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Abstract 

 
In this thesis we present a series of laboratory experiments on perturbed internal wave 

attractors. The internal waves are generated by applying a horizontal harmonic forcing on a 

two dimensional trapezoidal basin with a sloping wall. To visualize the waves we use the 

synthetic schlieren technique. We examine the existence and shape of the internal wave 

attractors under the presence of various perturbations. Geometrical ray tracing is used to 

predict the position of the attractors and further investigate their features. It is found to have 

a good predictive power. The experiments performed consist of three sets: we start by 

changing the forcing frequency and we find all the possible shapes of the attractors. Then we 

perturb the linear stratification of the fluid with a more strongly stratified middle layer and 

we find that the internal wave attractors persist and that their branches are curved. Lastly we 

change the shape of the basin by inserting a corrugated sawtooth sidewall. The attractor 

branches split up but the attractor is still visible and present. The relative length scales of the 

attractor and the sawtooth are found to determine the extent of the attractor’s spatial 

deformation and the skewness of the wavenumber spectra. We employ the Hilbert transform 

method to perform directional decomposition of the signal and we find that backscaterring at 

the sawtooth is significant and it introduces an anticlockwise propagation direction. Even 

when the basin is highly perturbed, the internal wave attractors are found to manifest the 

response of the fluid. 
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Chapter 1  

 

 

Introduction 
 

Fluids can be stratified due to spatial changes in temperature and/or composition; in 

addition rotating fluids can be stratified due to changes in angular momentum. In the ocean 

significant changes in density are observed in the vertical, that is the direction parallel to 

gravity. A density stratification allows for oscillations of the fluid that have their maximum 

displacement inside the fluid. The restoring force that is associated with these oscillations is 

the buoyancy force and the wave phenomena associated are called internal gravity waves. In 

a continuous stratification these waves have the special property of travelling obliquely into 

the fluid, maintaining their propagation angle with respect to the vertical. When these waves 

are present in a confined area they can create spatial patterns called internal wave attractors 

(Maas & Lam 1995; Maas et al. 1997). The internal wave attractors are closed paths on which 

the internal wave energy is focused as it propagates and reflects against the walls of the basin. 

Internal wave attractors, as found in a two-dimensional smooth trapezoidal basin with a 

linear stratification, have been studied theoretically (Maas & Lam 1995; Lam & Maas 2008), 

numerically (Grisouard et al. 2009; Hazewinkel et al. 2009) and experimentally (Maas et al. 

1997; Lam & Maas 2008; Hazewinkel et al. 2008). Here, we present an experimental study on 

internal wave attractors where we perturb the smoothness of the basin and the linear 

stratification.  

 

1.1    Internal waves 

Internal gravity waves are quite common in geophysical fluids and are very different from 

the classical waves encountered e.g. at the surface of the sea, or from acoustic and 

electromagnetic waves (Maas 2005). Their peculiarity lies in the character of their dispersion 

relation, which does not prescribe the wavelength but the direction of propagation of the 

wave. In this section we will present in short the theoretical derivation of the dispersion 

relation and we will discuss its consequences on the propagation of internal gravity waves. 

We will also make a short reference to the type of internal waves present in a rotating fluid:  

the inertial waves. 

 

1.1.1 Internal gravity waves 

The vertical displacement of a fluid parcel by some external force in a stratified fluid is 

counteracted by the buoyancy force. Due to the parcel’s inertia it overshoots the equilibrium 

position resulting in an oscillation. When a periodic forcing is applied, an internal gravity 

wave is formed that propagates obliquely within the continuously stratified fluid. 
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In a stratified two-dimensional fluid the spatial part of internal waves, within the linear 

approximation, satisfies the following hyperbolic partial differential equation (e.g. LeBlond & 

Mysak 1978) : 

 

                                                                   ������� − �	� − 
��
�
������� = 0,                                                        �1.1� 

 

which for  
� < 	� is a wave equation, where ω is the frequency of the wave and 	, the 

Brunt-Vaisala or buoyancy frequency.	 is a measure of the background density stratification 

and it is proportional to the square root of the change in density, � = �� + �∗���, with depth : 

 

	� = − ���
��∗
��  . 

 

By assuming plane wave solutions of the form: 

  ����, �� = ���������� , 
 

where A is the amplitude, and  , ! are the wave numbers in the �, � direction respectively, 

the following dispersion relation is obtained: 

 


� = 	�  �
 � + !� = 	�  �

"�  → 

                                                                               
� = 	�cos� '.                                                                      �1.2� 

 

Here θ is the angle between the wave number vector,  ) = � , !�, and the horizontal and κ is 

the wave number magnitude: " = √ � + !�. This dispersion relation dictates that waves of a 

certain frequency, ω, (so-called monoclinical, single-angled, waves (Maas 2005)), will 

propagate at a fixed angle (θ) in the fluid. The wave energy propagates obliquely downwards 

or upwards, parallel to the wave crests and troughs. This means that the group speed, +,,is 

perpendicular to the phase speed, +-, i.e. +, ∙ +- = /, (see figure 1.1).  

 

Contrary to surface waves, the dispersion relation of internal waves (1.2) does not prescribe a 

wavelength to a certain frequency. This implies that a single frequency disturbance is not 

associated with unique wave number components but it generates groups of waves. The 

dispersion relation (1.2) prescribes the direction of propagation of these waves, that is the 

direction of the wave number. A consequence of the imposed angle of propagation by the 

dispersion relation is that upon reflection on boundaries the internal waves must propagate 

with the same angle with respect to the vertical as that of the incident waves. That is because 

the frequency remains the same. This means that the angle of propagation of the reflected 

internal wave is independent of the slope of the boundary and depends solely on the 

frequency of the incident wave (see fig 1.2). This property is quite unlike that of common 

waves, for example light reflecting from a mirror, where the angle of incidence also equals 

that of reflection but with both angles being defined with respect to the normal to the 

scattering surface. This unique characteristic allows for internal waves to get focused 

