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Abstract

This paper deals with numerical approximation of the two-dimensional Poincaré equation that arises as a model for internal
wave motion in enclosed containers. Inspired by the hyperbolicity of the equation we propose a discretisation particularly suited for
this problem, which results in matrices whose size varies linearly with the number of grid points along the coordinate axes. Exact
solutions are obtained, defined on a perturbed boundary. Furthermore, the problem is seen to be ill-posed and there is need for a
regularisation scheme, which we base on a minimal-energy approach.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

This paper deals with efficient numerical computation of internal wave phenomena in two-dimensional enclosed
domains. In contrast to the usual surface waves, internal waves are a type of wave that propagate through a fluid
volume. The mechanisms enabling these waves are either rotation or stratification. Efficient numerical models would
be of use in various areas of (geophysical) fluid mechanics. One may think of the rotating core of the Earth, or the
oceans with their density stratification.

The governing equation can be conveniently expressed in terms of the stream function �̃ (see [17])

�2�̃(x, z)

�x2 − �2 �2�̃(x, z)

�z2 = 0 in �̃,

�̃(x, z) = 0 at ��̃. (1)
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In this equation, � ∈ R is a parameter corresponding to the frequency at which the waves are forced. The stream
function is defined by

(u(x, z), v(x, z)) ≡
(

−��̃(x, z)

�z
,
��̃(x, z)

�x

)
,

where (u(x, z), v(x, z)) is the velocity vector at a point (x, z). The fluid flows along streamlines, curves of constant
magnitude of the stream function. The boundary ��̃ is a simple closed curve in the (x, z) plane. As customary in fluid
dynamics, the z-axis points upwards.

In a three-dimensional setting one may derive the equation �xx + �yy − �2�zz = 0, this equation is commonly
called the Poincaré equation, after Cartan [3] who recognised Poincaré as the author who first described the equa-
tion in [19]. Although (1) is a reduction of the original three-dimensional problem, we will still refer to it as the
Poincaré equation. Some authors prefer the term ‘wave equation’, but we like to stress the absence of a time-like co-
ordinate. This dramatically changes the nature of the problem, instead of an initial value problem we have a boundary
value problem.

In this paper, we analyse the solvability of (1) in Sections 2 and 4. Section 3 extends the problem to non-zero values on
the boundary. In Section 5, we develop an efficient discretisation scheme. We continue in Section 6 where we will show
that the differential equation plus boundary conditions constitute an ill-posed problem. We propose a regularisation
procedure for the discretised problem, based on minimisation of the energy (Section 7), to obtain meaningful solutions.
We conclude by presenting some results of the numerical approximation and regularisation, applied to a representative
model geometry.

Previous work on numerical determination of internal waves include [4,12] who use finite differences, respectively,
finite element methods. Later attempts use the characteristics of the differential equation, see for example [5–7]. Recent
works are that of [21,22], who examine the special case of the spherical shell and [17] where a ray-tracing approach is
taken. The existence of wave attractors and ill-posedness of the problem is recognised.

Our approach is different, we allow a large class of polynomial domains. Furthermore, we minimise an energy,
which acts as a regularisation technique that deals with the ill-posedness of the problem. Previously, authors relied on
the inclusion of viscosity as a regularisation technique. The algorithmical approach of [17] does not use regularisation
to obtain smooth functions, but instead it gives a recipe for obtaining function values at selected points. Also, this
method requires the determination of fundamental intervals (see Section 2), for which there is no general method
available. We avoid the use of fundamental intervals. Finally, we believe that in a three-dimensional setting the use of
a regularisation method is of even greater importance. We expect the problem to be ill-posed to a higher degree, i.e.,
more sensitive to disturbances in the relevant parameters, since the behaviour of characteristics is more complex. Also,
in principle, our fundamental interval free discretisation method can be generalised to three dimensions. We no longer
have a convenient separation of variables, but the principle of discretisation on the boundary only, by considering the
mapping of characteristics, is still viable.

Another regularisation technique is inclusion of viscosity in the governing equations. In a physical context this
viscosity is a given parameter which is usually very small, which calls for a fine mesh. When the discretisation is
refined, there will be more solutions that can be represented on the grid. The existence of many nearby solutions
(nearby in parameter space) will still render the problem ill-posed, perhaps not formally, but certainly from a numerical
point of view. These issues will be addressed in the forthcoming paper [23].Also, the delicate dependence of the solution
on the shape of the boundary, even in idealised domains, calls for a regularisation technique that is more sophisticated
than a fixed viscosity. An energy minimising regularisation procedure like we suggest may perform that function.

There is an extended version of this paper, [24], which includes additional technical calculations that were too lengthy
to be included here.

2. The Poincaré equation

In this section we will analyse the Poincaré problem and summarise some previous work. Most importantly, the
nature of the solution is seen to be highly dependent on the shape of boundary. There may be no solution at all, or an
infinite number of solutions. Furthermore, almost every solution exhibits a fractal structure.
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Let us first simplify Eq. (1) by recognising the hyperbolic nature and introducing characteristic coordinates (�, �)

defined by

(�(x, z), �(x, z)) = �(x, z) ≡ (x − �−1z, x + �−1z).

This transforms the domain into � = ��̃ and it transforms (1) to

�2�(�, �)

����
= 0 on �,

�(�, �) = 0 at ��. (2)

The solvability of (1) is different from (2), there are differing smoothness requirements on solutions. We will, however,
be concerned with the latter equation and will not address the issue whether solutions of (2) are also solutions to (1).
Let us now define a class of domains.

Definition 1 (Characteristically convex domains). We call a domain � characteristically convex, or convex with
respect to the characteristics, if every line in the � or in the � direction intersects the boundary �� in at most two points.

Note that convexity in the usual sense can be expressed by asking that every line intersects the boundary in at most two
points. In this light characteristic convexity is a weaker constraint, every convex domain is characteristically convex.
We can now state the following theorem.

Theorem 1. Every solution of the Poincaré equation (2) on a characteristically convex domain � is of the form
�(�, �) = F(�) + G(�).

Proof. Choose the origin somewhere in � and integrate∫ �

0

∫ �

0

�2�(r, s)

�r�s
dr ds = 0.

This yields

�(�, �) − �(�, 0) − �(0, �) + �(0, 0) = F̃(�) + G̃(�),

for arbitrary G̃ and F̃. The integration can be carried out, since by characteristic convexity the rectangle (0, �)× (0, �)

is in � if the origin and (�, �) are in �. If F̃(�) and G̃(�) are arbitrary then also F(�) = F̃(�) + �(�, 0) − �(0, 0)

and G(�) = G̃(�) + �(0, �) are arbitrary and we have

�(�, �) = F(�) + G(�). �

Let c(t) : [0, L] → �� be a piecewise Ck , globally continuous, parametrisation of the boundary,

�� = {(�(t), �(t))|(�(t), �(t)) = c(t), 0� t < L, c(0) = c(L)},
where L is the total Euclidean length of ��. We consider domains with the following properties:

• We only allow simply connected, domains �, with closed boundary �� as described above, that are convex with
respect to the characteristics.

• Segments of the boundary are not allowed to be parallel to the coordinate axes, i.e., the sets {t |c′(t)Te1 = 0} and
{t |c′(t)Te2 = 0} have measure zero within ��.

