the prolate spheroid
presented a ‘truly wonderful contrast’ as its failure as a gyrostat resulted in the
prolate container stopping turning only after a few seconds after its release.

A possible interpretation of the different response between the two geometrical
settings comes from the different symmetry properties and ray distributions observed
in the three-dimensional periodic orbits found in this study. It is not obvious whether,
in general, analysing a frequency in differently shaped containers (Kelvin’s approach)
or, instead, fixing the inclination of the rays and consequently deforming the container
(ray tracing approach) would lead to the same physical system or not, but, if we
consider as key parameters only the relative inclinations between (i) the restoring
force, in this case rotation, and (ii) the ray trajectory and (iii) the local tangent to
the boundary at the reflection point, the two approaches appear at a first view to be
completely equivalent. If this is the case, a non-axisymmetric forcing at the surface
of the prolate (oblate) ellipsoid would result in a non-axisymmetric (axisymmetric)
response of the domain, with (without) consequent triggering of instabilities and
possibly of a net torque on the container. Further experimental investigations would
certainly provide new light on these historic findings.
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Discussing robustness of three-dimensional inertial wave ray tracing in the case of a
homogeneous, rotating fluid-filled sphere may seem far from any possible application
of practical use, however, inertial waves in the sphere constitute a paradigmatic case
for the more general case of internal waves in arbitrarily shaped, fully enclosed
domains. Extending our general understanding on wave ray dynamics can thus be
crucial towards more realistic, three-dimensional, internal wavefield reconstructions
and regularity (or, more commonly, singularity) analysis, as called for by many
geophysical and astrophysical challenges.
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Appendix A. Geometric derivation of a closed trajectory: the bow-tie case

According to the reflection laws described in § 2.3, one of the simplest periodic
trajectories we can think of is depicted in figure 3. In order to derive its parameters, it
is worth remembering that the horizontal refraction law, (2.10), is valid only if angles
are defined in the local reference framework of reflection, as shown in figure 1(c) for a
general case, and in figure 24 for this specific trajectory. The latter is easily prescribed,
the local positive x-axis corresponding to the line of local maximum bottom slope,
pointing outwards. In figure 24 the different local reference frameworks are referred to
as (x, y), relative to the point P0, (x′, y′), relative to the point P1 and (x′′, y′′), relative
to the point P2 and they are depicted as grey dashed lines. Moreover, we recall that
in the algorithm used, in order to have rays that always move with an inclination of
45◦ with respect to the vertical, the surface of the sphere is deformed according to
(2.9), depending on the perturbation frequency ω, and described therefore by

x2 + y2 + λ2z2 = 1 (A 1)

where λ is defined in (2.3). It is now possible to cast the problem in a system of
equations, in order to evaluate analytically which combination of ω, x0, φ0 and γ0

reproduces this trajectory. The orbit in figure 24 has been constructed as follows: we
prescribe a launching point, P0= {x0, 0, 0}, that lies on the equatorial plane, an initial
launching direction φ0 = π/2 and a negative sign of the initial vertical component
of the group velocity (γ0 = −1). In P1 = {x1, y1, z1} a supercritical reflection takes
place: the vertical component of the group velocity does not change its direction,
γ1=γ0=−1, and the ray is refracted inwards, towards the central region of the sphere.
By contrast, in P2 = {x2, y2, z2}, a subcritical reflection takes place, vertical velocity
reverses its sign, γ2 =−γ1 = 1, and a defocusing reflection sends the trajectory back
up, towards the outer part of the prolate spheroid.

For symmetry reasons, we can restrict the study to the first quadrant of the
x, y-plane, setting the condition that a reflection occurs in P2 that is perfectly
symmetric with respect to the x′′-axis (coinciding with the y-axis): the ray’s path
would therefore reproduce in the second quadrant (and in the northern hemisphere)
the mirrored pattern of the first one, and so on.
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FIGURE 24. Top view projection of bow tie orbit (solid) for ω2 = 2/3, obtained by
three-dimensional ray tracing (as figure 3b). Inside (outside) the dashed circle rays reflect
subcritically (supercritically) from the bounding sphere. Launching point is at P0 (on the
equatorial plane), initial ray vertical direction is downward, while horizontal direction is φ0.
The ray is thus travelling in the direction indicated by the black arrow. The two reflection
points in the first quadrant are P1 (in the supercritical area, southern hemisphere) and P2
(in the subcritical area, southern hemisphere). The three points are depicted together with
their local reference framework (denoted with a corresponding number of primes) where
angles of incidence (φi) and reflection (φr) are also defined, in the appropriate reference
framework.

From P0 the ray is moving parallel to the y-axis, with an inclination of 45◦ with
respect to the z-axis (common for all reference frameworks), hence x1 = x0 and
z1 =−y1.

