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Abstract

A simplified, one-parameter version of the Lorenz model is obtained in the limit of high Rayleigh- and Prandtl-numbers,
physically corresponding to diffusionless convection. It is argued that the bifurcation structure of this simplified Lorenz
model essentially involves only Shil’nikov bifurcations. An exact solution to this simplified dynamical system is given which
serves as the limit for strong forcing and appears to be a new integrable case of the Lorenz equations. For small values of
the bifurcation parameter, an approximate, analytical and multipeaked map is obtained which gives successive periods of
the pulse-like motion. This map leads to self-similar behaviour in parameter-space. © 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The Lorenz equations [12], envisaged as a model for convection between parallel plates, have grown intothe
paradigm for chaotic systems. The numerical computations performed by Lorenz showed that solutions are aperiodic
and depend sensitively on the initial conditions. This characteristic feature of the solutions can be understood by
the observation that the dynamics seem to reduce to the iteration of a one-dimensional map, relating one oscillatory
cycle to the next. This map is single-cusped under Lorenz’s choice of parameters and resembles the so-called tent
map, for which the occurrence of chaos can be firmly established. In another publication [13], a different set of
parameters is chosen and Lorenz obtained here a multi-cusped map. However, is it possible to simplify the Lorenz
model even further, without losing either its physical basis or its chaotic behaviour? And is it possible to compute
this map analytically instead of numerically? The first question only recently attracted attention from a mathematical
perspective [19]. The present work gives a physically motivated simplification of the Lorenz equations, reducing it to
a one-parameter set called the diffusionless Lorenz equations (DLE), which indeed still possess chaotic behaviour.
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Moreover, in relation to the second question, we show here that the dynamics of the DLE can be reduced to an
analyticalmap for small values of the remaining parameterR. This map is, similar to the one obtained by Lorenz
[13], multi-cusped but, in contrast to this map and the one obtained in [12], written both in implicit and explicit
form.

The Lorenz equations model the evolution of coefficients of a severely truncated Fourier series, rudimentarily
describing the temperature and streamfunction of fluid between parallel plates, and lacks therefore a direct physical
interpretation. However, through a translation and reorientation the equations also represent an energetically closed
description of convection in a box in terms of the position of the centre-of-mass (y,z) and the box-averaged angular
momentumx. These equations are [14]:

σ−1ẋ = −y − x, (1a)

ẏ = −xz− y, (1b)

ż = xy− µz + B, (1c)

where a dot indicates timet derivative. The linear terms at the right-hand side of (1a) represent buoyancy torque
and viscous damping, respectively. The nonlinear and linear terms in Eqs. (1b) and (1c) represent advection and
(thermal) diffusion, respectively. The forcing is denoted byB, the flux-Rayleigh number, and is assumed to be
spatially homogeneous. With positiveB we prescribe a uniform cooling at the top of the box or (equivalently) a
uniform heating at its base. The Prandtl number,σ , measures the balance between viscous effects and diffusion,
while µ is the ratio of vertical to horizontal diffusion timescales. The stationary equilibria of (1a)–(1c) are

(x, y, z) =
(

0, 0,
B

µ

)
and (x, y, z) = (±

√
B − µ, ∓

√
B − µ, 1),

the so-called diffusive and convective equilibria, respectively. Eqs. (1a)–(1c) can be identified with the Lorenz [12]
equations by the translation and rescaling:z → −z + B/µ, y → −y, where Lorenz’s parametersσ, r andb equal
σ, B/µ andµ, respectively.

The input of energy by the buoyancy forcing is checked by two mechanisms, mechanical friction and diffusion.
It turns out that when we assume a balance between forcing and diffusion, by neglecting viscous effects, the
convective equilibria cease to exist and only the diffusive equilibrium remains. The scaling which leads to this
balance,(x, y, z, t) → (x, y/σ, z/σ, t) in the limit σ → 0 while R = σB remains finite, invalidates itself since
physically unacceptable behaviour is generated: in the absence of mechanical friction the angular momentum
increases indefinitely, earlier noted by Kolár̆ and Gumbs [10]. If, on the other hand, a balance is assumed between
forcing and viscosity, the diffusive equilibrium ceases to exist. This situation is the most interesting case of the
two and in the remainder of this study we will limit ourselves to the corresponding parameter regime. Rescaling
(1a)–(1c):(x, y, z) → σ(x, y, z) andt → t/σ and considering the distinguished limitσ, B → ∞, whileR ≡ B/σ 2

remains finite, (1a)–(1c) reduce to

ẋ = −y − x, (2a)

ẏ = −xz, (2b)

ż = xy+ R. (2c)