Next we define the vertices of the domain,

Definition 2 (Corners). If limt↑ac
′(t) �= limt↓ac

′(t) we call the point c(a) a corner point or vertex. Define the
characteristic rectangle R = (�−, �+)× (�−, �+) as the smallest rectangle containing �. We call the four points �̄∩ R̄

the extreme vertices.

The solution to the Poincaré equation can be extended to the characteristic rectangle.
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Theorem 2 (Extension of the solution). Every solution to the Poincaré equation on �̄ = � ∪ �� is extendible to
R̄ = [�−, �+] × [�−, �+].

Proof. For every point (�, �) ∈ R̄\�̄ it is possible to find �′ and �′ such that (�′, �) ∈ �̄ and (�, �′) ∈ �̄. These points
are inside the domain and we have �(�′, �) =F(�′) +G(�) and �(�, �′) =F(�) +G(�′). Thus, F(�) and G(�) exist
and can be used to define �(�, �) = F(�) + G(�). �

We have one extra constraint from the physics of the internal wave problem. The boundary condition � = 0 comes
from the fact that there should be no flow through the boundary, expressed by (u, v) · n= 0 where n is the outward unit
normal to the boundary. At a corner point the normal is not defined, but physically the no-flow condition dictates that
(u, v) = 0. We will add this as an extra constraint. In terms of the stream function this becomes

∇� = 0 at a corner point. (3)

Since we extended the domain to R̄ the gradient operator is well defined except for the at most four extreme vertices
where we may use one-sided derivatives for F or G.

We know that the stream function � may be scaled, multiplicatively, by any constant, thereby scaling the velocities.
We do not care about the difference between � and c�, and we normalise the stream function as

‖�‖2
L2(�) =

∫
�

�2(�, �) d� d� = 〈F + G,F + G〉L2(�) = 1. (4)

This constraint also rules out the trivial solution � = 0, and by boundary conditions the constant solution � = c.
Furthermore, we want a unique representation of � in terms of F and G. Suppose there is another pair F̃, G̃,

for which

F + G = F̃ + G̃ ⇒ F − F̃ = G̃ − G.

Since � and � may be independently varied, we have that F = F̃ + c and G = G̃ − c for an arbitrary constant c. In
order to have a unique constant we normalise

〈F, 1〉L2([�−
,�+]) = 0. (5)

The Poincaré problem is now reduced to finding F and G for which

F(�) + G(�) = 0 at ��,

F′(�) = G′(�) = 0 at a corner point,

〈F, 1〉L2(�) = 0,

〈F + G,F + G〉L2(�) = 1, (6)

with F ∈ C1 : [�−, �+] → R and G ∈ C1 : [�−, �+] → R.
We will show that the first requirement in (6) induces a map from the boundary to itself. This was firstly noted in

[13] and later constructively applied in [17]. This can be observed by considering function values G(�1) = −F(�1)

at a boundary point (�1, �1). When tracing a line in the �-direction a new boundary intersection (�2, �2) is found. Of
course �2 =�1 and we find F(�2)=−G(�2)=−G(�1)=F(�1). Carrying through with this procedure we find that one
function value on the boundary determines function values at boundary points (�1, �1), . . . , (�n, �n). Much work has
been done in studying the Poincaré problem by viewing the above construct as a dynamical system. We will review the
main results on existence of solutions in the case that the boundary satisfies the assumption of characteristic convexity.
In this case we can follow [13] and introduce the following homeomorphisms:

• T + assigns to a boundary point the unique boundary point with the same �-coordinate, with the exception that the
top and bottom extremal vertices are mapped onto themselves.

• T − assigns to a boundary point the unique boundary point with the same �-coordinate, with the exception that the
left and right extremal vertices are mapped onto themselves.

• F = T − ◦ T + : �� → ��.
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Note that F is an orientation preserving map. We now define an orbit as

O(P ) ≡ {P, T +P, FP , (T + ◦ F)P, F 2P, . . .} where P ∈ ��.

Let S(P ) ≡ c−1(P )|[0,L) be the coordinate (by arc length distance) of a point P on ��. By characteristic convexity of
the boundary, we can lift the homeomorphism F to a continuous increasing function f : R → R such that

f (s + L) = f (s) + L, s ∈ R

and

S(FP ) = f (S(P )) (mod L), P ∈ ��.

If we now set fk(s) = f (fk−1(s)) where f1(s) = f (s) we can define the rotation number �(F ) of F by

�(F ) ≡ lim
n→∞

fn(s)

n
∈ [0, L).

The rotation number can be shown to exist and to be independent of s [8]. A classical theorem due to [13] is

Theorem 3. The homeomorphism F has three separate types of behaviour in a characteristically convex domain

(A) We have �(F ) = m/n for some m, n ∈ N and Fn = I . This case is often called a resonance, or modal solution.
(B) We have �(F ) = m/n for some m, n ∈ N, but Fn �= I . The dynamical system defined by F has a finite number

of attracting fixed points. We call solutions of the Poincaré equation in this case wave attractors.
(C) �(F ) ∈ R\Q, then Fk has no fixed point for any k. There is only one orbit that fills the entire boundary. This is

the ergodic case.

Note that for a given �(F ) the values of n and m are not unique in the first two cases. Multiples km and kn of m
and n will yield the same rotation number and will not change the solution type. The solvability of the problem (2)
depends on the case in which the rotation number falls. This delicate dependence on the rotation number, and thus
on the geometry of the domain, makes the problem ill-posed. This will be of concern when considering a numerical
approximation technique. To proceed, we need the concept of fundamental interval [17,14]. The fundamental interval
can be defined as the set M ⊂ �� for which every orbit has at most one point in M and all orbits that have a point in
M constitute the entire boundary. The following definition in [16] gives a more constructive approach:

Definition 3 (Fundamental interval). Denote by (P, Q)�� the open set of points in between P and Q (using anti
clockwise orientation) on the boundary. Set (P, Q]�� ≡ (P, Q)�� ∪ Q, [P, Q)�� ≡ (P, Q)�� ∪ P and [P, Q]�� ≡
(P, Q)�� ∪ Q ∪ P . Denote the vertices by P0, . . . , P3, with P0 the uppermost extreme vertex and P1, . . . , P3 the rest
of the vertices in anti-clockwise order. Now define, for the same n as used in (3), in the case (A), the following

• for n even: P ∗ as the point from the finite set O(P1) ∩ (P0, P1]�� such that O(P1) ∩ (P0, P
∗)�� = ∅,

• for n odd: P ∗ as the point from the finite set O(P2) ∩ (P0, P1]�� such that O(P2) ∩ (P0, P
∗)�� = ∅.

The fundamental interval1 is then given by M = [P0, P
∗). Define M� and M� by orthogonal projection of M on the

� and � axes.

In order to clarify the above definition an example has been constructed in Fig. 1. It was proved for the resonant
case that the fundamental interval must be supplied with boundary conditions (for either F or G) in order to obtain
an unique solution. It is likely that the concept of the fundamental interval is also useful in the case (B), the attractor
regime. In [17] a procedure is suggested for several geometries. In the following, we will work with the assumption
that the fundamental intervals also exist in the wave attractor case.

