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Abstract

We present results from laboratory experiments in a ‘tidal tank’, demonstrating the resonant response of the
Helmholtz mode in an almost-enclosed basin. In particular the dependence of the response curve (amplification of
the tide in the basin relative to the tidal signal at sea as a function of forcing frequency) on the tidal amplitude due
to the nonlinear influence of dissipation is observed. Although Lorentz’ linearization procedure for coping with this
nonlinear effect was already developed at the beginning of the previous century, quantitative experimental validation
in this context has not yet been provided. The experimental results presented in this paper show good agreement
with theory.
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1. Introduction

Tidal motion is a key feature in many coastal areas, with tidal ranges of 1–3 m (Dutch Wadden Sea) up
to 16 m (Bay of Fundy). At those locations, it by far exceeds theequilibrium tidewhich represents direct
gravitational forcing (if the Earth were completely covered by water, neglecting inertia) by the moon
(54 cm) and the sun (26 cm). The amplification is a result of resonance when the directly driven ocean
tide propagates into co-oscillating coastal seas. Linear theory describing this is well established and is
reviewed in e.g.Defant (1961).

Resonance occurs if the tidal period is close to one of the eigenmodes of the basin, such as thequarter
wavelengthmodes in half open channel-like basins, or theHelmholtzorpumping modein almost-enclosed
basins. The latter is a relatively simple mode characterized by uniform sealevel elevation within basins
that are small compared to the tidal wavelength and co-oscillate with an adjacent sea/ocean through a
narrow inlet. The balance between the inertia of the flow through the inlet and the restoring force due to
the sealevel difference between that at sea and in the basin determines the oscillation (Miles, 1974).

Dissipation of energy in resonant Helmholtz basins, which is the main interest in this paper, is through
radiation damping, bottom friction andhead loss(pressure drop) due to flow separation. Radiation damp-
ing is adequately described linearly but leads to the so-called harbor paradox (Carrier et al., 1971; Miles,
1974): intuitively one would expect suppression of the response to external forcing when decreasing
the width of the inlet, due to increased screening. However, the maximum and mean square response
appear to increase, because radiation of energy is reduced. By including the effect ofhead lossdue to
flow separation at the inlet this paradox is resolved by e.g.Mei et al. (1974). Using hydraulic theory they
show that the head loss term depends quadratically on the fluid velocity. Actually this is the same form
as Chezy’s law, commonly used to model bottom friction.

In order to evaluate the influence of the quadratic (bottom) friction termLorentz (1922, 1926)proposed
to replace it by a linear term with the friction coefficient chosen such that the energy dissipation per tidal
cycle would be the same as when the nonlinear law were used.Mei (1989)mentions Lorentz’ linearization
method under the name ofequivalent linearization. A number of different approaches can be found in
the literature as well, including asymptotic expansions of the quadratic friction term (e.g.Kabbaj and Le
Provost, 1980). All of those methods are virtually equivalent, at least to first order. Hence the simplest
approach ofZimmerman (1992)is followed in this paper.

The calculations ofLorentz (1926)have been confirmed quite well by field observations in the Dutch
Wadden Sea (Thijsse, 1972). Nonlinear aspects express themselves in the generation of higher harmonics
distorting the tidal curve to become asymmetric (Aubrey and Speer, 1985, and references therein). Lab-
oratory experiments have been performed as well, but have mainly focused on validating linear theory
(e.g.McNown, 1952; Lee, 1971) or on the distortion of the tidal curve (Lepelletier and Raichlen, 1987).
Experiments to corroborate Lorentz’ linearization theory, by comparing the response curves at different
forcing amplitudes, seem to be missing. AlthoughHorikawa and Nishimura (1970)do present results for
different amplitudes, they rate them as less accurate owing to the deformation of the waves and do not
provide an adequate quantitative comparison with theory. BothBowers (1977)andDe Girolamo (1996)
state qualitatively that the head loss effect is found to cause the amplification factor to decrease with
increasing amplitude in their preliminary experiments. However, their main focus is on the generation
of harbor oscillations due to the nonlinear setup/setdown by wave groups. Although they do mention the
quadratic dependence of the energy loss on velocity, no quantitative analysis is given by them either. In
particular, no reference to Lorentz’ linearization principle is made. Equivalent linearization is mentioned
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Fig. 1. Top view sketch of an almost-enclosed tidal basin with horizontal areaA, co-oscillating with the tide at sea through an
inlet channel of widthB, lengthL and depthH.