The single-parameter equations (2a)–(2c) are referred to in the remainder of this study as the DLE. System (2a)–(2c)
popped up (withR = 1) in a search for chaotic low-order systems of the formẋ = F(x) with F(x) algebraically as
simple as possible [19, Case B]. The present work gives a physical motivation for studying (2a)–(2c) forR ∈ R+.
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In case the forcing is weak (0< R � 1), we can approximate the (possibly chaotic) dynamics by an explicit
analytical map. An elaborate implicit map was derived, under more general circumstances, by Fowler and McGuin-
ness [4,5] for the full Lorenz equations. We believe, however, that the present derivation may serve as a didactical
purpose in that it is much simpler to be established owing to the simplified nature of the DLE. It will also lead to an
explicitmap and might hence be suitable as a method to be exploited in different circumstances too. Moreover, the
diffusive equilibrium (in Fowler and McGuinness’ map still a stationary point) fulfils a special role in the dynamics
of their map, discussed in Section 4. We will show here, however, that an analytical map based on the DLE, where the
diffusive equilibrium ceases to be a stationary point, still reproduces the essentials of the Fowler and McGuinness
map. This study comments on the role of the origin as a stationary point in the Lorenz equations and the homoclinic
orbits associated with it.

The complicated behaviour of the model in this parameter regime finds its origin in Shil’nikov bifurcations, a
special homo- or heteroclinic bifurcation [6,11,12]. The dynamical structure of the model is sketched in Section
2 and its dynamics, in the regime of weak forcing, can be reduced to the iteration of an explicit map reproducing
certain aspects obtained by numerical integration (Section 3). A discussion of these results in the light of earlier
work is given in Section 4.

2. Dynamical structure

The dynamical system under consideration models convective processes in a rectangular box in terms of the
basin-averaged angular momentum and density gradients [14]. When allowing for motion in a vertical plane only,
the dynamical state is described by the angular momentum in this plane,x, the lateral density gradient,y, and
the vertical density gradient,z. A much more revealing interpretation of the latter two variables is as giving the
horizontal and vertical position of the centre-of-mass in this plane (with respect to the geometric centre). The
motion of the centre-of-mass determined by the combined effects of buoyancy input and friction can be depicted as
follows: the forcing tends to raise the centre-of-mass, eventually above the geometric centre, while the overturning,
conserving the distance between centre-of-mass and geometric centre, transfers it below the geometric centre again.
This process can be compared to the motion of an equivalent pendulum. This pendulum can raise its centre-of-mass
beyond the pivot, and when not exactly in its upright position, will subsequently swing back again because of gravity,
giving rise to (damped) oscillations. In Section 3 we will refer to this equivalent pendulum wherever applicable.

Just as the Lorenz equations, the DLE are invariant under the symmetry

(x, y, z) → (−x, −y, z), (3)

but have only two steady states:

C± = (±
√

R, ∓
√

R, 0). (4)

The eigenvalues are the roots of the characteristic equation, which is obtained by linear stability analysis around
solution (4):

λ3 + λ2 + λR + 2R = 0.

It can be verified that ifR > 0, equilibria (4) are saddle-foci with one real linearized eigenvalue,−λ1, and a pair
of complex conjugate linearized eigenvalues,λ2 ± iω. The ratioδ ≡ λ2/λ1 is always smaller than 1 provided
R > 0. (In fact, forR > 0, we have 0< δ < 1

4.) With this condition satisfied, and in the presence of a homoclinic
connection, we have the Shil’nikov phenomenon [6,11,22].
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Fig. 1. Phase-portraits of the flow as determined by (2a)–(2c) for four different values of parameterR. The figures forR = 5.79 andR = 0.135
are one of the two coexisting mirror-imaged solutions situated on the same branch of Fig. 2b. Variablesy andz denote the lateral and vertical
position of the centre-of-mass with respect to the geometric centre, respectively. The arrows give the direction of the flow.

Characteristic motion of system (2a)–(2c) atR = 10 is pictured in Fig. 1a. Variablez grows and turns positive
due to the forcing whiley initiates its growth and triggers a sudden increase inx (not shown). This periodic solution
can be followed numerically through parameter space with AUTO [1]. DecreasingR, we obtain a spiral-shaped
curve in the amplitude–parameter space (Fig. 2a). Each point in this branch represents a periodic solution. This
branch extends towards positive infinity, and for smaller values ofR, winds itself up to disappear at the locus
in a heteroclinic bifurcation atR ≈ 1.05, identified numerically. The periodic solutions on this branch become
increasingly similar to a heteroclinic orbit and we will refer to this branch as the symmetrical principal branch
(SPB) since its solutions are invariant to the symmetry (3) and since its locus in parameter space is the simplest
heteroclinic connection found.