When in the following discussion we speak of Dirichlet boundary conditions, we mean choosing a function h(�)

and setting F(�) = h(�) on M�. This implies the value for G on M� by the boundary condition F(�) +G(�) = 0. The

1 In [16] the fundamental interval is called generating set.
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Fig. 1. This figure clarifies the fundamental interval as introduced in Definition 3. At the right is shown a geometry with n = 5, which is easy to see
by following the closed orbit (solid line). Of course, one may also consider the dashed and dotted lines that connect O(P1) = O(P0), respectively,
O(P2) = O(P3). Keep in mind that T +P0 = P0, T −P1 = P1, etc. The orbit O(P2) is indicated by circles. The left picture is a case where n = 2. In
both pictures, the set M = [P0, P ∗) is the fundamental interval.

solvability of (2), together with this additional boundary condition, is different for the three cases in Theorem 3. Some
results are summarised in the following theorem.

Theorem 4 (Solvability in L2). The solvability of the Poincaré problem (2) in L2(�) is dependent on the cases, and
the value of n, from Theorem 3 as follows:

(A) If Dirichlet data h(�) for F(�) are supplied on M�, then we have an unique solution [14, Theorem 6]. In this case,
there exist piecewise Ck coordinate transforms � → p(�) and � → q(�) that transform the domain to a rotated
rectangle [15,16]. In (x, z) coordinates this corresponds to a non-rotated rectangle for which the solutions are
known. The solutions on the original domain are then found using inverse coordinate transforms.

(B) According to [9, Theorem 2, Remark 2] the problem is solvable.
(C) From [9, Theorem 5, Remark 5] there exists only the trivial solution in this case.

The conclusions in this theorem can be extended to the situation where an inhomogeneous term f (�, �, �) is added
to (2). The conclusions do have to be modified, for example, solutions are possible in the case (C) if there exists a
C(�) > 0 such that |� − m/n|�C(�)/n2 for any rational number m/n, where � is the rotation number [9].

3. Boundary forcing

The Poincaré problem as posed before describes free vibrations, i.e., eigenmodes of the system. In this case, however,
the term ‘eigenmode’ may be inappropriate since the spectrum often has continuous parts, or the spectrum might be
dense in an interval. The spectral properties of the Poincaré problem are more extensively investigated in [20].

We present two approaches for selecting relevant solutions from the infinitude of possibilities. First we present an
energy minimizing regularisation procedure for the Poincaré equation

�xx − �2�zz = 0 in �,

� = 0 at ��. (7)

This leads to a minimisation problem of the form

x� = arg min(‖Ax‖2
2 + �2‖Lx‖2

2),

where A discretises the Poincaré problem and L measures the energy of the system. Sections 5 and 6 deal with this
regularisation problem.
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One may also hold the view that the eigenmodes that occur in nature are determined by some kind of forcing. The
simplest case is a forcing operating on the boundary of the domain only. Examples include tidal forcing on ocean
surfaces or some mechanical forcing. The problem to be solved is in this case

�xx − �2�zz = 0 in �,

� = h(�, �) at ��, (8)

leading to a minimisation problem of the form

x� = arg min(‖Ax − b‖2
2 + �2‖Lx‖2

2), (9)

where b is the discrete discretised right-hand side h. Note that any solution of (7) may be arbitrarily added to a solution
of the forced problem. In Section 2, it was shown that the characteristics lead to functional relationships between F
and G. The forced problem similarly yields functional dependencies, involving the function h. We add a bar to solutions
of the forced problem from here on. In terms of F̄ and Ḡ the problem reads

F̄ + Ḡ = h(�, �) at ��. (10)

The restrictions on G and Ḡ induced by the characteristic connecting (�1, �1) with (�1, �2) look like

Ḡ(�1) − Ḡ(�2) = h(�1, �1) − h(�1, �2) for forced problem,

G(�1) − G(�2) = 0 for the unforced problem, (11)

and we see that indeed G+ Ḡ solves the forced problem. The only open question is the role of the fundamental interval
and the manner in which the fractal nature of solutions presents itself to us in the forced setting. In the homogeneous
problem we would, for example, conclude from (11) that G(�1) must be equal to G(�2). Further analysis, as sketched
above, revealed that there exist fundamental intervals where it is necessary and sufficient to prescribe G (or F).
Any homogeneous solution that we add to the forced problem will have fundamental intervals and associated fractal
structure. Working out the functional relations for the forced problem reveals that

F̄i + Ḡi = h2i ,

F̄i + Ḡi+1 = h2i+1, (12)

where Fi = F(�i ), Gi = G(�i ) and the hi are the function h, evaluated at the points visited while tracing the
characteristics. For Fi and Gi this implies

Ḡi+1 = Ḡi + h2i+1 − h2i ,

F̄i+1 = F̄i + h2i+2 − h2i+1

for the relation between the function values separated by one step. Suppose we know F̄0, Ḡ0, we may then solve the
recursion and obtain

Ḡi = Ḡ0 +
2i−1∑
j=0

(−1)j+1hj ,

F̄i = F̄0 +
2i∑

j=1

(−1)jhj ,

which tells us that boundary values are alternately added and subtracted from the initial values G0 and F0. This
behaviour was noted before in [1]. Note that by adding together the expressions we recover (12), as required. If the
prescribed function h is non-zero in the neighbourhood of the attractor, then the limit for i → ∞ is likely to be
non-existent. Just like in the unforced case we have fundamental intervals where values of F̄ or Ḡ may be arbitrarily
prescribed. The forced problem is still under determined and sensitive to the shape of the domain, thus it is still an
ill-posed problem.
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4. Structure of solutions

Except for the classification of solutions into attractors and resonances we can get further information by viewing
the Poincaré equation as a Hamiltonian system. Choose any closed curve (�(t), �(t)) ∈ R. Denote the derivative with
respect to time by a dot. Take the stream function as the Hamiltonian, then

�̇(�, �) = F′(�)�̇ + G′(�)�̇, (13)

At curves {(�(t), �(t))|�̇= 0} the stream function � is constant. Since ��/��=F′ and ��/��=G′ we see from (13)
that this is the case when(

�̇

�̇

)
=
(

G′(�)

−F′(�)

)
. (14)

This system is in Hamiltonian form. We proceed by linearising F and G around (�, �) = (0, 0), giving

F′(�) = F′(0) + �F′′(0) + O(�2),

G′(�) = G′(0) + �G′′(0) + O(�2).

We suppose that F and G are non-degenerate at the origin, i.e., F(0)′′ �= 0 and G(0)′′ �= 0. The system (14) is now
transformed to(

�̇

�̇

)
=
(

0 G′′(0)

−F′′(0) 0

)(
�

�

)
+
(

G′(0)

−F′(0)

)
+
(
O(�2)

O(�2)

)
.

The coordinates may be shifted, (x, y) = (� + a, � + b) to make the problem homogeneous. The choices a =
−F′(0)/F′′(0) and b = G′(0)/G′′(0) lead to(

ẋ

ẏ

)
= A

(
x

y

)
+
(
O(y2)

O(x2)

)
where A =

(
0 G′′(0)

−F′′(0) 0

)
.

The eigenvalues of A are �1,2 = ±√−F′′(0)G′′(0) which makes the level set of �(x, y) either of saddle or of centre
type. We call points where ∇� = 0 critical points, this happens, for example, at corner points. At these points we have
potentially a local extremum for � and the shift is a = b = 0.