by Martinez and Naverac (1988). They provide good quality experimental data, but their focus is on the
effect of changing the entrance width to their basins. Their analysis of the data is based on insufficiently
developed theory neglecting inertia. As a consequence the dependence on forcing amplitude is not cap-
tured well and they conclude that the coefficient in the nonlinear friction law strongly depends on the
forcing amplitude.

In order to fill the lack of experimental validation of Lorentz’ linearization principle, we present a
quantitative comparison between our measurements and the results of a simple model for the Helmholtz
mode with Lorentz’ linearized friction, which does predict the dependence of the response curves on the
forcing amplitude. After a brief overview of the theory in Section 2 and a description of the experimental
setup in Section 3, the results are discussed in Section 4. The paper is concluded with an estimation of
the domain of validity of Lorentz’ linearization theory using a renormalization method and numerical
integration and a discussion of the relevance in the geophysical context.

2. Theory

Consider an almost-enclosed basin with horizontal areaA connected to the sea by a channel of length
L, widthBand depthH, as shown inFig. 1, which is forced by a tidal signal at sea with angular frequency
�. Its dimensions are assumed to be much smaller than the tidal wavelength� = 2�

√
gH/�, such that

the tidal wave traverses the basin “instantaneously”. Hence the water level in the basin can be described
by a single value�, the elevation relative to the still water level. Water flows into the basin through the
channel with velocityu. All dynamics are concentrated in the channel, where the elevation difference
between sea and basin drives the flow, balanced by the inertia of the water in the channel and bottom
friction/head loss.Actually, the channel lengthL in (1a) measures the inertia of the system. The (relatively
small) contribution of flow outside the channel causes the effective lengthLeff , which determines the
eigenfrequency�0 defined below, to be slightly longer than the physical length of the channel, the “added
mass effect”. From here on each occurrence ofL relates to effective length, the notationLeff is used only
if confusion with physical length might occur. Bottom friction is commonly described by Chezy’s law
(cD/H) |u|u, with drag coefficientcD ≈ 0.0025 determined empirically (Parker, 1991). The head loss due
to flow separation is parameterized by(f/L) |u|u and differs only in the formulation of the coefficient;
f has to be determined empirically as well. Indeed, based on computer simulations,Ito (1970)reports
that the harbor paradox is resolved by including this term and the vulnerability of the Port of Ofunato
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to tsunamis decreased considerably due to the partial closure of the entrance by a breakwater. He found
thatf ≈ 1.5 gave the best results when comparing the numerical simulations with observations from
tide gauges. The dynamics of the system can be described by the equations for momentum and mass
conservation:

du

dt
= g

L
(�e − �) − f̃

L
|u|u, (1a)

A
d�

dt
= Ou, (1b)

where�e = �e cos(�t) = Re[�e ei�t ] is the prescribed elevation at sea andO = BH is the channel
cross-section. The head loss coefficientf̃ /L is considered to include bottom friction as well (f̃ /L

= f/L+cD/H ). Note that radiation damping is not modeled here explicitly but is assumed to be already
incorporated in�e, i.e.�e is considered to be the tidal signal at the seaward entrancewith the basin present.
In analyzing the experimental results we will also compare the measurements inside the basin with the
forcing signal at sea as it is measured simultaneously.