A periodic orbit as found on the SPB has been extensively discussed by Glendinning and Sparrow [6]. It suffices
to mention that the SPB, followed in parameter space from positive infinity to its locus, loses its stability atp1

nearR = 6.75 and regains it atp2 nearR = 0.23 in symmetry breaking bifurcations. At both these bifurcations,
two branches of mirror-imaged asymmetric periodic orbits emerge (Fig. 1b and c) and each branch terminates at
the loci in a homoclinic bifurcation (Fig. 2b and c). The branch that emerges from the SPB atp1 loses stability
by a period-doubling cascade starting atd1 (R ≈ 5.44), leading to chaotic motion. An inverse cascade restabilizes
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Fig. 2. The bifurcation diagrams for the parameterR: (a) symmetrical principal branch (SPB); (b) periodic solutions which branch off atp1;
and (c) periodic solutions which branch off atp2; (d) distinct branch having no connection in parameter space to the principal orbit of Fig. 2a.
The symmetry breaking bifurcationsp1, p2 have been indicated by solid squares, while the period-doubling bifurcationsd1, d2 are indicated by
solid triangles.

the asymmetric orbit, and the periodic solution which is created by the first period doubling atd1 can be followed
through the chaotic regime and it is this orbit which restabilizes the original asymmetric orbit atd2. Other periodic
orbits which are created in period-doubling bifurcations can approach homoclinicity themselves. The bifurcations
p1 andd1, the period-doubling cascades and the subsequent chaotic motion is, among other dynamical behaviour,
retrieved in a numerical computation of a Poincaré plot (Fig. 3) and a plot of the Lyapunov exponents (Fig. 4). The
locations of the bifurcations as computed with AUTO and by computing the Poincaré plot and Lyapunov exponents
match exactly.

The structures of Fig. 2a–c do not extend over the wholeR-parameter range. Given the negative divergence of
(2a)–(2c) (∇ · (ẋ, ẏ, ż) = −1) the flow must have at least one attractor below the minimumR reached, be it a
stationary point, a periodic orbit or a strange invariant set [8]. ForR = 0.08 we find the motion presented in Fig. 1d
which is characterized byz growing slowly to positive values until it quickly turns negative again, and the branch
on which this solution is found is given in Fig. 2d. We have not found a connection between this structure and the
SPB or any orbit bifurcating from the latter. Parameter space for still smaller (positive) values ofR is filled with an
infinite sequence of such detached orbits, of which Fig. 2d presents the outermost limit. This will be substantiated
in Section 3.2.2. Each of these orbits will have their own bifurcations.
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Fig. 3. Numerically determined Poincaré section aty = 0 versusR. The behaviour in parameter space has been investigated by numerically
integrating Eqs. (2a)–(2c) fromR = 10 downwards, and each run is initialized in the endpoint of the previous run.

An analogy that forces itself upon us when describing the bifurcation structure of system (2a)–(2c) is the following.
The SPB is a tree with an (infinite) number of ever bifurcating branches. But, parameter space is filled withother
such trees, together forming a complete ‘forest’ of equilibria.

3. Approximate solutions

3.1. Strong forcing

Numerically computed motion forR � 1 is given in Fig. 1a (R = 10). An asymptotically correct analytic
description of motion forR � 1 is given in Appendix A (which is simpler than Robbins’s [16] or Shimizu’s [17]

Fig. 4. The two largest Lyapunov exponents (solid and dashed, respectively) versusR as determined by numerical integration of Eqs. (2a)–(2c).
A positive and a zero Lyapunov exponent indicates chaotic motion, two zero Lyapunov exponents indicate a bifurcation and a zero and a negative
Lyapunov exponent indicates regular periodic motion. Each run is initialized near one of the static equilibria.



G. van der Schrier, L.R.M. Maas / Physica D 141 (2000) 19–36 25

solutions due to the simplified nature of the DLE). However, anexactsolution can also be obtained in the limit
R → ∞. Rescale (2b) and (2c) with

(x, y, z, t) → (R1/3x, R2/3y, R2/3z, R−1/3t),

and take the limitR → ∞. This results in

ẋ = −y, (5a)

ẏ = −xz, (5b)

ż = xy+ 1. (5c)

We now have1
2x2 + z − t = c. The constant of integrationc can be absorbed in time and thus, without loss of

generality, be set equal to zero. This relation together with (5a) and (5b) yields

d2x

dt2
= x

(
t − x2

2

)
,

which is with one further substitution,x = 2iξ , identical to

d2ξ

dt2
= 2ξ3 + tξ, (6)

an equation solved by the second Painlevé transcendent [9, p. 345] that behaves asymptotically like elliptic functions
[20] (see Appendix A). This solution should serve as the limit forR → ∞ and appears to be a new integrable case
of the Lorenz equations, not listed in Tabor [21].

3.2. Weak forcing

Numerical experiments with 0< R � 1 demonstrate that quasi-periodic, attracting states exist where each
cycle is characterized by alternating phases of fast and slow motion. The slow motion can be associated with the
equivalent pendulum hanging nearly vertical in a stable position and the forcing slowly raising it. It then passes the
geometric centre, thus becoming unstable. However, it takes time for the instability to grow, during which time the
centre-of-mass keeps rising, until it suddenly and violently overturns; the fast part of the cycle. During this fast part,
the input of energy is negligible, and thus the distance to the geometric centre is conserved. Eventually the pendulum
approaches a stable position, the oscillations are quickly damped and it is soon nearly vertical(y ' 0) in its stable
position again (Fig. 5). The closer the pendulum is to the vertical, the longer it takes for the instability to grow. The
inequality in length of subsequent cycles and the overturningsenseof the next cycle reflect this sensitivity.