However, if the origin is not critical, but degenerate (F′′(0) = G′′(0) = 0), then it is easy to see that

� = G′(0)t + tO(�2) + c1,

� = −F′(0)t + tO(�2) + c2,

for arbitrary constants c1 and c2. Close to the chosen origin the level sets of � are approximately straight lines. If
we have

F′(0) = G′(0) = 0 and F′′(0) = 0 or G′′(0) = 0, (15)

then we need to look at higher-order expansions. We will not consider this situation here. We summarise the results:

• Suppose �(0, 0) = c and F′′G′′ < 0, then the level set of � = c is a hyperbola close to the critical point where
∇� = 0, this is a saddle point.

• Suppose �(0, 0) = c and F′′G′′ = 0, then the level set of � = c is a curve with slope F′(0)/G′(0) at the origin
which is not a critical point.

• Suppose �(0, 0) = c and F′′G′′ > 0, then the level set of � = c is an ellipse around the extremum where ∇� = 0.
This extremum can only occur in the interior of the domain.

All results are valid for (�, �) ∈ R, which excludes the extreme vertices. The invariance of G and F along,
respectively, the � and � coordinate axes leads to the following theorems.
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Lemma 1. If we are not in the case (15), then every corner point is a saddle point, including the extreme vertices if
they are corner points.

Proof. Every corner point is a critical point, since ∇� = 0 by (3). Take one-sided derivatives at the extreme vertices.
Centre points are excluded since we are on the boundary. Since we are not in the case (15) the only option is a saddle
point. �

Now, let l(P ) be a tangent vector to the boundary at a point P ∈ ��, let l be multi-valued at corner points.

Theorem 5. If a point P at the boundary is a saddle point, then the points in the sequences (T +P, T −T +P, . . .) and
(T −P, T +T −P, . . .) are also saddles. If a sequence has a finite number of distinct members, then the final point Q is
such that lT(T −Q)e2 = 0 or lT(T +Q)e1 = 0.

Proof. If P is a saddle then F′ = 0 and F′′ �= 0. At the boundary point D = T −(P ) this also holds. Furthermore, at
this point ∇�(D) · l(P ) = 0. If the � component of l(D) is not zero, it must be the case that G′ = 0. We thus have
∇� = 0, the point is a critical point. Since centre points cannot exist on the boundary the point must be a saddle. If the
� component of l(D) were zero the procedure stops. If not, then we continue with the boundary point with the same �
coordinate as D. �

Theorem 6. The points (�1, �1) and (�2, �2) in R are critical points if and only if (�1, �2) and (�2, �1) are critical
points in R.

Proof. Again, use the invariance of F and G in the � and � directions to find that ∇� = 0 at (�1, �2) and (�2, �1) and
that F′′G′′ �= 0 at these points. �

How these results help us is perhaps best demonstrated by some examples.

Example 1 (The circle �2 + �2 = 1). The simplest solution would be one centre in the middle. The extremal points
with the same � and � coordinates have lTe1 = 0 or lTe2 = 0 and thus need not be saddle points. If we allow two
critical points at the boundary, they must be at opposite extremal points or we have four critical points by Theorem 6.
Of each saddle, one of the branches is part of the boundary, while the other branch crosses the boundary. Connecting
each saddle to itself yields a critical point on the boundary that makes the boundary non-smooth. Therefore, the two
zero level set curves that point into the circle must be connected. The circle is now divided in two cells, a centre point
must be inside each cell. One may continue in this fashion to obtain more possibilities. These solutions correspond
topologically to the solutions given in [2].

Example 2 (The rotated rectangle). Consider a rectangle of width a and length 2a, rotated over 45◦. By Theorem 5
the saddles at the corner points induce saddles at the midpoints of the long sides of the rectangle. By Theorem 6 two
critical points must exist inside the domain. They can be centres, giving rise to a pattern with two cells. They cannot be
saddles, the stable and unstable manifold would have no option but forming homoclinic connections. Inside the loop
there have to be centres which in turn induce saddles on the boundary. This cannot be done without violating the flow
directions.

By placing extra saddles on the boundary and centres in the domain one obtains j × 2j cells, in accordance with the
theory [17].

5. Discretisation

In this section we will develop a discretisation for Eq. (10). The discretisation will be posed in the (�, �)-coordinate
frame, since here the Poincaré equation becomes separable. Approximations F̃ and G̃ of F and G will be sought
in the spaces V� ⊂ H 1([�−, �+]) and V� ⊂ H 1([�−, �+]), spanned by piecewise polynomial basis functions 	i (�),
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respectively, 
j (�). In this basis we can write

F̃(�) =
n∑

i=1

fi	i (�) ∈ V�,

G̃(�) =
m∑

j=1

gj
j (�) ∈ V�. (16)

We now define our approximation �̃ to � by

�̃(�, �) = F̃(�) + G̃(�). (17)

We propose a Galerkin orthogonality condition of the system (10) and try to find F̃ and G̃ such that the residual
H = F + G − h is orthogonal to all test functions v1 ∈ V� and v2 ∈ V� on the boundary ��. First, define on �� the
line integral

(u, v) =
∫
��

uv dl.

The orthogonality relation becomes

(H, v) = (F̃ + G̃, v) − (h, v) = 0 ∀v ∈ V ,

where V = {w(�) + v(�)|w ∈ V�, v ∈ V�}. Equivalently, the orthogonality relation can be written as

(F̃, v1) + (G̃, v1) = (h, v1) ∀v1 ∈ V�,

(F̃, v2) + (G̃, v2) = (h, v2) ∀v2 ∈ V�. (18)

We have to test against all functions in V� and V�, we choose the basis functions 	i and 
j . This yields

n∑
i=1

fi(	i , 	j ) +
m∑

i=1

gi(
i , 	j ) = (h, 	j ), j = 1, . . . , n,

n∑
i=1

fi(	i , 
j ) +
m∑

i=1

gi(
i , 
j ) = (h, 
j ), j = 1, . . . , m. (19)

After choosing suitable spaces V� and V� we can work out the integrations in (19). This results in a matrix vector
equation which we need to solve for f = (f1, . . . , fn)

T and g = (g1, . . . , gm)T:(
A1 A2

AT
2 A3

)(
f

g

)
= A

(
f

g

)
=
(

h1

h2

)
. (20)

After discretisation, the dimension of the matrix A will be much smaller than the dimension that would have been
obtained by using, for example, standard finite element or finite difference methods on (6). For a resolution of m × n

grid points we will only require matrices of dimension m + n, whereas standard methods yield a dimension of order
mn. It is nice to see that the non-zero pattern of A2 mimics the shape of the boundary. This is clear, since if (A2)ij �= 0
then the intersection of the supports of 	i and 
j contain the boundary. The sub-matrices A1 and A3 are banded since
only the supports of 
i−N, . . . ,
i+N overlap the support of 
i , with N depending on the specific basis functions used.
See Fig. 2 for an example.

The calculation of the matrix A is detailed in [24] for the case of piecewise linear functions and a polygonal
domain �.
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Fig. 2. This figure shows a sample geometry in the left panel. To the right is a plot of the non-zero elements of the matrix A. The geometry stands out
clearly in the blocks A2 and AT

2 (see (20)). The sub-matrices A1 and A3 are tri-diagonal since standard piecewise linear basis functions were used.

The constraint 〈F, 1〉L2([�−
,�+]) = 0 is easily discretised as(

n∑
i=1

eT
i

)
f = 0.