The Lorentz’ linearization principle amounts to replacing the nonlinear head loss term(f̃ /L) |u|u
by ru, with effective linear friction coefficientr to be determined. In that case system (1) is linear and
the response will be of the form� = |�| cos(�t + �) = Re[� ei�t ], where� = |�|ei�, and consequently
u = −(A/O)�|�| sin(�t + �). Lorentz’ energy principle states that the energy dissipation per tidal cycle
should be the same for both formulae:〈ru2〉 = 〈(f̃ /L)|u|u2〉, in which 〈·〉 denotes averaging over a
tidal cycle. Evaluation of the corresponding integrals leads tor = �0�|�|, with �0 = (8/3�)(f̃ A/OL),
i.e. effective friction increases linearly with tidal amplitude in the basin. Using the linear expression for
friction, (1) can be simplified to

d2�

dt2 = �2
0 (�e − �) − �0�|�|d�

dt
,

in which �2
0 = gO/(AL) is the eigenfrequency of the Helmholtz mode. Substituting� = Re[� ei�t ] the

complex response equation is found:

(�2
0 − �2)� + i�0�

2|�|� = �2
0�e. (2)

By taking the square modulus of this equation it is possible to solve for|�| and find

|�|
|�e| =

√√√√√
(1 − (�/�0)

2)4 + 4�2
0(�/�0)

4|�e|2 − (1 − (�/�0)
2)2

2�2
0(�/�0)

4|�e|2
, (3)

which can be combined with (2) to find the phase lag� ∈ (−�, 0) as well, from� = arccos((1 −
(�/�0)

2) (|�|/�e)). Differentiating the square modulus of (2) with respect to�, equating the derivative
of |�| to zero and using the result to eliminate either� or �e, one can maximize (3) with respect to�. As
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a function of forcing amplitude�e maximum amplification is given by

|�|max

�e
=
√√√√1

2
+ 1

2

√
1 + 4

�2
0�

2
e
. (4)

As a function of� one has|�|max/�e = (1 − (�/�0)
2)−1/2, which will be indicated by a dotted line in

the response diagram (Fig.4(a)).

3. Experimental setup

A sketch of the experimental setup is shown inFig. 2. The area of interest is the “basin” of 0.916 m2.
Instead of a channel, a completely submerged pipe is used to connect the basin to the forcing tide at
“sea”. In this way, the cross-sectionO does not depend on the water-level elevation�, which would
otherwise introduce (additional) nonlinear effects (Miles, 1981). The experiments presented in this paper
were performed using a circular pipe with a length of 441 mm and 76.4 mm diameter. Without the
“added mass effect” increasing the effective pipe length, the Helmholtz frequency is expected to be
�0 = 0.33 rad s−1 = 53 × 10−3 Hz (18.8 s period). The water depth at rest was set to be about 15 cm
above the bottom of the basin and was checked not to influence the measurements as long as the pipe
remains completely submerged. A forcing tank is immersed in the water and is lifted and lowered by a
properly counterbalanced servomotor. The control signal can be generated by the computer. In principle
the forcing signal may consist of many frequency components, but harmonic forcing only is considered
in this paper. The water expelled by the forcing tank, moves through the conduit underneath the basin
area towards the sea. A grating was inserted in order to help the water level rise at sea to be uniform, but
it did not prevent the occurrence of a standing wave: depending on the forcing frequency amplitudes are
higher at the far end of the sea. The amplitude of the control signal is adjusted to obtain the desired forcing
amplitude at the mouth of the basin (cf. the discussion at the end of this section), so this has no influence
on the measurements. Acoustic sensors are used for nonintrusive measurements of water-level elevation.
They are located above the tank and emit an acoustic signal at 300 kHz down to the water surface and
measure the return time of the reflected signal, like an echo sounder. Their resolution is 0.36 mm, the
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Fig. 2. Sketch of the experimental setup, dimensions in mm are indicated. The forcing tank is set into motion by a servomotor.
The water expelled by the tank moves through the conduit underneath the basin area to the “sea”. The tidal signal thus generated
at sea, propagates into the basin through a completely submerged pipe. The water-level elevation is measured by acoustic sensors
at the indicated positions. Because the tide in the basin is nearly uniform, the measurements for the sensors in the basin are
virtually the same. (a) Top view, (b) side view.
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standard deviation of the noise is similar. Significant outliers of some centimeters occur and are dismissed
from the analysis.