A description of the dynamics of a cycle can be obtained as follows. During the slow phase, the pendulum is always
very close to the vertical and smoothly rising and thus the distance,r = (y2 + z2)1/2, is first linearly decreasing
and then (after passing the geometric centre) a linearly increasing function of time. In the fast phase,r remains
constant (Fig. 5b). This suggests a polar co-ordinate representation of the centre-of-mass location:y = −r sinθ

andz = −r cosθ , and Eqs. (2a)–(2c) change into

ẋ = r sinθ − x, (7a)

ṙ = −R cosθ, (7b)

θ̇ = −x + R

r
sinθ. (7c)
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Fig. 5. Time evolution of the lateral and vertical density gradients (i.e. horizontal and vertical position of the centre-of-mass)y andz (a) and the
radiusr and phase angleθ in the polar co-ordinate representation (b) forR = 0.1. This is a numerical integration of the DLE (2a)–(2c).

On the slow timeRt, the solutions are

x = 0, θ = 0, r = −Rt− c1, (8a)

x = 0, θ = π, r = Rt+ c2, (8b)

which can be associated with the phases wherer decreases and increases in time, respectively. On the fast timescale
t , we have, forr � 0,

ẋ = r sinθ − x, (9a)

ṙ = 0, (9b)

θ̇ = −x. (9c)

Substituting (9c) in (9a) gives

θ̈ + θ̇ + r(Rt) sinθ = 0. (10)

Because of the nearly vertical position of the pendulum reflected in solutions (8a) and (8b) we approximate sinθ

by ±θ and substitute the solution forr (Eqs. (8a) and (8b)). A further substitution,θ = e−t/2 θ̃ , transforms Eq. (10)
into

¨̃
θ − (Rt+ c2,1 + 1

4)θ̃ = 0. (11)

Now, rescale time intoτ = R1/3(t + c2,1R
−1 + 1

4R−1) and Eq. (11) reduces to the Airy differential equation

¨̃
θ − τ θ̃ = 0. (12)
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A general solution forθ is

θ = e−t/2[α Ai (R1/3t + R−2/3c2,1 + 1
4R−2/3) + β Bi(R1/3t + R−2/3c2,1 + 1

4R−2/3)] + (π, 0). (13)

The heart of the nonlinear DLE (for 0< R � 1) is thus formed by a solvablelinear, second-order differential
equation, whose solution applies over a time span that has been leftindeterminate. The complete approximate
solution requires the determination of this time span, here referred to as its ‘period’ (without assuming a priori that
the motion is strictly periodic). The nonlinearity of the DLE is thus retrieved in a map that relates the time span
(period) of one cycle to that of the next. This is determined by matchingθ for r increasingin time (θ ≈ π ) to θ for
r decreasingin time (θ ≈ 0), subscripted with i and d, respectively. Forr = 0 at the time-origint = 0, thusc2 = 0,

θi = e−t/2[αi Ai (R1/3t + 1
4R−2/3) + βi Bi(R1/3t + 1

4R−2/3)] − sπ (14)

for t ∈ [0, TR−1] with s ≡ sgn(βi), and for the decreasing part we chooser = 0 whent = 2TR−1 thusc1 = −2T ,

θd = e−t/2+T/R[αd Ai (R1/3t + (1
4 − 2T )R−2/3) + βd Bi(R1/3t + (1

4 − 2T )R−2/3)] (15)

for t ∈ [TR−1, 2TR−1]. With TR−1 half the period of the motion remains to be determined. The information
contained in the coefficientαi is lost as the motion veers to a slow manifold, since the Airy function Ai becomes
exponentially small for large positive argument, andθi is determined almost completely by the monotonically
increasing Bi-function. In particular, the sign ofβi will determine whetherθi will increase or decrease. The simplest
way to match (14) and (15) is by defining (half) the period of a cycleT implicitly, by requiring continuity at
θ(t) = −1

2sπ of θ(t) andθ̇ (t):

lim
t↑T/R

θi = −1
2sπ, (16a)

lim
t↑T/R

θi = lim
t↓T/R

θd, (16b)

lim
t↑T/R

θ̇i = lim
t↓T/R

θ̇d. (16c)

By requiring continuity ofx at the transition of one cycle to the next, it can be established that despite theπ -jump
in the phase angleθ = tan−1(y/z), the values ofαd andβd are conserved asr passes the geometric centre. Thus

αd → αi and βd → βi .