(decrease of wavelength) or defocused (increase of wavelength) when they are reflected from 

an inclined boundary. When internal waves are focused the energy is also focused. When the  
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Figure 1.1 Properties of an internal-wave depicted schematically. The dashed and solid diagonals 

denote lines of constant phase; they propagate in the direction of the wave number vector, k, which in 

this example points right- and downward. The energy, on the other hand, propagates in the direction of 

the group velocity vector,+,, which is perpendicular to +-. (From Gerkema & Zimmerman, 2008) 

 

 

  

 

Figure 1.2 Schematic of wave beams reflecting at (a) a horizontal boundary, (b) a vertical boundary, 

(c) and (d) a subcritical boundary, (e) and (f) a supercritical boundary. Red and blue lines denote the 

lines of constant phase associated with incident and reflected wave beams respectively. Arrows 

positioned on phase lines indicate the directions of energy propagation. (Adapted from Nye, 2009). 
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angle of the inclined boundary with the vertical is smaller than the angle of propagation of 

the internal waves the reflection is called supercritical; the reverse case is called subcritical. In 

both cases the waves can either get focused or defocused upon reflection as depicted in detail 

in figure 1.2. All the experiments in this thesis are in the supercritical regime. 

 

When an internal wave beam reflects at a piece-wise linear topography, such as the sawtooth 

(see figure 3.2), backscattering may take place (Nye 2009). A backscattered wave beam 

propagates along the direction of the incident wave. In some of our experiments we use a 

sawtooth boundary and we study the role it plays to the focusing of the waves. 

 

1.1.2 Inertial waves 

Internal waves can also arise in a rotating fluid that is stratified in terms of angular 

momentum, even if a density stratification is absent. The restoring force associated with these 

waves is the Coriolis force (Tolstoy 1973). The ocean, because of the earth rotation 

(characterized by rotation vector Ω), is stratified in terms of angular momentum. For a solid 

body rotation this stratification is stable. It is therefore able to support internal waves, termed 

inertial (or gyroscopic) waves. These waves follow a dispersion relation similar to (1.2) that 

relates the wave frequency to the angle of propagation and they have the same properties as 

the internal gravity waves. 

 

1.2    Internal wave attractors 

The focusing (defocusing) property of reflecting internal waves allows for the formation of 

wave attractors when the waves are present in a confined area. Maas & Lam (1995) showed 

theoretically that in a confined geometry with at least one sloping wall, focusing dominates 

over defocusing. In such a geometry the waves, following a series of reflections, are attracted 

to a certain path, they approach a limiting orbit. This closed path is the internal wave 

attractor. 

 

In a two-dimensional trapezoidal domain with one sloping wall, as depicted in figure 1.3, 

within certain ranges of frequencies, attractors can arise, whose shape is similar, e.g. 

trapezoidal as in the example of figure 1.3. The waves are focused on the attractor and so does 

the energy that travels along the closed path. The wavelength decreases upon each reflection 

while the amplitude of the velocity increases, implying large shear along the path. When 

internal wave attractors are present in a basin they set the spatial distribution of energy. 

 

1.2.1 Internal wave attractors in the laboratory 

Internal wave attractors in nearly two-dimensional basins have been observed in the 

laboratory. Although the basins had a finite width, the wave motion was assumed to be 

uniform in the third dimension (Maas et al. 1997; Hazewinkel et al. 2008). Maas et al. (1997) 

found experimental evidence of an internal wave attractor, in a trapezoidal tank with one 

sloping wall. The basin was filled with a linearly stratified fluid and was brought into a 

vertical oscillation. Initially, wave motions with half the forcing frequency were excited by 

parametric instability (Benielli & Sommeria 1998). After a certain time and with the process of 

focussing, the wave motions were finally found to be localized around a closed path in the 

tank, the attractor, as predicted by theory (see figure 1.4)  
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Figure 1.3 Internal wave rays, starting from a red dot at the surface, converge to an attractor in a 2-D 

trapezoidal geometry with a sloping wall. The dashed lines show the consecutive reflection path of the 

waves until they reach the red line (internal wave attractor). The arrows indicate the initial anti-

clockwise direction of the rays that then changes into clockwise, which is the ultimate focusing 

direction.  

 

 

Figure 1.4 Internal wave attractor in a 2D trapezoidal basin. Visualization of the isopycnal 

displacements (larger in the light areas) was possible with dye lines. Picture taken from Maas et, 1997. 

 

Hazewinkel et al. (2008) performed a series of laboratory experiments to further investigate 

the dynamics of internal wave attractors in a trapezoidal basin. They studied the  

development, steady state and decay of an internal wave attractor (fig 1.5). They generated 

internal waves by vertically oscillating the basin; the basin scale waves reflecting on the 

sloping boundary were focused on an attractor. After a certain time a steady state was 

reached and the scale of the attractor was set. They found that the focusing of the basin scale 

internal waves takes the energy to smaller scales where viscous dissipation dominates 

preventing any further focusing. When the forcing was terminated and internal waves were 

no longer generated, the attractor started to decay with the low wave numbers (large 

wavelengths) disappearing first, as the transfer of energy continued. The disappearance of the 

low wave numbers showed up as more and more fine structure of the attractor in time. 

Spectral analysis, (figure 1.6�1�), pointed out that the dominant wave number increases as the 

attractor decays. 

 

The study of the wave number spectra of the attractor during the steady phase, showed that 

while following their path around the attractor, starting from the sloping wall and moving 

clockwise, the high wave numbers disappear and the low wave numbers remain. This viscous 

broadening of the attractor branches (S1 to S4) corresponded to the shift to lower dominant 

wave numbers (fig 1.6 - a).  
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Figure 1.5 Four snapshots of the harmonically analysed density gradient perturbation field, showing 

the attractor at the steady state (part a) and its decay with time after the forcing was terminated (parts 

b, c and d) revealing that the shorter wavelengths decay later. (Figures taken from Hazewinkel et al. 