No dissipators have been installed at the sidewalls of the sea.Raichlen and Ippen (1965)warn that
consequent reflections have a dramatic effect on the response curves. They define the amplification factor
as the ratio of the tidal response amplitude in the basin over the amplitude at the seaward entrance
if the basin were closed, i.e. not present. Indeed, radiation damping effects changing the actual tidal
forcing signal at the seaward entrance, are quite different in a finite reflective sea than in a semi-infinite
reflectionless sea. We however choose to correct the motion of the forcing tank such that the amplitude
at the seaward entrance is the same for all frequencies and define the amplification factor as the ratio
of the response amplitude in the basin over the amplitude at seawith the basin connected to it, as it is
measured simultaneously. This effectively boils down to eliminating the effect of radiation damping and
circumvents the problems mentioned byRaichlen and Ippen (1965).

4. Results

A sample time series from our measurements is shown inFig. 3. This measurement was performed
at a forcing frequency� = 0.0420 Hz= 0.264 rad s−1 and forcing amplitude�e approximately 2 mm.
Measurements at the seaward pipe entrance are indicated by dots. Pluses and crosses are used for the
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Fig. 3. Sample time series of measurements at forcing frequency 0.0420 Hz and forcing amplitude approximately 2 mm. Dots
indicate measurements from the sensor at sea, pluses and crosses indicate measurements at the entrance and end of the basin,
respectively. Solid curves show harmonic fits to the respective time series. The two curves inside the basin are nearly indistin-
guishable, consistent with a Helmholtz mode of uniform basin tide.
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Fig. 4. Response curves: (a) amplification factor|�|/�e and (b) phase lag� between the tide at sea and in the basin as a function
of forcing frequency�/(2�). Three series of measurements with forcing amplitudes�e ≈ 1, 2, 5 mm are shown, for each of
which results for two sensors in the basin have been obtained. Slight amplitude differences between both basin sensors can be
noted, in particular at 1 mm forcing amplitude. Solid curves show the fit to theory (3). The Helmholtz frequency�0 =0.0505 Hz
is indicated by a dotted vertical line, a dotted curve connects the maxima according to (4). Note that one fit is used to describe
all three curves. Apparently the decrease of the resonator’s quality is adequately described by Lorentz’ linearization theory.

measurements in the basin.Amplification and phase lag between the tide at sea and in the basin are clearly
visible. Note that the signals of both sensors inside the basin are virtually the same, so the assumption of
uniform tide in the basin is satisfied indeed. Harmonic analysis has been used to fit the measurements to
a sum of sinusoids at the forcing frequency and significant overtides, if any. In most cases, no significant
overtides were found. Only for particular frequencies, if one of the overtides was resonant with the
eigenfrequency∼ 0.45 Hz of the entire system (sea and forcing tank), secondary oscillations were found
at sea. They appeared not to extend into the basin though and there are no indications of their influence
on the response curves for the main component. The harmonic fits are shown inFig. 3as well.

From the amplitudes found this way, the amplification factor and phase lag of the forcing frequency
component are calculated. By plotting them as a function of forcing frequency, the response curves are
determined, seeFig. 4, for three different forcing amplitudes�e ≈ 1, 2, 5 mm. The theory according to
(2) has been fitted to the measurements minimizing the least square error in the complex�/�e plane.
Because the effective length differs from the actual pipe length due to the added mass effect it has to
be determined empirically. The same holds good for the head loss parameterf̃ . Therefore,�0 and�0
are used as fitting parameters. The curves shown inFig. 4 are for the best fit with�0 = 50.5 ± 0.9 ×
10−3 Hz = 0.317± 0.006 rad s−1, �0 = 374± 9 m−1. So the effective pipe lengthLeff = 48.9 ± 1.7 cm
is 4.8 cm longer than the actual length of the pipe. Furthermore,f̃ = 0.97± 0.02 has the same order of
magnitude asIto (1970)found for motion on real geophysical scale (f ≈ 1.5). Hence our experiments
give validation to his numerical/empirical value.