3.2.1. Approximate analytical map of the DLE
The matching conditions (16a)–(16c) provide three equations which can be seen as a parametric relation with

parameterT . A givenT is related to the coefficientβi by Eq. (16a):

βi Bi(R−2/3(T + 1
4)) = 1

2sπ eT/2R. (17a)

Eq. (16b) and (16c) together determine the coefficientsαd andβd of the next phase of the cycle as a function ofT

andβi(T ) by solving

eT/R

(
Ai (τ−) Bi(τ−)

−1
2Ai (τ−) + R1/3 Ai ′(τ−) −1

2Bi(τ−) + R1/3 Bi′(τ−)

)(
αd

βd

)

=
(

βi Bi(τ+) − sπ eT/2R

−1
2βi Bi(τ+) + R1/3βi Bi′(τ+)

)
(17b)
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with

τ± = R−2/3(1
4 ± T ) (17c)

introduced for notational convenience. Fromβd in turn, the periodT ∗ of the next cycle can be determined, thus
implicitly yielding a mapT ∗(T ) by inverting (17a), and replacingβi by βd(T ).

An approximate explicit map can be obtained as follows. First, relate the periodT to the coefficientβi (17a):

βi = s(π/2) eT/2R

Bi(τ+)
.

Second, relateβi andT to βd, as given by Eq. (17a) and reduce this to

βd = − s

2

π2

R1/3
e−T/2RAi (τ−)

[
1 − R1/3 Ai ′(τ−)

Ai (τ−)
− R1/3 Bi′(τ+)

Bi(τ+)

]
, (18)

using that the Wronskian of(Ai , Bi) = π−1. Finally, solve Eq. (17a) for the period of the next cycle by replacing
T by T ∗. Substituting the asymptotic representation of the Bi-function (valid for large positive argument),

Bi(x) ≈ e2x3/2/3√
π

√
x

in (17a), subsequently taking natural logarithms on both sides and subtracting 1/8 results in

2
3(T ∗ + 1

4)3/2 − 1
2T ∗ − 1

4R log[T ∗ + 1
4] − 1

8 = R log

[
π3/2

R1/6βi

s

2

]
− 1

8 ≡ p(T , R). (19)

By using the conservation ofβi into the next phase of the cycle,βi = βd, and substituting

(T ∗ + 1
4)1/2 ≡ η, (20)

Eq. (19) reduces to

2
3η3 − 1

2η2 − 1
4R logη2 = p. (21)

With (18),p, defined in the right-hand side of (19), reads

p(T , R) = 1
2T − 1

8 − R log

[
π1/2

R1/6

∣∣∣∣Ai (τ−)

{
1 − R1/3 Ai ′(τ−)

Ai (τ−)
− R1/3 Bi′(τ+)

Bi(τ+)

}∣∣∣∣
]

. (22)

The absolute sign in the logarithm results fromβi = s|βi |. In the case of weak forcing, 0< R � 1, we assume that
η = η0 + Rη1 + O(R2), and in zeroth order, Eq. (21) reduces to a third order polynomial

2
3η3

0 − 1
2η2

0 = p. (23a)

The only real positive root of (23a) is (forp>0)

η0 = 1
2cosh

(
1
3φ
)

+ 1
4, (23b)

where

φ = arccosh(|48p(T , R) + 1|), (23c)
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Fig. 6. Results from maps of successive periods of the motion forR = 0.1. The implicit map (17a)–(17c) (e) and its explicit functional
approximation (24) (solid curve) are compared with results from the direct numerical integration of the DLE (+). The dotted line is the bisector.
The height of the cusps is infinite.

and its first order correction is

η1 =
1
4 log(η2

0)

2η2
0 − η0

. (23d)

Concluding, with the above formulas, the approximateexplicitmap is given by

T ∗(T ) = [η0(T ) + Rη1(η0(T ))]2 − 1
4. (24)

In Fig. 6, the map, given by Eq. (17a)–(17c), for two different starting values ofT , and its functional dependence,
given by Eq. (24), correct up to O(R) are plotted forR = 0.1. A regular period-one solution is found, culminating
at T ∼ 1.4 as well as chaotic motion (T > 1.5) is found for different initial conditions. The explicit map’s
functional dependence approximates the implicit map itself accurately, even for this relatively large value of the
small parameter, and it can be computed far more efficiently.

The fixed points of the map, located at the intersections withTn+1 = Tn, correspond to limit cycles of the orbit.
These are stable if|dTn+1/dTn| < 1 and unstable otherwise. The map features an infinity of cusps implying the
existence of an infinity of fixed points, of which the majority are unstable. The position of the cusps of the map are
situated at the zeros ofβd (18):

Ai (τ−)

{
1 − R1/3 Ai ′(τ−)

Ai (τ )
− R1/3 Bi′(τ+)

Bi(τ+)

}
= 0, (25)
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and with (21) and (22), it can be established that the cusps have infinite height. The position of the envelope of the
map is, in an approximate sense, determined by Eqs. (21), with terms of O(R) neglected,

2
3η3 − 1

2η2 = 1
2T − 1

8. (26)

As R increases, the location of the cusps shifts to higher values ofT , the cusp spacing increases while the envelope
remains constant. This has the effect that a stable period-one limit cycle will double its period successively before
becoming chaotic. A new trough of the map will intersect the bisector, and a new pair of fixed points will emerge
in a tangent bifurcation, one stable, one unstable.