2008) 

 

 

 
Figure 1.6 Spectral analysis (a) Spectra of harmonic analysis during the first period of the decay. The 

annotations S1-S4 are related to the four branches, starting from the slope in a clockwise direction; 

their exact definition will be given in chapter 4. (b) Time evolution of the spectrum along the first 

branch during the decay phase of the attractor. (Figure taken from Hazewinkel et al. 2008) 

 

1.2.2 Numerical modelling of internal wave attractors 

Internal wave attractors were recently modelled numerically by Grisouard et al. (2008) and 

Hazewinkel et al. (2009) with the MIT general circulation model (Marshall et al. 1997). The 

laboratory experiment performed by Hazewinkel et al. (2008), described in the previous 

section, was reproduced with the MIT model in a two-dimensional setting and was compared 

with the experimental results. Hazewinkel et al. (2009), made a quantitative comparison 

between the model simulation and the laboratory experiment and they found a strong 

correspondence. They demonstrated that the numerical model reproduces quantitatively 

comparable attractors to the laboratory experiments, suggesting that the narrow three 

dimensional tank can indeed be considered effectively two dimensional. 
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1.3  Relevance of this research 

The experimental research on two-dimensional internal wave attractors performed to this 

date focuses on the simple case of a trapezoidal basin with smooth sidewalls and uniform 

stratification. Within this setting the forcing frequencies used are chosen such that only the 

simplest of all attractors is found (van Breevoort, 2007). The next step toward a holistic 

representation of the two-dimensional internal wave attractors is to investigate whether they 

are also found when perturbations to the basin shape or to the linear stratification are made, 

or when the forcing frequency is varied. This comprises the topic of this thesis. 

 

We investigate the perturbed internal wave attractors with a series of experiments performed 

in a two-dimensional trapezoidal basin similar to the one used by Hazewinkel et al. (2008) 

and we study the occurrence and position of the attractors using the ray tracing method 

(Maas & Lam 1995). We start by scanning the smooth basin filled with linearly stratified fluid 

with various forcing frequencies. We show that complex internal wave attractors can be 

formed whose structure is predicted by the ray tracing method. Then we fill the tank with 

fluid having a non-uniform, three layer type of stratification, in which the rate with which 

density increases, varies with depth. We observe transmission and reflection of the generated 

internal wave beams at the interfaces of the layers but we find that an internal wave attractor 

still exists in such a setting and consists of curved rays. Finally, the tank is filled again with 

linearly stratified fluid and we perturb the shape of the vertical side wall of the basin with a 

variety of sawtooth corrugations. As mentioned in section 1.1, when an internal wave beam 

reflects on a piece-wise linear topography, such as a sawtooth wall, backscattering takes 

place. We observe this in the tank and we find that the attractor shape becomes complicated 

but it is not removed. The ray tracing method was adapted for the perturbed side wall and it 

approximately gives the shape and location of our observations. This setting is further 

explored with ray tracing and we find that the corrugations can radically change the 

geometry of the tank affecting the occurrence of internal wave attractors. 

 

With the work presented here, the complexity level in the study of two dimensional internal 

wave attractors is raised. The importance of the internal wave attractors in setting the spatial 

energy pattern when present in an enclosed domain is stressed. The internal wave attractors 

are found to manifest the fluid response even when the basin is highly perturbed. Moreover 

the ray tracing method was found to have a good predictive power, regardless of its simple 

nature, when its limitations are taken into account. 

 

1.4  Thesis outline 

The thesis is organised as following: In chapter two we present the ray tracing method first 

used by Maas & Lam (1995) for smooth basins and we adapt it to the perturbed basin shapes 

by introducing a sawtooth boundary. Through a number of examples we show the effect of 

the corrugations on the attractors. In chapter three we present the set up of the laboratory 

experiments and describe the visualisation techniques used (synthetic schlieren, Dalziel et al. 

2000; Hilbert transform, Mercier et al. 2008). In chapter four the default experiment is 

described. This experiment was performed in a smooth trapezoidal basin filled with linear 

stratification and it is used as a reference point for the perturbed variations following in 

chapter five. There, the three sets of experiments performed are presented: the frequency 

scan, the non-uniform stratification and the sawtooth topography. We end up with a 

summary of the conclusions in chapter six. 
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Chapter 2  

 

 

Ray tracing in an enclosed domain 
 

 

In this chapter we describe the ray tracing model used to predict the type and position of 

internal wave attractors for the laboratory experiments performed. The ray tracing technique 

applied to internal waves attractors was originally used by Maas & Lam, 1995 for a number of 

smooth basins assuming linear stratification. Here, we use this method to scan the basin for a 

series of frequencies and we expand it to include a corrugated sidewall. 

 

2.1  Ray tracing model 

Internal waves can be described in terms of rays. The rays are straight lines, parallel to the 

lines of equal phase, showing the energy propagation. They make a fixed angle with the 

vertical, determined by the dispersion relation (eq. 1.2): 

 

' = arccos 4
	5 . 
 

The rays coincide with the characteristics of the hyperbolic partial differential wave equation 

of internal waves (eq. 1.1). The characteristics are lines on which a partial differential equation 

has the same solution. This amplifies the importance of rays in the internal wave application. 

They can be used to construct exact solutions geometrically. 

 

Ray tracing is commonly used in linear geometrical optics to describe the behaviour of wave 

characteristics (e.g. Lighthill 1978). Longuet-Higgins (1969) showed the scattering behaviour 

of internal waves using the geometrical ray tracing method and Maas & Lam (1995) used ray 

tracing to describe the geometric focusing of internal waves in an enclosed basin. Following a 

ray that starts from a point at the surface of the fluid we can trace its path in an enclosed 

domain. The ray bounces at the boundaries like a frictionless ball on a billiard table (Maas & 

Lam, 1995) but with a major difference: when it hits an inclined boundary the angle of the 

reflected ray does not equal the angle of incidence relative to the bottom normal, see figure 

1.2. The angle of propagation for a certain stratification and frequency does not change and 

the ray (energy) is permitted to move only in one of the four directions defined by θ. By 

following a simple iterative bouncing process we can predict the existence and position of an 

internal wave attractor in a two-dimensional domain. 