Although the use of effective instead of physical pipe length amounts to adjusting the theoretical curves
to the measurements, note that only one fit is used for all three curves. For a (hypothetical) linear system
there would be no dependence of the response curve on the forcing amplitude. Instead the experiments
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show that the height and sharpness of the resonance peak decrease for increasing amplitudes, due to the
fact that effective frictionr increases, as was already noted qualitatively byBowers (1977), De Girolamo
(1996)andMartinez and Naverac (1988). This decrease of the resonator’s quality (resonance frequency
divided by peak width) is captured well by Lorentz’ linearization theory. The curves for different forcing
amplitude are similar to those for different opening width, in which case the effective friction is increased
due to an increase of�0 in our terminology (c.f.Martinez and Naverac, 1988, Fig. 6). Note that quadratic
friction not only causes the response curves to be different for different forcing amplitudes but also
changes the shape of the curves, because the effective linear friction coefficientr ∼ �� is not constant
along the individual curves either. Although this effect is hardly visible at first sight it causes the curves to
drop off slightly steeper to the right of the peak frequency. A conspicuous feature of the phase lag curves
is the fact that the phase lag is−�/2 for � = �0 irrespective of forcing amplitude. It is immediately clear
from (2) that this is predicted by the theory as well.

5. Domain of validity

The correspondence between theory and measurements inFig. 4is very good. In the present laboratory
setup, conditions for which Lorentz’ linearization theory does not perform well have not been found. In
order to investigate the domain of validity of Lorentz’ linearization theory, model (1) has been studied in
more detail, both analytically and numerically.

First of all, it is worthwhile to note that the variables in (1) can be rescaled to obtain a more simple
dimensionless model by scaling

� = OL

Af̃
�′, �e = OL

Af̃
�′
e, u = �0

L

f̃
u′, t = t ′

�0
, (5)

which leads to the dimensionless model

du′

dt ′
= �′

e − �′ − |u′|u′, (6a)

d�′

dt ′
= u′. (6b)

The only parameters that still determine the behavior of this system are those that determine the forcing
water-level elevation�′

e at sea, the (dimensionless) forcing frequency�′ = �/�0 and amplitude�′
e =

(Af̃ /OL)�e. Hence the shape of the response curves is completely determined by the dimensionless
parameter�′

e that measures the relative importance of friction.

5.1. First-order corrections to Lorentz’ linearization theory

Zimmerman (1992)showed that Lorentz’linearization procedure can be considered as a renormalization
method. Introducing a formal expansion parameter	, (6a) is replaced by

du′

dt ′
= �′

e − �′ − 	|u′|u′ − r ′u′, (7)
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which equals (6a) for	=1, r ′ =0. Writing�′ = �̄
′ + 	z′ +O(	2), u′ = ū′ + 	v′ +O(	2), r ′ = r̄ ′ + 	
′ +O(	2)

and consistently collecting terms of the same order in	 one finds the model with linearized friction to
first order. At the next order one has

dv′

dt ′
+ r̄ ′v′ + z′ = −|ū′|ū′ − 
′ū′, (8a)

dz′

dt ′
= v′. (8b)

Truncating at this order, the consistency conditionr ′=0 for	=1 implies that
′=−r̄ ′. The renormalization
condition, requiring the first-order solution�̄

′
, ū′ to correctly capture the behavior at the forcing frequency

�′, consequently leads tōr ′ = (8/3�)�′|�̄′|, where�̄
′ = Re[�̄′ ei�′t ′ ], ū′ = Re[i�′�̄′ ei�′t ′ ] is the Lorentz’

linearized solution (to be found from (3) with�0=8/3�). This is consistent with Lorentz’energy principle.
For the correctionz′ on the Lorentz’ linearized results we thus have (writing�̄′ = |�̄′| ei�̄′

)

d2z′

dt ′2
+ r̄ ′ dz′

dt ′
+ z′ = r̄ ′ū′ − |ū′|ū′

= − 8

3�
�′2|�̄′|2 sin(�′t ′ + �̄′) ± �′2|�̄′|2 sin2(�′t ′ + �̄′), (9)

with the plus-sign if sin(�′t ′ + �̄′) is positive and the minus-sign if it is negative, hence on the intervals,
indexed by integerk, [k(2�/�′)− (�̄′/�′), (k + 1