We will express this in matrix form as Cx = 0, with C ∈ R2(n+m) and x the concatenation of the vectors f and g. The
constraint ‖�‖L2(�) = 1 can be discretised as ‖Nx‖2

2 = 1. We do not need N explicitly, since if we have a solution x
with ‖Nx‖= 1, then there is a constant c such that ‖cx‖2

2 = 1. The precise value of c is immaterial, as long as the norm
of the solution is fixed at some value, therefore, we fix the norm using

‖x‖2
2 = 1. (21)

Finally, we need to discretise the constraint at corner points, ∇� = 0. We use finite differences as follows:

F̃′(�i ) =

⎧⎪⎪⎨
⎪⎪⎩

fi+1 − fi

�i+1 − �i

if �i = �−,

fi − fi−1

�i − �i−1
otherwise.

The derivative of G̃(�) is defined accordingly. We write a matrix vector equation

Px = 0. (22)

Rows of P express that fi = fi−1 (or fi = fi+1 at �i = �−) or gj = gj−1 (or the exception gj = gj+1 at �j = �−) if
(�i , �j ) is a corner point.

Note that solutions to the discretised problem are exact solutions to the Poincaré equation, since they are of the form
F(�) + G(�). If the residual is non-zero, then the zero level set of this solution will not coincide with the boundary
��. We obtain an exact solution on a modified boundary. Unfortunately, the perturbation of the zero level set of F+G
is not necessarily small, even though F + G is small on ��. The boundary might ‘fold open’ if the zero level set was
at a saddle point and follows nearby level sets in the discretised case.

6. Ill-Posedness and uniqueness

After discretisation of the Poincaré equation with � = 0 at the boundary, the problem reduces to solving Ax = 0.
The ill-posedness of the Poincaré equation is reflected in the matrix A. It has singular values rapidly decreasing towards
zero. There are many singular values close to zero, their number increasing with increasing grid size. To these singular
values correspond singular vectors that are close to the null space of A in the sense that the residual ‖Av‖2

2 is small
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Fig. 3. This figure illustrates that a small change in the discretisation can have substantial effects on the solution. Plotted are the approximations to
F and G. The panel to the left has 200 grid points in both the � and � direction, the right panel has one grid point less in both directions. The two
solutions are quite different.

for such a singular vector v. We exclude the trivial solution and we pose the problem as a minimisation of ‖Ax‖2
2.

There is a large sensitivity of the solution x to small perturbations in the matrix A. This is the discrete analogue of
the delicate dependence of the solution to changes in the boundary. We will find solutions close to solutions from the
infinite dimensional solution space of the Poincaré equation, yet we cannot control which discrete vectors x we obtain.
The specific vectors found are dependent on the discretisation. When the discretisation is slightly changed, for example,
by adding some grid points, completely different valid solutions may emerge (see Fig. 3).

Typically, continuous ill-posed problems have no gaps in their spectrum. The discretised problem tends to inherit
this property, and a truncation of the singular values in order to decide what does or does not belong to the kernel of A
becomes infeasible, since there is no clear cut-off point.

Also, we know that there is a delicate dependence of the solvability on the rotation number of the domain. Slight
changes in the parameter � might change the nature of the solution. We anticipate the possibility of contamination of
the numerical null space by unwanted components of solutions corresponding to nearby values of �.

We use a regularisation method that in some sense relaxes the requirement that F + G = 0 at the boundary. We
find solutions where F + G is small at the boundary. Equivalently, we can say that we solve the Poincaré equation
on a domain that is slightly perturbed from �, the level curve of � = 0 is likely to be close to ��. Instead of asking
that F + G be zero at boundary we try to minimise this quantity, while at the same time we try to obtain a smooth
solution by minimising the energy. The balance between these two goals is tuned using a regularisation parameter. This
parameter is picked using a tool called the L-curve (see e.g., [11]), which we discuss in Section 6.1. The important
point is that a small value of the regularisation parameter indicates that little smoothing was required, the value of � is
probably very close to a resonance. If in contrast the value is rather high, then we must be far away from a resonance.
May be we are in the attractor case where high energy is induced by the fractal structure, or may be the chosen value
of � does not yield solutions at all. Visual inspection of the solutions and interpretation of the L-curve usually gives
information on these issues.

There exists the freedom to specify boundary conditions on the fundamental interval, which has not been incorporated
in our method of discretisation and solution. We will rely on our numerical method to fill the fundamental interval.
The first reason for this is that fundamental intervals are a property of the specific geometry under consideration and
need to be established whenever a new geometry is considered. A second reason is that fundamental intervals are not
unique. If M is a fundamental interval, then any FkM is also a valid fundamental interval. The question arises to which
interval Dirichlet boundary conditions should be applied. The interval that contains the largest number of grid points
would be a sensible choice, yet it is not clear if the solution is now unique in any numerical sense.

We will assume that the state possessing minimal kinetic energy is the physically relevant solution. Additionally the
buoyancy energy could be included, we will not do this for ease of presentation. One can think of the energy as an
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ordering principle of the solution space. We define the total kinetic energy operator T̄ : C1(�) → R in the (x, y)

system by

T̄ �̄ =
∫
�̄

∇�̃ · ∇�̃ dx dy,

which is, in characteristic coordinates

T � =
∫
�

[(
�

��
+ �

��

)2

+ �2
(

�

��
− �

��

)2
]

�2 1

2�
d� d�

= 1

2�

∫
�
(1 + �2)[(F′)2 + (G′)2] + (1 − �2)F′G′ d� d�.

We can eliminate the cross term by using partial integration in the form∫
�
(�iu)v dA =

∫
�
(�iv)u dA +

∫
��

uvni dl,

where �i is the ith partial derivative and ni the ith component of the normal to the boundary. For the cross term we can
write either∫

�
F′G′ dA =

∫
��

G′Fn1 dl or
∫
�
F′G′ dA =

∫
��

F′Gn2 dl.

For their sum we have

2
∫
�
F′G′ dA =

∫
��

F′Gn2 + G′Fn1 dl,

and since n = ±(F′,G′), and F + G = 0 at the boundary, the integral equals zero. The energy is now simply

T � = (1 + �2)

2�

∫
�
(F′(�))2 + (G′(�))2 d� d�. (23)

Note that the energy is zero if the solution � is constant. These solutions are excluded by (4), which also makes sure
that the stream function cannot be scaled to get arbitrarily small energy. We also incorporate the corner constraint (3).
We formulate a minimisation problem:

min T �, in �, and

min �, at ��,

s.t.

�(�, �) = F(�) + G(�) in �

〈F, 1〉L2([�−
,�+]) = 0,

‖�‖L2(�) = 1,

F′ = G′ = 0 at a corner point.

As we saw in Section 5 this will lead to

min ‖Lx‖2
2 energy minimisation,

min ‖Ax‖2
2 function minimisation at the boundary,

s.t. Cx = 0 linear ‘unique representation’constraint,

and ‖x‖2 = 1 normalisation,

and Px = 0 linear ‘corner point’constraint.