This sequence of events asR is increased, corresponding to the emergence of a new pair of solutions in a tangent
bifurcation, can be related to the bifurcation diagram in Fig. 2. Starting, e.g. on the stable limit cycle on the left
extreme of the structure in Fig. 2b, and increasingR, the limit cycle loses its stability due to the period-doubling
bifurcationd2. The bifurcated branch will again bifurcate (not shown) whenR increases and by now, the saddle-node
bifurcation at the left extreme of the structure in Fig. 2a, is passed and a new pair of solutions emerges.

We have iterated the implicit map (17a)–(17c) as a function of the only control variableR (Fig. 7). Multiple
windows, like that obtained by direct numerical integration of the DLE (Fig. 3) or as expressed by the Lyapunov
exponent (Fig. 4) are retrieved. For some values ofR, iteration of the implicit map showed coexisting equilibria
and the hysteresis, earlier shown by Fowler and McGuiness [5], is demonstrated. A lower bound to the period (of
about 1.3534. . . ) is evident in Fig. 7, very close to the intersection of the bisectorT ∗ = T with the envelope at
Tp ≈ 1.3529. Finally, Fig. 7 bears a strong suggestion of self-similarity between windows that will be considered
in Section 3.2.3.

3.2.2. Map compared with direct integrations
A succession of periods is computed by direct numerical integration of Eqs. (2a)–(2c) and by iteration of the

implicit map (17a)–(17c). The envelope of the curve produced by the map approximates the one obtained by the
numerical integration (Fig. 6). The cusp-spacing of both curves is very similar, but the locations of the map’s cusps
are not correct. It seems that the cusps and the troughs of the map are located at, respectively, the troughs and
the cusps obtained by numerical integration! This feature is independent of the parameter; it does not seem to be
related to the asymptotics of the map. As the parameter is decreased, the analytical map and the direct numerical
integrations become more alike, with the exception of the location of the cusps and troughs. Due to this inaccuracy,
the periods predicted by the map will be overestimated and the bifurcations predicted by the map will be slightly
offset to the left.

Curiously, Fowler and McGuinness [4] encountered similar problems, in spite of the fact that their method of
obtaining the map differs from ours. In their paper they remark that the cusp locations were better predicted using
the zeros of Ai′ rather than Ai as suggested by their analysis. This suggests that in their map the cusps and troughs
are also located at, respectively, the troughs and cusps as produced by direct numerical integrations.

We remain puzzled as to the immediate cause of the discrepancy between numerical and analytical results with
respect to the positioning of the cusps and troughs in map (24). A likely candidate for this cause may be an
approximation made to reach Eq. (13). We approximated sinθ with the sawtooth±θ , which is only valid for
θ ≈ (0, π), but the approximation remains in use up tillθ = ±1

2π . The resemblance of the analytical map with
the direct numerical integrations may be improved by constructing an internal boundary layer aroundθ = ±1

2π .
Attempts to do so proved futile on the one hand and sacrificed the simplicity of the map on the other hand.

3.2.3. Self-similarity of the map
The computation of the map of the DLE (Fig. 7) as a function of the parameterR strongly suggest a self-similarity

in the DLE for small values ofR and this is investigated with the explicit map (24). The intersection point of envelope
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Fig. 7. Bifurcation diagram as computed with the implicit map (17a)–(17c). The starting point for each run was the endpoint of the previous run
and (a) was constructed fromR = 0.5 downwards, while (b) was constructed fromR = 0.01 upwards.

and bisector, pointTp, plays a pivotal role in the self-similarity, as its position is, up to O(R), independent of the
parameterR. The positions of the cusps, however, shift to smaller values ofT while the distance between individual
cusps decreases for a decreasing parameter. Self-similarity with parameter valuesR1 andR2, is obtained when
identical results are produced, up to a multiplicative scaling factorα. Under this scaling factor, the cusps should be
mapped upon themselves. This observation provides the basis to computeR2 andα givenR1.

With the asymptotic representations of the Airy functions Ai, Bi and their derivatives Ai′, Bi′, we have

Bi ′(τ+)

Bi(τ+)
=
(

T + 1
4

R2/3

)1/2

(1 + O(R))

and

Ai (τ−) = 1√
π

(
R2/3

T − 1
4

)1/4

sin(ζ + 1
4π), Ai ′(τ−) = −1√

π

(
T − 1

4

R2/3

)1/4

cos(ζ + 1
4π)(1 + O(R))

with ζ = 2
3(T − 1

4)3/2R−1. These approximations are valid forT > 1
4 and 0< R � 1.
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Fig. 8. A demonstration of the self-similarity of map (24) for small values of the parameterR: (a) curve as found withR = 0.1; (b) computed
with R = 0.07102 and a scaling factorα = 0.71935. The dotted line is the bisector.