 

We followed this procedure to model the internal wave attractors expected to be found at the 

laboratory experiments. In the model we introduce a system of stretched non-dimensional 
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coordinates following Maas & Lam (1995). By combining the frequency, ω, and the 

stratification, 	, to the depth, 6, and basin half-width, 7, we define the dimensionless depth, 

τ. In a trapezoidal domain, this is: 

 

                                                        8 = tan ' 67 = ;	�

� − 1<= �⁄ 67 .                                               �2.1� 

 

The horizontal coordinate, �, is scaled with half width, 7, so the centre of the tank is 0 and the 

value of this coordinate can vary from −1 to +1. The intersection point of the slope with the 

top of the tank is defined as � = �; for  � = −1 the tank has a rectangular shape and for � = +1 the tank has a triangular shape. By using this scaling the characteristics have a fixed 

angle of 45° with the vertical. 

 

The rays can start from any given point of the surface but for the same forcing frequency and 

stratification in a smooth 2-d trapezoidal basin, all converge onto the same internal wave 

attractor,. The direction that a ray initially moves, that is to the right or to the left, does not 

influence the uniqueness of the attractor. An example where from two points at the surface 

the rays are followed for 1000 iterations, coloured red and blue, is given in figure 2.1. Both of 

them converge to the same rectangle, the internal wave attractor. In this example the 

parameters used are 8 = 1.66 and  � = −0.43 . The value of d corresponds to the trapezoidal 

basin filled at 6 = 260 !!, used for the default experiment. 

 

2.2  Frequency scan with the ray tracing model 

When the forcing frequency changes the angle of propagation of the waves changes according 

to the dispersion relation and a different internal wave attractor is formed. In the ray tracing 

model, instead of changing the angle of propagation of the rays we adapt the tank 

dimensionless depth (τ). For example two different forcing frequencies,  
= = 1.46 CD� EF= 

and  
� = 1.78 CD� EF=, in the same tank filled with water of the same stratification (	 =2.15 CD� EF=) and the same height, will result in two different internal wave attractors, as 

shown in figure 2.2, with 8= = 1.49 and 8� = 0.94 (here plotted in the original, fixed basin 

shape). 

 

The periodicity of an attractor is defined by two numbers (a,b), indicating the times it reflects 

on the surface, (a), and on the side boundaries, (b), accordingly; for example the attractor for 8= = 1.49  of figure 2.2 is a (1,1) attractor indicating one reflection at the surface and one on 

each sidewall. Accordingly, the attractor for 8� = 0.94 is a (2,1) attractor. 

 

By scanning the basin with a range of frequencies the occurrence of attractors can be found 

for a certain basin and stratification. We do this with the ray tracing model by varying τ. In  

the following bird eye view τ-x diagram (figure 2.3) the reflections of the characteristics on the 

surface are shown, between 950 and 1000 iterations, for a range of τ from 0.8 to 2.1. Within 

this iterative range the x-positions are indicative of the points that an attractor reflects at the 

surface. For our tank, (� = 0.32 and 	 = 2.15 CD�EF=), the τ range corresponds to a forcing 

period range of 3.41 E to 5.28 E. In the diagram the areas of the (1,1) and (2,1) attractors are 

clearly visible. In the experiments described in chapter 5, a frequency scan of the basin will be 

done within the period range shown in the diagram and the different kind of attractors found 

will be shown and compared with the results of the ray tracing model. 
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Figure 2.1 Ray tracing of internal waves in an enclosed 2-d trapezoidal basin with 8 = 1.66  and  � = −0.43. The red dotted line depicts the path of a ray starting leftwards at the surface at � = −0.3 

and the blue one a ray starting from � = 0.9, see triangles. They both converge on the same internal 

wave attractor. 

 

 

Figure 2.2 Ray tracing of internal waves in an enclosed 2-d trapezoidal basin (� = −0.32) with 8 = 1.49 and  8 = 0.94. The blue dotted line depicts the path of a rays starting at � = 0.1 and the red 

solid line is the focused rays on the internal wave attractor. 

 

2.3  Perturbing the ray tracing model 

The ray tracing model presented in the previous paragraphs describes a smooth trapezoidal 

basin. One of the objectives of this thesis is to study the internal waves attractors in a 

perturbed environment. For this we introduce a corrugated topographic profile at vertical 

side-wall of our model and we follow the ray paths. The corrugations used are rectangular 

triangles (sawtooth) and are characterized by a horizontal length scale, JK  ; the height of the 

triangle changes with the width. Note that the appearance of the triangles, plotted in this 

chapter, is affected by the stretched representations of the basins. 
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Figure 2.3 Bird eye view of the x-position of an attractor reflecting at the surface shown by following a 

ray from 950 to 1000 iterations in a basin with � = −0.32.  

 

The procedure followed is the same as in the smooth case. We shoot the rays from the surface 

and follow their path for 1000 iterations. We are going to examine some perturbed basins and 

we are going to compare the bird eye view diagrams with the smooth case (figure 2.3), in 

order to detect how the shape and existence of the attractors are affected by the corrugations. 

We also use this model to simulate the experiments performed with a sawtooth side-wall.  

 

2.3.1 Varying the number of peaks 

We vary the number of peaks of the corrugated boundary; we start by introducing only one 

peak and then we subsequently introduce three, seven and twenty peaks. The position of the 

attractor is determined by τ and d as before but it may also be affected by the corrugations. 

For the attractors shown in figure 2.4 the same τ and d were used as in figure 2.2�D�, so any 

difference in their position is due to the presence of the sawtooth boundary. We observe that 

the larger the corrugation wavelength the bigger the excursion of the focusing loop compared 

to the attractor of the smooth boundary case. It can well be argued that since the geometry of 

the tank is changing radically in the presence of the sawtooth, the τ parameter should be  

redefined. However, we simply use it, as defined in equation 2.1, as a comparative measure 

of the excursion of the “smooth” attractor due to the corrugations. 