(24)
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The calculation of the matrix L is given in [24]. By analysing the singular value decomposition of a matrix corresponding
to an ill-posed problem one can conclude that solutions corresponding to small singular values have many sign changes,
and therefore possess high-frequency components (see [10] and the corresponding manual, which is also a good
introduction to regularisation techniques). Some smoothing will be required. The smoothing is in the energy matrix
L which contains discretisations of derivatives. If we have sufficient minimisation of the energy, the solution will be
smooth. However, ‖Ax‖2

2 and ‖Lx‖2
2 cannot be minimised simultaneously. Also, by ill-posedness, there might exist

a matrix close to A with much better properties in the sense that the energy ‖Lx‖2
2 is much lower while the residual

‖Ax‖2
2 is only slightly higher. Taking these considerations into account we propose to balance the residual ‖Ax‖2

2 and
energy ‖Lx‖2

2 using a parameter �. The regularised solution x� is then defined as

x� = arg min(‖Ax‖2
2 + �2‖Lx‖2

2) with ‖x‖2
2 = 1, Cx = Px = 0. (25)

The L-curve approach requires the solution of (25) for a range of parameters �. In practice we choose for � the numbers
from the sequence 10k, 10k−1, . . . , 0 with k approximately −10 or −15 (depending on the resolution of the grid).
For lack of a better method of incorporating the Px = Cx = 0 constraint we add them to the matrix A with a large
multiplicative factor a,

x� = arg min

⎛
⎜⎝
∥∥∥∥∥∥∥
⎛
⎜⎝

A

aP

aC

⎞
⎟⎠ x

∥∥∥∥∥∥∥
2

2

+ �2‖Lx‖2
2

⎞
⎟⎠ . (26)

In this way the constraints will certainly be satisfied or the residual will become very large. Note that the value of
a depends on the magnitude of the elements of A, which makes it dependent on the grid resolution. Solving the
minimisation problem (26) is then equivalent to finding the normalised singular vector corresponding to the smallest
singular value of

B =

⎛
⎜⎜⎜⎝

A

aP

aC

�L

⎞
⎟⎟⎟⎠ . (27)

6.1. The L-Curve

The choice of the value of the parameter � is made using the L-curve. This is a continuous curve parametrised by
� and given by {(x(�), y(�))|x(�) = ‖Ax�‖2

2, y(�) = ‖Lx�‖2
2}, where x� solves (26). The typical shape is that of an

‘L’, as shown in Fig. 4. This is an idealisation, in reality the L-curve will often be much less pronounced. The ideal

Less

smooth

Smooth
Inaccurate Accurate

Lx τ
2
2

Ax τ
2
2

Fig. 4. This figure shows a schematic L-curve parametrised by �. On the horizontal axis is the residual, representing the accuracy of the solution. On
the vertical axis is the energy, representing the smoothness of the solution.
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value of � is found in the ‘elbow’ of the curve. Increasing � would lead to a larger residual with only a slightly
smaller energy (and thus a little gain in smoothness). Decreasing � would lead to a slightly smaller residual, while
the energy becomes very large, and we have less smoothness. In our experiments (see Section 8) we often find
L-curves which have a less sharp corner, the ideal value of � is not directly clear. Also, it might happen that the
L-curve is not ‘L’ shaped at all. In these cases the curve can still be interpreted, and give us information on the
solution. For example, some curves start horizontal, only to go down for very large values of �. A mostly flat curve
tells us that the value of the regularisation parameter is insubstantial, the solution has the same energy for every
reasonable �. The specific geometry under consideration did not give us an ill-posed problem. This happens often in the
resonant case.

7. Energy minimisation

In this section we will show that, in the presence of attractors, the energy diverges. Nevertheless, we argue that the
total energy is still a useful quantity. We can give qualitative descriptions of the solutions that minimise the energy.
These solutions will turn out to be continuous and differentiable, which shows that minimising the energy is a useful
idea. First, we clarify the procedure by a one-dimensional model.

7.1. A one-dimensional example

As we will show later, there are features of the minimal-energy solution to the hyperbolic equation that can be pre-
dicted. The generic two-dimensional case is rather complicated, for this reason this section will give a two-dimensional
example that reduces to a one-dimensional model. The model will however exhibit the features that are also found in
the full two-dimensional case. Some steps may seem rather trivial, yet they closely follow the more complicated steps
in the two-dimensional case, treated in Appendix C of [24].

Consider the wave equation �xx − �2�zz = 0 on a domain � with � = 0 at the boundary ��. We also set
the normalisation constraint 〈�, �〉 = 1. The Poincaré equation is separable in any rectangle, for illustration we
use the square domain � = [0, 1]2. In this case, the Poincaré equation with the conditions stated above can be
reduced to

fxx(x)

f (x)
= �2 gzz(z)

g(z)
in �, (28)

g(0) = g(1) = f (0) = f (1) = 0, (29)

∫ 1

0
f 2(x) dx

∫ 1

0
g2(z) dz = 1. (30)

We would like to find the solution that minimises the energy

E =
∫
�

∇� · ∇� dx dy

=
∫ 1

0
(fx)

2 dx

∫ 1

0
g2 dy +

∫ 1

0
f 2 dx

∫ 1

0
(gy)

2 dy.

Use the normalisation constraint (30) to see that minimising E is equivalent to minimising

∫ 1
0 (fx)

2 dx∫ 1
0 f 2 dx

+
∫ 1

0 (gy)
2 dy∫ 1

0 g2 dy
.

Now, this is really two separate minimisation problems, one for f (x) and one for g(y). We will concentrate on the
function f and put �= ∫ 1

0 (gy)
2 dy. Since we can vary x and y independently we can suppose the right-hand side of (28)
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equals �2. The simplified model now reads

fxx(x) = �2f (x),

‖f (x)‖2
L2(�) = �,

f (0) = f (1) = 0. (31)

We need to find the solution that minimises

Ẽ = �
∫ 1

0
(fx)

2 dx.

The differential equation plus boundary conditions (31) is solved by

f (x) =
∞∑

k=0

ak sin(�kx),

with �k = k. By (30), the (ai) ∈ �2 are subject to the constraint
∑∞

i=0 a2
i �= 0. Consequently the trivial solution is

excluded, yet there are still infinitely many solutions. In order to pick one solution out of the infinite set of degenerate
solutions we minimise the energy. Write the energy as

Ẽ = �
∫ 1

0
(fx)

2 dx =
〈
f, −�

d2

dx2 f

〉
L2([0,1])

.

The Courant–Fischer theorem now gives us that the minimum of Ẽ is given by the eigenfunction belonging to the
smallest eigenvalue of the operator L=−�(d2/dx2), i.e., the function f corresponding to the smallest eigenvalue � that
solves

fxx(x) = −�

�
f (x). (32)

This equation is of the same form as our differential (31), which is unfortunate from a didactical point of view: in the
full two-dimensional model the situation is less trivial, and the Courant–Fisher theorem is a useful tool. The eigenvalue
problem (32) has solution

f (x) = � cos

(√
�

�
x

)
+ � sin

(√
�

�
x

)
.

From boundary conditions (29) we see that � must be zero and � is quantised as �k = �k22 with k = 1, 2, 3, . . ., zero
is excluded since the trivial solution is excluded. The eigenfunction f belonging to �k is then given by

f (x) = �k sin(kx).

The constant �k is found by solving
∫ 1

0 f 2(x) dx=1/d and we have a unique solution for given k. Considering solutions
that belong to �1, �2, . . . we see that the energy orders the solutions by decreasing smoothness (in the sense of number
of oscillations). The energy therefore has a regularising property.

Furthermore, we see that we find continuous and differentiable solutions ‘for free’, without explicitly enforcing these
properties. These features carry over to the two-dimensional situation. However, when dealing with the two-dimensional
hyperbolic equation in an arbitrary non-rectangular domain we have two additional issues

• The domain is arbitrary and we no longer have �(x, y) = f (x)g(y). However, in characteristic coordinates we
do know �(�, �) = F(�) + G(�).