2)(2�/�′)− (�̄′/�′)] or [(k + 1
2)(2�/�′)− (�̄′/�′), (k +

1)(2�/�′)−(�̄′/�′)]. Up to this point the procedure fromZimmerman (1992)was followed, but he solved
(9) using a truncated Fourier sum whereas matching exact solutions on the latter intervals is performed
here. The solution on the respective intervals is given by

z′±
(k) = |�̄′|

1 + �2
1

(cos(�′t ′ + �̄′) − �1 sin(�′t ′ + �̄′))

± 1

2
�′2|�̄′|2 ∓ 3�

32

|�̄′|
1 + �2

2

(�2 cos(2�′t ′ + 2�̄′) + sin(2�′t ′ + 2�̄′))

+ B
(k)
± e−(r̄ ′/2)(t ′−t

(k)
± ) cos



√

1 −
(

r̄ ′
2

)2

(t ′ − t
(k)
± )




+ D
(k)
± e−(r̄ ′/2)(t ′−t

(k)
± ) sin



√

1 −
(

r̄ ′
2

)2

(t ′ − t
(k)
± )


 , (10)

where we abbreviate�1 = (3�/8)(1−�′2)/(�′2|�̄′|), �2 = (3�/16)(1−4�′2)/(�′2|�̄′|), r̄ ′ = (8/3�)�′|�̄′|
andt

(k)
+ = k(2�/�′) − (�̄′/�′), t

(k)
− = (k + 1

2)(2�/�′) − (�̄′/�′) are the points at which sin(�′t ′ + �̄′)
changes sign. By matchingz′ and dz′/dt ′ at t

(k)
± , we can relate the integration constantsB

(k)
± , D

(k)
± in

subsequent intervals:

FX
(k)
− = e−(4/3)|�̄′| FRX

(k)
+ + d and (11a)
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FX
(k+1)
+ = e−(4/3)|�̄′| FRX

(k)
− − d hence (11b)

X
(k+1)
+ = �2R2X

(k)
+ + �RF−1d − F−1d, (11c)

in whichX
(k)
± =

(
B

(k)
±

D
(k)
±

)
is the vector containing the integration constants,

F =




1 0

− r̄ ′

2

√
1 −

(
r̄ ′

2

)2




is a skew matrix incorporating phase differences between currents and water level due to friction,

R =




cos


 �

�′

√
1 −

(
r̄ ′

2

)2

 sin


 �

�′

√
1 −

(
r̄ ′

2

)2



− sin


 �

�′

√
1 −

(
r̄ ′

2

)2

 cos


 �

�′

√
1 −

(
r̄ ′

2

)2






is the rotation matrix over angle(�/�′)
√

1 − (r̄ ′/2)2 related to the eigenoscillation, the factor�=e−(4/3)|�̄′|
accounts for frictional damping of the oscillation and

d =




9�2

64(1 + �2
2)

(4�′2 + r̄ ′2 − 1)

−3��′|�̄′|
8(1 + �2

2)




is the vector representing the forcing at this order. The stationary solution (independent ofk) to these
equations is found by solving[I − �2R2]X+ = −[I − �R]F−1d, henceX+ = −[I + �R]−1F−1d. The
complete expression for the sealevel and current oscillation up to this order is obtained by adding�′± =
�̄
′ + 	z′±, u′± = ū′ + 	v′±, setting	 = 1.

Performing an harmonic analysis, fitting a sum of sinusoids with frequenciesn�′, with n = 0, 1, 2, . . .

to�′, the correction has no influence on the harmonic fit at the forcing frequency, due to the renormalization
condition. So the response curves found using Lorentz’ linearization procedure need not be changed to
this order of approximation. Still, one can use the results from this section to estimate the changes in the
tidal curve due to the nonlinear friction term, seeFig. 6.