 

2.3.2 Varying τ 

Next we are going to vary τ to see how the corrugated walls affect the bird-view τ-x diagram. 

We are going to zoom into (1,1) attractor region for a varying number of corrugations and 

compare it with figure 2.3, see figure 2.5. The first point to notice is that an attractor exists for 

every 8 of the (1,1) region of the smooth case, 1.32 ≤ 8 ≤ 2. However, the lower limit of this 

region, 8 = 1.32, is expanded as  the perturbation of the basin increases. For  M = 2 peaks,  the 

lower 8 limit is 8 = 1.23; as the number of corrugations increases, so the perturbation becomes 
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Figure 2.4 An internal wave attractor in a trapezoidal basin with sawtooth sidewalls of varying 

corrugation numbers, 8 = 1.49  and  � = −0.32. Rays starting at � = 0.1. Note that the rectangular 

triangles from which the corrugations are built, are stretched in these representations. Compare with 

smooth sidewall case, figure 2.2 (a). 

 

 

 

Figure 2.5 Bird eye view of the x-position of an attractor reflecting at the surface shown by following a 

ray from 1900 to 2000 iterations in a basin with � = −0.32 and varying number of corrugation peaks 

(n). The number of peaks is indicated in each diagram. The two red marks at the n=7 diagram indicate 

the points considered for figure 2.7.   
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less significant, the lower 8 limit tends to reach the value of the smooth case lower limit, that 

is 8 = 1.32. In general, the appearance of the bird eye view diagram resembles more the 

smooth boundary case as the number of corrugations increases, and for n=100 it is almost 

identical. 

 

Obviously, one of the consequences of the corrugations is the appearance of discontinuities 

on the transition of the x-position of the attractor from the one end of the basin to the other. 

These jumps are associated to the number of peaks of the corrugated side-wall, M. There 

appear to be M − 1 such jumps. What actually happens to the attractor can be seen in figure 2.6, where we plot the attractor in a M = 7 basin and for the values of τ at the discontinuity 

jump marked with red in figure 2.5. In figure 2.6 we see that the internal wave attractor for 8 = 1.709 (exactly after the jump) needs a large number of iterations in order to be 

established. In the bird eye view diagram discontinuities are visible. The part of the sawtooth 

sidewall that the rays need to reflect on, for the transition of the surface x-position to be 

continuous, is locally defocusing the rays. This makes the establishment of an internal wave 

attractor impossible at the specific position. However, the focusing from the sloping side-wall 

dominates and the attractor is finally established. 

 

 

Figure 2.6 An internal wave attractor in a basin with n=7 peaks for two neighbouring  values of τ 

indicated by a red mark in figure 2.6. The ray path to the establishment of the attractor is shown with 

the thin dashed blue line. The attractor for 8 = 1.709 needs a large number of iterations to be 

established. The thick dashed blue line on the right repeats the attractor shape on the left.  

 

2.3.3 Varying the initial position 

Observing the sensitivity of the attractor position to changes in the corrugated geometry, a 

question that occurs is: Is the attractor occurrence influenced by the initial position that a ray 

is shot? If this is true then for a certain frequency, contrary to the smooth basin case (figure 2.1), more than one attractors may appear,. Maas & Lam (1995), showed that in a bucket-

shaped domain for odd-period attractors, that is attractors that reflect an odd number of 

times at the surface, as the (1,1) attractors that we examine, there are two separate limit cycles 

instead of one. Which one is established depends on the surface position and the direction 

(left or right) that the ray is shot. The presence of only one limit cycle in the smooth case 

(figure 2.1) is exceptional, owing to the symmetry of the trapezoidal basin. 

 

In figure 2.7 an example is shown that confirms the dependence of the attractor position on 

the initial shooting point for a corrugated wall with M = 7 peaks. When the direction of the 

ray is to the right, two limit cycles appear (blue and red lines), where if the ray is shot to the  
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Figure 2.7 The dependence of the position of an internal wave attractor on the initial point and 

direction of shooting a ray in a trapezoidal basin with a sawtooth side-wall M = 7 and N = 1.7. The 

attractors  plotted are the ray paths between 1900 and 2000 iterations (note that a greater number of 

iterations results in the same attractors). The red line depicts the focusing loop for rays starting from −0.32 ≤ � ≤ 0.27 and � = 1 for right moving rays and from −0.32 ≤ � ≤ 0.25 for left moving rays; 

the black for rays starting from 0.26 ≤ � ≤ 0.35 for left moving rays. and the blue for rays starting 

from 0.36 ≤ � ≤ 1 for left moving rays and from 0.26 ≤ � < 1 for right moving rays. The surface 

points have been coloured accordingly for the left and for the right moving rays. 

 

left one more limit cycle appears (black line), giving in total three possible cycles. The red 

attractor appears for right moving rays starting from −0.32 ≤ x ≤ 0.27 and x = 1 and from −0.32 ≤ x ≤ 0.25 for left moving rays; the black attractor appears  only for  left  moving rays 

starting from 0.26 ≤ x ≤ 0.35; and finally the blue attractor appears for left moving rays 

starting from 0.36 ≤ x ≤ 1 and from 0.26 ≤ x < 1 for right moving rays. In a real basin the 

rays are theoretically emanating from the whole surface, so maybe in the presence of a 

corrugated sidewall, more than one attractor is visible in one experimental setting. 