• Attractors will occur and the fractal behaviour of the solution introduces high energies.

Nonetheless, it will be shown that energy minimisation still leads to smooth regularised solutions. We will first give
a one-dimensional analogue of the energy in the presence of an attractor and refer for the general situation to [24].
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7.2. Behaviour near an attractor

Close to the attractor features of the solution are repeated at increasingly smaller scales. This makes the energy blow
up, but we argue that we nonetheless still have a valid minimisation problem. We consider a one-dimensional model.
For an arbitrary function f ∈ H 1([0, 1]) define:

�(x) =
∞∑
i=0

fi(x),

fi(x) =
{

f

(
x − �i

�i+1 − �i

)
for x ∈ [�i , �i+1],

0 otherwise.

Here [�0, �1] models the fundamental interval, with �2, �3, . . . iterates of its endpoints under the mapping T, as defined
in Section 2. Usually the contents of an iterate of the fundamental interval is mirrored and scaled by the action of
the mapping. We will not model the mirroring effect here, but suppose that an interval [�i , �i+1] contains both the
original function and its mirrored copy. The differences �i+1 − �i are steadily decreasing and there is an ‘attractor’ at
limi→∞ �i = �. The functions fi are scaled and copies of f translated, this models the replication of the fundamental
interval towards the attractor. The energy on the interval [�0, �N ] is modelled by

T ([�0, �N)] =
∫ �N

�0

(�x)
2 dx

=
∫ 1

0
f ′(x)2 dx

N∑
i=0

1

�i+1 − �i

.

Here, we used the disjoint supports of fi in order to write the square of sums as a sum of squares. There are two ways
in which the energy may become infinite. Firstly, the derivative of the function f itself may not be square integrable, but
such functions do not minimise the energy. Secondly, the sum in the second factor diverges, but for every finite value
of the number of steps towards the attractor N, the expression is finite. Moreover, minimisation of the energy yields the
same function f independently of N. Therefore, this function f may also be considered a solution for N → ∞. Thus,
even though we have a diverging total energy it is still useful for minimisation purposes.

From a numerical point of view, we propose that discrete solutions on a grid can be compared to the continu-
ous solution on [�0, �N ] for finite N. Equivalently, one can say we always keep a finite distance to the attractor.
The fine scale structure which causes the energy to diverge close to the attractor at limit point � is simply re-
placed with one basis function in the discretisation. Since solutions are independent of N our numerical solutions
will correspond to solutions of the continuous system. In this way it makes sense to minimise the energy on a
fixed grid, however, the energy of discrete solutions will increase with increasing grid resolution in the presence
of attractors.

7.3. The two-dimensional case

In the two-dimensional case the calculation is more tedious, we will only state the results of the calculation here and
refer for the technical details to Appendix C of [24]. Before giving the solution we introduce some notation. The �i

and �i variables give � and � coordinates of the iterates of the fundamental interval. The index i counts the number of
iterates towards the attractor and k�K counts the fundamental intervals. The index l�L takes care of the possibility
that iterates of endpoints of a fundamental interval may approach a limit cycle with period L. For fixed k and l, the
sequence �l,k

i approaches one fixed point of the attractor from one side, ∩i (�
l,k
i , �l,k

i+1) = ∅ and ∪i[�l,k
i , �l,k

i+1] has no

holes. The general solution can be described using wavenumber-like numbers (m, n) and arbitrary constants A
k,l
n and

B
k,l
m . It is given by

�m,n(�, �) = Fn(�) + Gm(�),
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with

Fn =
N∑

i=0

K∑
k=0

J∑
l=0

Al,k
n I�∈[�l,k

i ,�l,k
i+1] cos

(
n

� − �l,k
i

��l,k
i

)
,

Gm = −
M∑

i=0

K∑
k=0

J∑
l=0

Bl,k
m I�∈[�l,k

i ,�l,k
i+1] cos

(
m

� − �l,k
i

��l,k
i

)
, (33)

where I denotes the indicator function. The above formulas describe a solution which is built from arbitrary Fourier
expansions on the fundamental intervals, which are reproduced in smaller scales towards the attractor. Note that A

k,l
n

cannot all be zero. The numbers N, M determine the size of neighbourhoods of the attractors that we leave out of the
domain. For N, M → ∞ we face a diverging energy, the above solutions are not valid. However, for every large finite
values N, M we do have the solutions given above. With increasing N, M the solution does not change, except it’s
domain of definition grows, towards the attractor. For more details we refer to [24].

Some words on the space in which the functionsF andG live are in order. In Section 2 we proposedF ∈ L2([�−, �+])
and G ∈ L2([�−, �+]), giving also � ∈ L2(�). The solution is discontinuous at the attractor, this follows easily from
the definition of continuity and the fact that attractors are limit cycles of the transformation F. Theorem 4 established
that solutions exist, and thus that the discontinuity is square integrable. In this section we need to calculate an energy,
the suitable space would seem to be H 1(�). However, in this space the energy diverges when we insist on solving
on the entire domain � (i.e., N, M → ∞). The proper space seems to be H 1(�\(A ∪ B)), where A consists of a
neighbourhood of the attractors. The set A is in our approach left out of the domain by using finite N and M as shown
above. It could also be the case that F(�) or G(�) are discontinuous. The set B consists of horizontal and vertical lines
corresponding to these discontinuities. This is only possible if N, M → ∞ in (33), and we do not need to worry about
excluding B from the domain since we only consider finite values.

It is important to realise that A and B are completely different in nature. Attractors are a feature of the problem,
but we know how to deal with this. Discontinuities in F and G away from the attractor will not occur because the
minimising functions (33) are automatically continuous.

7.4. Minimal energy of the discretised system

Consider the behaviour of the solution to the discrete system. When piecewise smooth basis functions are used, then
across the attractor there will be a piecewise smooth approximation of the self similar structure. We suggest that this
discrete system corresponds, to good approximation, to solving the continuous system where we only minimise the
energy on the domain given by a finite number of iterates of the fundamental interval. This corresponds to taking N
and M to be finite numbers. We have now taken away the contributions to the energy that caused it to diverge, and
have in effect removed a small strip around the attractors. Still we know that the minimal-energy solution we find
is independent of the values of M and N, if M?1 and N?1. If the grid has sufficient resolution, then we will find
a meaningful solution to the Poincaré equation. The energy will increase with decreasing grid size, yet for a fixed
grid we can safely minimise the energy. If differences between calculated solutions on grids of increasingly higher
resolution become smaller, then we can have confidence that we are converging towards a minimal-energy solution of
the continuous problem.

8. Results

This section will give some solutions of the Poincaré equation using the discretisation from Section 5 and the
regularisation procedure outlined in Section 6. First, we consider the case where the stream function is zero on the
entire boundary, i.e., the unforced setting. Next we apply a non-zero boundary condition for the stream function and
find that the scenario sketched in Section 3 indeed occurs.
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Fig. 5. Four L-curves for the trapezoid. The ‘elbows’of the curves do not look very pronounced when plotted in one picture. One would have expected
a longer vertical ‘leg’, instead we find an accumulation point. A number of points on the curves have been calculated and labelled with the value of
the regularisation parameter � and an index.