Moreover, P1 has to belong to the southern hemisphere of the spheroid, yielding

y2
1 =

1− x2
0

1+ λ2
(A 2)

with y1 > 0. Then, we prescribe P2 to lie on the y-axis, x2 = 0, and to be part of the
southern hemisphere of the spheroid as well:

y2
2 + λ2z2

2 = 1 (A 3)

with z2 < 0. The ray connecting P1 and P2 forms an angle of 45◦ with the vertical,
therefore it follows that the projection on the horizontal plane of the segment
connecting the two points is equivalent in length to the projection on the vertical
plane of the same segment. Since the length of this segment is invariant under rotation
of the reference framework and equal to

√
x2

0 + (y1 − y2)2, we can write

z2 = z1 −
√

x2
0 + (y1 − y2)2 =−y1 −

√
x2

0 + (y1 − y2)2. (A 4)

According to the horizontal refraction law (2.10), a horizontally symmetric subcritical
reflection (as the one needed in P2) occurs when the incident direction in the local
reference framework, φi, satisfies

φi = cos−1(−s) (A 5)
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where s=|∇H| represents the local bottom slope. In that case sinφr= sinφi, implying
φr =π− φi. Since, as can be seen in figure 24,

φi,2 = φr,1 − φi,1, (A 6)

where the second subscript corresponds to the framework of the definition of the angle,
a symmetric subcritical reflection will occur in P2 only if

φr,1 = cos−1(−s2)+ φi,1 (A 7)

with
φi,1 =π/2− tan−1( y1/x0). (A 8)

This implies

sin(φi,1)= 1

/√
1+

(
y1

x0

)2

cos(φi,1)= 1

/√
1+

(
x0

y1

)2

 . (A 9)

Knowing that the reflection in P1 must be supercritical, equation (2.10) reads:

sin(φr,1)

sin(φi,1)
= s2

1 − 1
1+ 2s1 cos(φi,1)+ s2

1
. (A 10)

Using (A 2), (A 7) and (A 8) and the local bottom slopes:

s1 =
√

1− λ2y2
1

λ2|y1|
s2 = y2

λ2|z2|

 . (A 11)

Equation (A 10) can then be rewritten in terms of point coordinates only, and yields

y2

λ2|z2| −
y1

x0

√
1−

(
y2

λ2|z2|
)2

= −1+ λ2(1− x2
0)

1+ λ2(1− x2
0)
. (A 12)

The last condition relates the position of P1 to the angle of incidence required at P2.
Indeed x0 (= x1) has to satisfy the condition

x0 =
√

x2
0 + (y1 − y2)2 sin(cos−1(−s2)). (A 13)

Using that

sin(cos−1(−s2))=
√

1− s2
2, (A 14)

it follows that
x2

0

(y2 − y1)2
= λ

2

y2
2
− (1+ λ2). (A 15)

Equations (A 2)–(A 4), (A 12) and (A 15) now form a system in (x0, λ, y1, y2, z2) that
can be solved analytically: 

x0 = 1/
√

3
λ= 1/

√
2

y1 = 2/3
y2 = 1/3
z2 =−4/3.

(A 16)
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The corresponding eigenfrequency for this closed orbit, following from the value of
λ, is ω=√2/3.

Appendix B. Spatial structure of periodic trajectories in the case ω2 < 1/2

When ω2< 1/2 the sphere is transformed into an oblate spheroid, according to (2.9).
We have noticed that in this case, if a polygon or star-shaped periodic trajectory exists
at a certain frequency ω̂, it crosses the equatorial plane at P={xeq, 0, 0} with xeq given
by

xeq =
√

1− 2ω̂2

1− ω̂2
(B 1)

and with a direction φeq = π/2. Remarkably, the value of the Cartesian coordinate
xeq corresponds to the eccentricity ε of the stretched spheroid obtained using (2.9). It
follows that ±ε corresponds also to the distance in the (x, z) or (y, z)-plane of the
foci of the ellipse from the centre. The full set of parameters needed for the periodic
trajectory then immediately follows:

ω̂

x0 = {xeq, 0, 0}
φ0 =π/2
γ0 =±1

(B 2)

where the sign of the vertical group velocity will only determine the direction of
propagation of the ray.

Moreover, for polygon-shaped orbits, it is also possible to predict a valid set of
parameters ω, x0, φ0 and γ0 with x0 part of the boundary and in particular of the
critical latitude θc. Giving the eigenfrequency ω̂, the distance from the rotation axis
rθc of the critical latitude θc is

rθc =
√

1− ω̂2. (B 3)

The launching direction φ0 at the critical latitudes, then, immediately follows
according to the number of sides (L) constituting the polygonal top view shape
of the orbit. The full set of parameters needed for the periodic trajectory then reads

ω̂

x0 =
{

rθc, 0,
√

1− r2
θc

}
φ0 =π−π/L
γ0 =−1.

(B 4)

Here z0 > 0 and γ0 < 0, since we are assuming the launching point is on the northern
hemisphere.

Looking at figure 4, it is clear that these simple rules have helped the authors
to visualize a larger set of periodic orbits in the low-frequency regime (ω2 < 1/2)
than in the high-frequency regime. However, these rules can only be applied once
the geometrical pattern of an orbit (number of vertices, winding number) is known or
can be predicted, which enabled the visualization of periodic trajectories only for the
polygon and star families, because of their regularity and their monotonic behaviour
with frequency (i.e. the number of vertices of the polygon decreases with frequency).
The key role played by the critical circles has also been of help.
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