 

2.4  Limitations of the ray tracing method 

An effect of the corrugated side-wall that ray tracing fails to predict for the subcritical regime, 

angle ray steeper than angle topography �' < P�, is the backscatter of the wave beams from 

the corrugations (Nye, 2009). According to the theoretical predictions of Baines (1971) for a 

sinusoidal boundary, when a wave beam reflects at the topography it is being scattered. Part 

of its energy is being scattered forward, that is along the direction predicted by ray tracing, 

and when �' < P� part of the energy is being scattered backward, propagating along the 

direction of the incident wave but in the opposite sense. Nye (2009) showed, with 

experimental observations, that piece-wise linear topographies, including the sawtooth, give 

a backscatter component, similarly to the sinusoidal boundary. On the contrary, ray tracing 

does not predict a backscatter component (Longuet-Higgins, 1969). Backscattering, although 

not predicted by ray tracing is expected to appear in our experiments too. To investigate 

backscattering, we employ the Hilbert transform method described in chapter three. 

 

Another weakness of the ray tracing method, when used to simulate experiments, is related 

to its sensitivity to the input parameter τ. As we saw, a small change in τ can result in 

different focussing loop shapes. According to equation 2.1, τ depends on the stratification, 

frequency and dimensions of the basin. Thus, small experimental errors may prevent ray 
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tracing from accurate predictions. The predictive power of ray tracing is tested in chapters 4 

and 5, where its outcome is compared with the experimental data. 
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Chapter 3  

 

 

Experimental set up 
 

 

The experiments were performed in the GK Batchelor Laboratory of the University of 

Cambridge. The set up consisted of a trapezoidal tank similar to the one used by Hazewinkel 

et al. (2008), a horizontally oscillating platform where the tank was mounted on and a camera 

for recording. To visualize the internal waves, synthetic schlieren (Dalziel et al., 2000) was 

used, which gives the perturbation density gradient fields. To study in detail the direction of 

propagation of the waves the Hilbert transform technique was employed (Mercier et al., 

2008). 

 

3.1  Generation of internal waves 

3.1.1 The tank 

The experiments were performed in a narrow rectangular tank with a sloping end wall fixed 

at the bottom at an angle, P, of 27o to the vertical and dimensions 330 � 101 � 453 !! (height 

x width x length). The wave motion in this tank was approximately uniform in the narrow 

cross tank direction (y), so we can refer to the setting as quasi two dimensional, with the 

horizontal and vertical coordinates, x and z respectively, being the ones of interest in our 

study. 

 

To study the response of the internal wave attractors to a perturbed basin, we performed a 

series of experiments with three different corrugated side walls consisting of rectangular 

triangles with varying length scale, (figure 3.2). The corrugations were always attached on the 

vertical side-wall opposite to the sloping wall over the whole width. Each sidewall is 

characterized by a length scale, JK , defined as the distance between two subsequent peaks. In 

table 3.1 the characteristics of the sidewalls are presented. 

 

3.1.2 Filling the tank 

The fill the tank, we used two computer-controlled Masterflex peristaltic pumps. Each pump 

was connected to a basin of water, one filled with water of high salinity and one with fresh 

water. The flow of the pumps  was programmed  such that the desired stratification would  

result. The use of the pumps instead of the double bucket method allows for a linear 

stratification in a tank in which the horizontal dimension varies with height (Breevoort, 2007). 

For the experiments involving the non smooth sidewalls and the frequency scan, the tank was  
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Figure 3.1 The tank used for the experiments filled with water and pearlescence particles. Picture 

taken during a Particle Image Velocimetry experiment.  

 

     

Name Shape Length scale, Q+, (mm) Nr peaks Peak angle 

P II (Tiny) Triangular 10 20 90 

P III (Small) Triangular 38 7 90 

P IV (Aggressive) Triangular 74 3 90 

Table 3.1 Characteristics of the corrugations attached to the vertical side wall of the tank. 

 

 

    

Figure 3.2 The three sawtooth sidewalls used for our experiments.   

 
filled with continuously stratified water of 	 R 2.2 CD� EF= and a depth of approximately 280 !!. For the experiments with the non uniform stratification, the stratification was 

characterised by a steeper gradient in the middle. That is: 	 = 1.8 CD� EF= for the bottom 

layer, 	 = 3 CD� EF= for the middle layer and again 	 = 1.8 CD� EF= for the top layer. The 

Masterflexpumps were programmed using a hyperbolic secant function: 

 

	��� = 	� S1 + � sech� S� − 6 2V
7 WW, 

 

where 	� = 1.8 CD� EF=, � = 0.7, 7 = 0.5 and 6 = 2.9 . For a graphical representation see fig 

3.3. 
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Figure 3.3 Density profile and Brunt-Vaisala frequency for the uniform and non-uniform stratification 

experiments. The blue line indicates the desired stratification and the red line shows the measured 

stratification. 

 

To establish the stratification we used a density probe that could traverse the tank. The probe 

was sampling the water as it moved from the top to the bottom of the tank and an output 

voltage was given, by measuring the conductivity of the sample. The voltage indication of the 

probe was calibrated by using water samples the density of which varied from 0.9988 g cm-3 

to 1.1780 g cm-3; these were the minimum and maximum density values used in the 

experiments. For the calibration of the density probe we had to take into account the  

following: firstly, the density of the water depends also on the temperature and secondly, the 

voltage output of the probe is correlated to the conductivity of the water which in turn 

depends on the temperature in a way that is dictated by the density. For the range of salinities 

that we used, a change of 50C in the temperature changes the density in the order of 10-3, 

which is negligible, so we assume the density to be constant with temperature. However, the 

dependence of the conductivity on the temperature cannot be neglected. At high salinities the 

response of the probe varied significantly with temperature (see fig 3.4). Measurements up to 

6 V, indicating low salinities up to 1.1 g cm-3, were quite consistent with temperature and 

introduced errors only at the third decimal point of the density. Measurements higher than 

6V, salinities higher than 1.1 g cm-3, had a certain degree of uncertainty since they could 

introduce errors at the second decimal point of the density. For this reason, for every density 

measurement with the probe we also measured the average temperature of the water in the 

tank and we used the appropriate calibration curve to get the density values. We refer to the 

average temperature as the top and bottom of the tank had about 1 0C difference. 