5.2. Numerical results

The dimensionless model (6) has been integrated using the numerical dynamical systems package
DsTool (Guckenheimer et al., 1992) for several values of�′

e between 0.1 and 30. They were subsequently
processed in the same manner as the experimental results. In line with the observation at the end of
the previous section the response curves are not noticeably different from the prediction by Lorentz’



G.M. Terra et al. /Fluid Dynamics Research36 (2005) 175–188 185

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

1.5

2

2.5

3

3.5

4

Dimensionless frequency

A
m

pl
ifi

ca
tio

n 
fa

ct
or

Dimensionless forcing 0.1
Dimensionless forcing 0.2
Dimensionless forcing 0.5
Dimensionless forcing 1
Dimensionless forcing 2.5
Dimensionless forcing 5
Dimensionless forcing 10
Dimensionless forcing 30
Lorentz’ linearization theory

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Dimensionless frequency

P
ha

se
 d

iff
er

en
ce

 (
ra

d)

Dimensionless forcing 0.1
Dimensionless forcing 0.2
Dimensionless forcing 0.5
Dimensionless forcing 1
Dimensionless forcing 2.5
Dimensionless forcing 5
Dimensionless forcing 10
Dimensionless forcing 30
Lorentz’ linearization theory

(b)

Fig. 5. Response curves: (a) amplification factor and (b) phase lag between the tide at sea and in the basin as a function of forcing
frequency. Numerical results (symbols) for the dimensionless system (6) are shown. The dimensionless Helmholtz frequency
�′

0 = 1 is indicated by a dotted vertical line, a dotted curve connects the maxima according to (4). The theoretical (solid) curves
are calculated from (3),(4), with�0 = 1, �0 = 8/3�.

linearization theory over this entire range, seeFig. 5. Deviations from Lorentz’ linearization theory
appear when considering the tidal curves.Fig. 6(a) shows the tidal curve for one of the numerical runs
for which the correspondence between the numerical integration of (6) and the theoretical calculations
using (10) is the worst, with�′

e = 2.5, �′ = 0.377. One can see that the deviations from a single sinusoid
are still predicted quite well by the asymptotic correction (10). Note that the current (which has not
been measured during the laboratory experiments) is influenced more strongly by the quadratic nature
of friction than the water level itself. Subtracting the single sinusoid at the forcing frequency one is
left with the deviation from Lorentz’ theory inFig. 6(b), in which it is more clear that correction (10)
overestimates the amplitude of the tertiary overtide. This can be seen as well inFig. 6(c), which shows
the maximum deviation relative to the amplitude of Lorentz’ sinusoidal response as a function of the
forcing frequency for�′

e = 0.1, 1 and 30 (asterisks, pluses and crosses). Moreover, it shows the relative
change of the high water level (open circles, squares and diamonds), which is less than the maximum
deviation because the latter need not be synchronized with high tide. The maximum deviation and the
deviation of the maxima according to the asymptotic correction (10) is plotted as well, by dashed and
dotted curves, respectively. Actually, we find peaks of resonant behavior at forcing frequencies�′ = 1/n,
with n odd,n = 3 in particular. The amplitude of the peak is overestimated however, because up to this
order of approximation the effective friction coefficientr̄ ′ = (8/3�)�′|�̄′| is normalized for the dominant
(forcing) frequency only. The resonant motion at the eigenfrequency is damped more strongly because
its frequency is three times the forcing frequency in this case. The main conclusion to be drawn from
this figure though, is the fact that Lorentz’ theory is correct within 7% even for�′

e = 30, for which the
response curveFig. 5shows damping for almost all frequencies.

5.3. Geophysical context

When extending the model result (3) from the laboratory setting to the geophysical context, the main
lack of knowledge is in the relative strength of friction. In the laboratory setting, the dominant dissipative
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Fig. 6. Numerical results integrating (6) versus theoretical corrections using (10): (a) shows a sample tidal curve for
�′

e = 2.5, �′ = 0.377. In (b) the dominant signal at the forcing frequency is subtracted. The maximum deviation from this
signal (the maximum of the basin’s water-level response in (b), asterisks, pluses and crosses) is plotted as a function of forcing
frequency�′ in (c), as well as the deviation of the maxima (high tide in (a), circles, squares and diamonds) from the single
sinusoid’s amplitude predicted by Lorentz’ linearization theory, both relative to the amplitude of the single sinusoid. Results are
obtained by numerical integration using DsTool for�′

e = 0.1, 1 and 30. The dashed lines approximate the maximum deviation,
the dotted ones the deviation of the maxima, according to (10). The peak at�′ = 1