The position of the cusps in the map, given by Eq. (25), can now be simplified to

A(T ) cos(ζ + 1
4π − φ) = 0, (27)

with tanφ = {1− (T + 1
4)1/2}/(T − 1

4)1/2 andA(T ) = 21/2((T + 1
4)1/2 − 1

2), a (positive definite) amplitude. The
location of the cusps is given by the zero’s of the cosine function:

2
3(T − 1

4)3/2R−1 − tan−1

[
1 − (T + 1

4)1/2

(T − 1
4)1/2

]
= 1

4π + nπ (28)

for integern. Eq. (28) gives an increasing series(T
R1
n )n≥0 of successive positions of a cusp. When centred around

the pointTp = 1.3529. . . , and given a parameter valueR1, parameterR2 and scaling factorα can be determined
under which the map is self-similar. An example is given in Fig. 8.

4. Discussion and conclusion

The dynamical system analysed in this paper is a simple, energetically closed, model for convection [14], describ-
ing the motion in a vertical plane of the centre-of-mass of a fluid contained in a box and heated from below. Through
a translation and reorientation, the equations can be identified with those of Lorenz [12], but the present choice
conforms with the common notion that gravity points downwards. This model is analysed when the Prandtl-and
Rayleigh-numbersσ, B → ∞, while R ≡ B/σ 2. The resulting set of ODEs are termed the diffusionless Lorenz
equations (DLE).

The limit σ → ∞ implies that friction is infinitely more important than (thermal) diffusion, resulting in the
vanishing of terms which represent diffusion; the input of energy is balanced only by dissipation of momentum.
This has two profound implications, the DLE become a one-parameter model (whereas the Lorenz model has
three) and the familiar diffusive equilibrium ceases to exist. This simplification of the Lorenz equations gives a
condensation of its dynamics to processes involving the convective stationary statesC± only, which can be readily
investigated in the one-dimensional parameter space.

There are several parallels between this and earlier studies, and we will try to clarify these relations here.
The heteroclinic orbits found in the DLE were earlier reported by Sparrow [18, Chapter 8] and Glendinning
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and Sparrow [7]. However, the heteroclinic Shil’nikov orbits found in these latter studies were produced by a
homoclinic explosion, or Lorenz bifurcation, involving the stationary point at the origin which is not the case here.
All orbits found in the DLE originate and terminate in heteroclinic Shil’nikov bifurcations, except for the one termed
symmetric principal branch, which originates in a heteroclinic bifurcation but extends in parameter space towards
positive infinity. The stable limit cycles which exists forR → ∞, originate nearR ≈ 1 by the simplest possible
heteroclinic bifurcation, involvingC±. This in contrast to the Lorenz model [6] where they emerge in a homoclinic
bifurcation involving the stationary point at the origin. An exact solution for periodic motion atR → ∞ has been
proposed in terms of the second Painlevé transcendent.

In parameter space, the orbits approach a heteroclinic bifurcation on a spirally-shaped curve in the
amplitude–parameter space [6]. Almost all numerically observed behaviour is due to bifurcations on the outermost
branch of these Shil’nikov curves, and all its features, being the lower limits of the Shil’nikov bifurcations
in parameter space, symmetry breaking and period-doubling cascades to chaos, can be explored in parameter
space for the case 0< R � 1 with an even simpler representation of the dynamics: its reduction to an an-
alytic map. Lorenz [12] obtained the single-cusped ‘tent-map’, relating the amplitude of one oscillatory cycle
to that of the next. The difference equation for this tent-map is defined graphically rather than analytically as
we do here (see, e.g. ref. [15] for recent research on the Lorenz equations along these lines). In another pub-
lication [13], Lorenz retrieved a multi-cusped map. An analytic map, with similar such results, is presented
here.

This map proves to be self-similar, which enables us to make predictions of its behaviour asR ↓ 0. With infinitely
many bifurcations squeezed into infinitely thin regions asR approaches zero, makes this limit rather cumbersome
to consider in any other fashion.