 

3.1.3 Oscillation on the platform 

The internal waves were forced by horizontally oscillating the tank. The sloshing on the 

sloping side of the tank created basin scale internal waves that focus with subsequent 

reflections. To achieve the oscillation, the tank was placed on a horizontally, nearly 

sinusoidally, oscillating platform driven by a rotating wheel mechanism (fig 3.5) with an 

adjustable amplitude. The frequency and the amplitude of the oscillation were controlled.  

 

The frequency was set by a remote external control which was calibrated before the 

experiments started. To calibrate the frequency control we performed a series of 

measurements   for   all   the   possible   values.   The   indications  on   the   control   and   the  
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Figure 3.4 Calibration curves of the density probe indicating the varying response of the probe output 

(voltage) to different temperatures. 

 

 

 

Figure 3.5 The platform supporting the tanks. The rotating wheel giving motion to the platform is 

visible in the right bottom corner. 

 

 

 

Figure 3.6 Calibration curve for forcing period of the platform. 

 

 

0.95

1

1.05

1.1

1.15

1.2

0 5 10

D
e

n
si

ty
  (

g
/c

m
-3

)

Voltage Output

Calibration curves - Density probe
19 C

19.5

C

20C

20.5

C

y = 534.2x-0.937

0

2

4

6

8

10

12

0 100 200 300 400

P
e

ri
o

d
 (

s)

Indication

Calibration curve - platform period



Chapter 3: Experimental set up 

20 

 

 

 

Figure 3.7 Calibration curve for the forcing amplitude of the platform. 

 

corresponding oscillation periods are shown in figure 3.6. The wave motions generated with 

this method have a frequency equal to the forcing frequency. For the experiments presented 

here, the amplitude of the platform oscillation was set to 2 cm by setting the radius of the 

adjustment point of the motor wheel of the table. The calibration curve, X = −19.67� +415.31, is shown in figure 3.7. 

 

3.2  Observing the Internal Waves 

3.2.1 The synthetic schlieren method 

To measure the motions in the fluid the synthetic schlieren method was used. Synthetic 

schlieren, introduced by Dalziel et al. (2000), allows for a fine study of the density differences 

in a fluid. This is achieved by measuring the refractive index changes resulting from density 

perturbations and comparing them to an unperturbed image. When a light ray passes 

through the fluid, the direction of propagation of this ray is altered according to the local 

value of the gradient of the refractive index. The density perturbations change the refractive 

index, hence change the direction of the light. This is observed as apparent movement of a 

fixed random dotted pattern placed on a light-bank behind the platform. So by measuring the 

apparent displacements of the dots we can deduce the density perturbations, �Y��, N�, by 

comparing with an unperturbed reference image.  

 

3.2.2 The laboratory set up 

For our experiments a random dot pattern (fig. 3.8) was attached to a light bank placed in a 

fixed position of about 0.5 m behind the oscillating platform and the tank. The apparent 

movement of the dots was captured by a Jai CV-M4+CL camera (1.3 M Pixel Monochrome) 

which was placed on the opposite side of the light bank at a distance of about 8m from the 

tank; at this distance the rays reaching the camera were approximately parallel. The camera 

was connected to the laboratory computer, where the frames captured were translated into 

perturbations of the density gradient and stored.  

 

For the part of the experiments that the tank was oscillating, the camera was phase locked 

with the oscillation, capturing an even number of frames evenly spaced through each forcing 

period. For most of the experiments 16 frames per period were captured. The signal to 

capture an image was given by  an optical eye which monitored a number of triggers (screws)  
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Figure 3.8 Experimental set-up 

 

placed on the driving rotating wheel of the table. The time interval between capturing the 

images was constant (since the revolution period is constant) so we had an image of the tank 

at exactly the same spot, for 16 spots. This enabled us to  further analyze the data, with each 

of the 16 snapshots having each their own (unperturbed) reference frame. 

 

Fluctuations of the temperature between the tank and the camera result in a change of the 

refractive index of the air. Because the synthetic schlieren method is very sensitive, a slight 

breeze in the lab or even the presence of a person close to the set up can be recorded by the 

camera. In order to minimize the contamination of the air motion, a tunnel of 8 ! long was 

set up, to isolate the space between the tank and the camera. 

 

3.2.3 Gradient fields and Digiflow 

The analysis of the captured images was done with Digiflow (Dalziel Research Partners, 

Cambridge), a software package able to compute the density gradient variations. Digiflow 

compares the captured images with a reference unperturbed image, taken before the tank 

starts moving and it uses the non-dimensional quantity: 

 1 = �1� , 1�� =  ∇�Y ���∗��� ��⁄ �,⁄  

 

which is the perturbation density gradient relative to the density gradient of the unperturbed 

background stratification. These quantities can be understood if we take a look at Fig. 3.9 

originally presented by van Breevoort (2007). In this illustration, pycnoclines (solid), 

perturbed from the background stratification by an internal wave (along the red dashed line) 

are plotted. By following the arrows, one observes gradients in the perturbation density, with 

respect to the background stratification, in both directions, i.e. the perturbation heights of the 

pycnoclines change along the arrows. 

 

In a strong stratification the density perturbations give rise to stronger changes in the 

refractive index. As a result the dots appear to move for much smaller perturbations. For this 

reason we aimed at filling the tanks with highly stratified water, 	 > 2 CD� EF=. In our 

analysis we present the horizontal component of the perturbation gradient density field 1�. 
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Figure 3.9 Qualitative illustration of 1�  DM� 1�. The solid black lines indicate the pycnoclines 

perturbed by an internal wave (red line). If the arrows are followed, a gradient in the perturbation 

height (thus density) is observed in the x- and z-directions.(Figure taken from van Breevoort, 2007) 

 

 

 
Figure 3.10 (a) Fourier space. The four different domains A–D corresponding to different signs of the 

wave number in the x and z space directions. (b) Direct space. A synthetic view of the four internal 

wave beams of the same frequency.\- denotes the phase velocity and it is parallel to the wave vector k 

and orthogonal to its associated group velocity \,. 