3 is predicted well, although the amplitude is
overestimated.

effect is the head loss due to the constriction. This clearly depends on the shape of the entrance. Although
the quadratic dependence of friction on the velocity should still be valid, the appropriate value of the
coefficient f̃ is somewhat uncertain. However, because the valuef̃ = 0.97 found by our laboratory
experiments compares well withIto’s (1970)numerical valuef = 1.5, one is inclined to use this value
in the geophysical context as well. For example, the Amelander Inlet in the Dutch Wadden Sea can be
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considered to be a Helmholtz basin with the following (approximative) characteristics:

A = 2.5 × 108 m2, B = 3 × 103 m, H = 10 m, Leff = 5 × 103 m, �e = 1 m,

which leads to

�0 = 4.9 × 10−4 rad s−1, �′
M2

= 0.29, �′
e = 1.62 hence

|�|
�e

= 1.082.

This compares reasonably well with the observed tide with range 1.4–2.5 m at sea and 1.7–2.8 m on the
mainland at neap and spring tide, respectively. Abusively extending the results for a Helmholtz basin
to a quarter wavelength resonator, the famous Bay of Fundy leads to surprisingly comparable results as
well. Considering only the Bay of Fundy by itself, it has a total length of 270× 103 m and an average
width of about 50× 103 m leading toA = 1.35× 1010 m2. The entrance, 80× 103 m wide, on average
50 m deep, is estimated with cross-sectionO = 4 × 106 m2. For the effective length of the entrance we
takeLeff = 100× 103 m. Actually, the effective “channel” length for which the Helmholtz frequency
corresponds with the first quarter wavelength mode, is found by dividing the total basin length by�2/4.
The tidal amplitude at the mouth of the Bay of Fundy is 3 m, hence we find,�0 = 1.7 × 10−4 rad s−1,
�′

M2
=0.82,�′

e=0.098 and|�|/�e=2.8, which compares well with the amplification up to 8 m amplitude
within the Bay of Fundy.

6. Conclusion

Although the theoretical foundations of Lorentz’ linearization method were already put forward in
Lorentz (1922, 1926), no quantitative high-accuracy experimental validation is found in literature yet.
The theory has been developed further (Mei, 1989; Kabbaj and Le Provost, 1980; Zimmerman, 1992),
comparison with observations have been made (Ito, 1970; Thijsse, 1972), but studies using laboratory
experiments have been restricted to validating linear theory mainly (McNown, 1952; Raichlen and Ippen,
1965; Lee, 1971). Experimental papers in which the effect of nonlinear friction on the response curves
has been measured, did not provide an explicit quantitative comparison with theory, mainly because
the focus was on another topic (Horikawa and Nishimura, 1970; Bowers, 1977; De Girolamo, 1996;
Martinez and Naverac, 1988). The experiments discussed in the present paper give a clear validation of
Lorentz’ linearization principle to describe the influence of quadratic friction on the response curves for
the Helmholtz mode in an almost-enclosed basin. A good fit between theory and experiment was found.
In particular the observed decrease of the resonator’s quality with increasing amplitude corresponds
perfectly with the theoretical increase of the effective friction coefficient.

Further research will be focused on improving the quality of the resonator and measuring nonlinear
effects from non-uniform hypsometry (Maas, 1997) or continuity/advection (Miles, 1981). The first goal
may be achieved by smoothing the pipe ends in order to reduce flow separation or decreasing the basin
area, hence the tidal prism. For the second goal, artificial topography can be introduced into the basin
mimicking intertidal flats causing the basin area to depend on the water level. According to the theory this
may lead to bending of the response curve, multiple equilibria and chaotic behavior of tidal amplitudes,
possibly explaining observational reports of drifting harmonic “constants” and chaotic tidal records (Maas
and Doelman, 2002, and references therein).
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