An elaborate implicit, analytical map based on the full Lorenz equations was derived earlier, under more general
circumstances, by Fowler and McGuinness [4,5]. However, the derivation presented here leads to an explicit map
and is much simpler to establish due to the simplified nature of the DLE. The cusps in the Fowler and McGuinness
map are associated with a trajectory which lies on the stable manifold of the diffusive equilibrium, the origin in
the original Lorenz model, and thus with the appearance in the system of homoclinic orbits. The analogue of this
trajectory in the DLE, where the diffusive equilibrium is absent, is one which coincides with thez-axis. In the
equivalent pendulum analogy, the cusps physically correspond to the unlikely event that the pendulum ends up
exactly in the upright, inverted, position with its radius constantly increasing due to the forcing. It will take an
infinite amount of time for an instability to grow large enough to overturn the pendulum. The finite height of the
cusps of the Fowler and McGuinness map [4,5] can be explained using this analogy. In the presence of diffusion,
modelled proportional to the amplitude of the variables, the amplitude ofz will continue to grow when the pendulum
is inverted, until diffusion balances the forcing exactly and further growth ofz is halted. Apparently the presence
of the diffusive equilibrium is not of importance for the occurrence of multiple cusps, but merely affects their
height.
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Appendix A. Approximate solution for R � 1R � 1R � 1

WhenR � 1, Eqs. (2a)–(2c) feature a simple periodic motion (Fig. 1a). This two-lobed stable periodic state can
be characterized by rescaling (2a)–(2c) withδ = R−1/2:

x → δ−1x, (y, z) → δ−2(y, z), t → δt

and results in a weakly-forced and weakly-damped version of (2a)–(2c),

ẋ = −y − δx, (A.1a)

ẏ = −xz, (A.1b)

ż = xy+ δ. (A.1c)

An approximate solution in terms of an asymptotic series in the small parameterδ can be obtained along the lines
set out by Robbins [16]. By substituting a formal expansion(x, y, z) = (x0, y0, z0) + δ(x1, y1, z1) + O(δ2), we
obtain in lowest order:

ẋ0 = −y0, (A.2a)

ẏ0 = −x0z0, (A.2b)

ż0 = x0y0. (A.2c)

The distance of the centre-of-mass to the geometric centre (the length of the equivalent pendulum)b and the total
amount of energy, being the sum of kinetic energy and potential energyd, are conserved. Eqs. (A.2a)–(A.2c) are
solved by [16]:

x0(t) = a cnu, (A.3a)

y0(t) = −ab1/2 snu dnu (A.3b)

z0(t) = b(1 − 2 dn2 u). (A.3c)

Hereu = b1/2t + u0 denotes the phase and

a = 2(b + d)1/2, (A.4)

the amplitude, while sn, cn and dn denote the bivariate Jacobi elliptic functions, whose dependence on the parameter
is suppressed here. These functions are 4K-periodic, withK ≡ K(m) denoting the complete elliptic integral of the
first kind of modulus

m ≡ a2

4b
. (A.5)

A third integration constant,u0, determines their solutions up to an arbitrary time shift. For the original, slightlyvis-
cousset of equations (A.1a)–(A.1c), irrespective of the precise initial conditions, always oneparticularzeroth-order
periodic orbit is reached. This orbit can be determined without recourse to the higher order solution by simply re-
quiring that it is such that there is no net change in the length nor any net gain or loss of energy over one cycle.
Since, from (A.1a)–(A.1c),

d

dt
(y2 + z2) = δz,

d

dt
(1

2x2 + z) = δ(1 − x2),
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a periodic solution will satisfy, to O(δ)

〈z0〉 = 0 and 〈1 − x2
0〉 = 0,

where

〈()〉 = 1

2K

∫ 2K

0
() du

denotes a phase-average over the period of the squared Jacobi elliptic function dn2u. Since the complete elliptic
integral of the second kind,E ≡ E(m) = ∫ K

0 dn2u du, the modulusm is, by the first requirement, on substituting
(A.3c), determined as the root of

2E(m) = K(m), (A.6)

or (numerically)m ≈ 0.826115. The second requirement, with (A.3a), yields

a2

K

∫ K

0
cn2u du = 1, (A.7)

where the integration can be performed on [0, K] considering the periodicity of cn. Together with another repre-
sentation ofE = (1 − m)K + mK

0 cn2u du, replacingE from (A.6), this gives

a2 = 2m

2m − 1
. (A.8)

The latter equation, combined with the definition ofm, (A.5), determines the length of the equivalent pendulum:

b = 1

2(2m − 1)
≈ 0.766601, (A.9)

which is reached asymptotically, regardless of the initial conditions. Hence, using (A.4) the total energy of the
asymptotic motion isd = 1

2. Finally, x (∝ cnu) is 4K periodic, whence the period of each oscillation isT =
4K/b1/2 ≈ 10.6038.

Substituting the original scale fort used in Eqs. (1a)–(1c) we obtain a relation between the periodT of the motion
and the flux-Rayleigh numberB: T ≈ 10.6B−1/2. A characteristic period of thermal convection in a very viscous
fluid, corresponding to a high Prandtl-number, can also be determined numerically [2] and experimentally [3]. The
analytical result agrees fairly well with these methods, which show that the dimensionless characteristic period
depends on the−1

2-power of the flux-Rayleigh number, with proportionality constants 14 and 12.4, respectively.
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