8.1. Free oscillations

We will discuss the trapezoid, a rectangle with one sloping side as shown in (x, z) coordinates in Fig. 10. This
geometry is interesting since it is a simple geometry in which attractors exist. The complex distribution of attractor
regimes separated by modal solutions (a manifestation of the ill-posed nature of the problem) is extensively described in
[18]. For �=0.75 we are in the attractor case, indeed Fig. 10 (as later discussed) clearly shows features that reproduce in
increasingly smaller scales towards a limit cycle. The behaviour of the dynamical system induced by F was investigated
by a raytracing technique, which enables us to find the values of � where the various attractors exist.

We take 300 grid points in both the � and � directions and plot L-curves of the first four solutions. This means that
we plot the L-curves of the first few solutions that minimise (26) best. This simply amounts to calculating the four
smallest singular values of the matrix (27). The curves are approximated by taking a sequence of values for �, we
choose {10j |j = −10, −9.8, −9.6, . . . ,−0.8, −1}. The L-curves are given in Figs. 5 and 6 gives enlargements of the
parts of the curves where we pick the regularisation parameter.

We will discuss the solutions for the different L-curves and point to noteworthy features of the solutions.

8.1.1. The ‘plateau’ solution
From the bottom curve of Fig. 5, the top-left curve of Fig. 6, representing the minimising solution, we choose a value

of � ≈ 10−5. We plot the functions F and G and their sum in Fig. 7. We observe a solution with a large step at the
attractor, featuring small oscillations. Two questions come to mind, firstly if such a solution is allowed. Secondly, if the
small oscillations are a numerical artifact (reminiscent of the Gibbs phenomenon) or a real feature of the solutions. The
latter question is answered by observing the structure of the oscillations: they are mapped towards the attractor like the
oscillations in Figs. 8 and 11. We conclude that the structure is ‘mixed in’ from another solution, the regularisation is
not perfect. The question of the validity is more complicated. The solution is of the form (33), with large coefficients
for the constant term and very small coefficients for other terms. In the domain outside of the attractor the values F
plus G cancel, while inside of the attractor they add up to a non-zero value. Physically, this represents a solution where
(almost) all energy is located at the attractor. A problem is that the analytical analogue of this solution is not from the
space H 1(�), the energy would be infinite. As argued in Section 7 we ought to compare discrete solutions in � to
analytical solutions in � minus a neighbourhood of the attractor, and in this sense the solution is valid. In [23] it is
shown that this type of solution is also found upon inclusion of a viscous (dissipative) term in the Poincaré equation.
This is an indication that this might also physically be a relevant solution. The experiment described in [18] is a case
in point, the existence of a wave attractor was established, but no evidence of fractal structure was found.
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Fig. 9. These graphs show what happens if one regularises improperly. In the left panel a value of � ≈ 3 × 10−3 was chosen, yielding a smooth but
inaccurate solution. The extrema are too flat. The right panel corresponds to � ≈ 10−5, the residual is smaller but the energy is higher. We see cusps
appearing, giving a discontinuity in the derivative.

8.1.2. Wavenumber 1 solution
The next-best solution we find is shown in Fig. 8, where we plot the solution corresponding to � ≈ 10−4 on the

second curve (Fig. 6). It clearly consists of one empty fundamental interval plus one fundamental interval with half a
cosine. Referring to (33) we call this a wavenumber 1 solution for this fundamental interval. We will now demonstrate
the effect of over- and under-regularisation by picking inappropriate values of �. The result of this practice is shown
in Fig. 9. Other experiments have revealed even more sensitive dependence of the solution on the choice of the
regularisation parameter. When the grid has sufficient resolution one may also observe oscillations that are introduced
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Fig. 10. This figure shows the addition of the smoothest solutions found on each of the fundamental intervals. The grid resolution is 300 grid points
in the � and � directions. Shown is the stream function �̃, in the (x, z) frame. Darker colors indicate higher values, grey is at the zero level. The
attractor, and the fractal structure are nicely visible.
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Fig. 11. In this figure, again one fundamental interval shows a smooth function, but now a cosine of higher periodicity. The other interval is (almost)
zero.

or suppressed when changing the regularisation parameter. These observations are ultimately the justification for the
use of a regularisation procedure.

8.1.3. Combined solutions
Fig. 5 shows the curves corresponding to the four best minimizing solutions. The top two curves cross each other

twice, which might seem strange at first sight, but there is no reason why a under-regularised nth best solution cannot
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Fig. 13. These panels show the functions F and G for three different values of the regularisation parameter. To the left we see under-regularisation,
a value of � = 5 × 10−4 was used, which is below the optimum (see also Fig. 12). The graphs are clearly too smooth. A value of � = 8 × 10−5

seems close to optimal and yields the graphs in the right panel. Note how the functions F and G have jumps of ±1 as predicted in the theory.
Over-regularisation is shown in the bottom panel, at � = 1 × 10−5, the functions suffer from too many sharp peaks.

have a higher energy than an over-regularised (n+ 1)th best solution. The top-most crossover of the curves is in fact an
artefact of the way the L-curves are plotted. For each value of � we store a column of coordinates (‖Ax�‖2

2, ‖Lx�‖2
2) in

a matrix, we then plot the rows of this matrix. The right panel of Fig. 5 shows that the eigenvalue curves and L-curves
switch at index 35.
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Fig. 14. A plot of the stream function for the forced problem. At the vertical left boundary � = 1 is assigned, the remaining boundary has � = 0.
It is nicely visible how the characteristics ‘pick up’ values of ±1 when visiting the side where � = 1. Also, we clearly see focusing towards the
attractor, where values of |�| get increasingly higher due to continued visits to the left boundary.

At eigenvalue curve three we find the solution where the empty fundamental interval has switched places with the
wavenumber 1 interval. If we add both solutions (see Fig. 10), then we fill both fundamental intervals and recover the
solution that was presented in [17].

8.1.4. Wavenumber 2 solution
The solution we find, at � ≈ 10−4, curve four of Fig. 6, is a solution where again one of the fundamental intervals

is empty. The other one however is now filled with a complete period of a cosine (Fig. 11). We remark that the order
in which we find solutions is not a priori clear. In this case we first found both the ‘wavenumber 1’ solutions, we could
also have found a ‘wavenumber 2’ solution first. The exact order is dependent on the energy of the solution, which is
(among other things) determined by the sizes of the fundamental intervals.

We conclude that we find the solutions predicted by Eq. (33), where the Fn and Gm parts are indeed decoupled. The
regularisation scheme is indispensable in obtaining meaningful solutions to the ill-posed Poincaré equation.

8.2. Boundary forcing

In this section, we apply a boundary condition � = 1 to the left side of the trapezoid. We have to deal with Eq. (8),
which leads to the regularisation problem (9). In contrast to the unforced case, with zero right-hand side b, this is a
standard problem which may be tackled using existing methods. We draw the L-curve and calculate solutions using the
Regularization Tools, described in [10]. In this section we focus on the piecewise constant solution, since we learned
in the previous section that this is energetically the preferred solution.

We calculate a solution at �=0.75, which is in the regime where the square attractor lives. The number of grid points
is 512 in both the � and � directions. The L-curve calculated for this problem is shown in Fig. 12. This L-curve has a
clearer optimal point than the curves presented before, although it is still necessary to try a few values around the bend
in the curve before deciding on a ‘best solution’. Results for the functions F and G are shown in Fig. 13, where the
effects of over-regularisation and under-regularisation are nicely visible.

Finally, we present a figure of the complete solution �(�, �) =F(�) +G(�) in Fig. 14. The theoretically predicted
behaviour (Section 3) is clearly observed.
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