 

3.2.4 Hilbert transform 

With synthetic schlieren we are able to visualise the internal waves and with Digiflow we are 

able to get the perturbation gradient fields. We further analyse these by performing a Fourier 

transform and get the spectra of the internal waves (Hazewinkel, 2008) ; however no direct 

information is given on  the direction of propagation  of the waves. The direction of 

propagation becomes important for the corrugated wall experiments where scattering of the 

waves on the boundaries will be significant. A demodulation technique with which the 

direction of propagation of the wave beams can be distinguished is the Hilbert transform 

(HT). This method has been applied to internal waves in two-dimensional fluids for the first 

time by Mercier et al (2008). The Hilbert transform allows for the discrimination of the 

different possible directions of an internal wave beam associated with one given frequency. 

There are four possible directions for one given frequency, that is one angle of propagation.  

The beams can be discriminated by their wave vector,  � ,  � , according to the sign of both 

components, so when both the wave vectors are positive the propagation is upward and 

rightward, if both are negative then the propagation is downward and leftward, and for the 
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two remaining cases it is upward and leftward for  � < 0 DM�  � > 0, and downward and 

rightward for  � > 0 DM�  � < 0, (see also fig 3.10).  

 

The steps followed to perform a Hilbert analysis are the following: 

 

1. Perform harmonic analysis over a time equal to at least one period of oscillation and 

pick the forcing frequency. Based on this, reconstitute the filtered perturbation 

density time series. 

2. Perform a spatial two-dimensional Fourier transform of this perturbation density 

field as a function of time. 

3. Apply a selective band filter in Fourier space by choosing one of the aforementioned,  � ,  �, quadrants. In this step the four directions of propagation are isolated. 

4. Perform an inverse Fourier transform and move back to the real space. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 4: The default experiment 

24 

 

 
 

 
 

Chapter 4  

 

 

The default experiment 
 

 

In this chapter the default experiment is described. This experiment was realized in the 

smooth two-dimensional trapezoidal basin described in chapter 3 with a linear stratification. 

We outline the procedure followed for all the experiments performed. The results of this 

experiment are also used as a reference for comparison with the perturbation cases described 

in the following chapter. 

 

4.1  Experiment outline 

The experiment consisted of two parts. The oscillation phase and the decay phase. We 

oscillated the platform for 50 periods with a forcing frequency 
 = 1.26 CD� EF= and a forcing 

amplitude of horizontal displacement A=0.02 m; after 50 periods the oscillation was 

terminated and the attractor was left to decay. During the oscillation phase we observed the 

built up of the attractor. The generated basin scale waves (low wave number) from the 

sloping wall were being focused until the smallest waves (high wave number) reached the 

viscous length-scale, J, �~^�10� !!� and a balance was attained. The viscous length scale is 

defined as: J_ = ��`�= a⁄ 	⁄ , (e.g Sutherland et al. 1999), where ` is the kinematic viscosity 

(` = 1!!�EF=). This process lasted about twenty periods and from that moment on the 

attractor was in steady state. At N = 50b  the attractor was left to decay by terminating the 

oscillation of the tank. 

 

During the oscillation phase 16 frames per period were captured. On the perturbation 

gradient density field measured by synthetic schlieren, we performed harmonic analysis 

(from here on referred to as HA) over the last oscillation period. From the HA we obtained a 

complex field from which both the amplitude and phase show the attractor, see figure 4.1. 

The HA amplitude and phase are presented for the 1� component. In the amplitude figure, 

the decay of the wave amplitude in the beams due to viscosity is observed in the clockwise 

direction starting at the sloping wall (Hazewinkel et al. 2008). In the phase figure, the shear 

motion in the beams becomes visible. The colorbar in both plots is going to be used for most 

of the figures presented in chapter 5. We also present the output of the ray tracing model for 

the physical parameters of the experiment (see table 4.1) for a direct comparison with the 

observations. The wave beams that make up the attractor are from now on called branches 

and in a clockwise manner starting from the sloping wall are referred to as 1st, 2nd etc. The 

white lines, sections S1 to S4, intersecting the attractor branches perpendicularly, define the 

coordinate system and are indicative of  the sampling lines used to obtain the wave number 

spectra. 
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Figure 4.1 Ray tracing for the default experiment parameters. Amplitude and phase from observations 

from HA. The colorbars in this figure will be the same in the following plots. 
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Basin length 2L def gg 

Fluid height H 255 !! 

d Parameter d −0.42  

Forcing frequency ω 1.26 �2h 4.98⁄ � CD� EF= 

Forcing amplitude A 20 !! 

Buoyancy frequency N 2.25 CD� EF= 

Table 4.1 Parameters for the default experiment 

 

4.2  Spectral evolution 

To get the wave number spectrum of the attractor we introduce a new coordinate system �i, j� that aligns with the branches and the wave vector, k, in the ��, �� plane. The �i, j� 

system is redefined for each branch of the attractor; η is the coordinate normal to the attractor 

branch and along the white section shown in figure 4.1. For each section (S1 − S4) η is given 

by: i= = +� cos ' − � sin ' i� = −� cos ' − � sin ' ia = −� cos ' + � sin ' im = +� cos ' + � sin ', 
 

where θ is the angle of the 1st attractor branch with the vertical. In this way the buoyancy 

gradient along the i direction for the first branch, for example, is defined as: 

 1=n = 1� cos ' − 1� sin '. 

 

We then applied a Fourier transform around the forcing frequency along the white line 

sections o1 to o4 (i direction) that are shown in figure 4.1. The lines are perpendicular to the 

lines of constant phase so the wave number, k, can be resolved. 

 

In figure 4.2 the spectra of all the branches are plotted for N = 50b. As we move from o1 to o4, 

we clearly see the diminishing of the spectral peak power and its predicted shift towards low 

wave numbers (Hazewinkel et al., 2008) which is indicative of the viscous processes acting on 

the small wavelengths of the attractor branches. Comparing to the similar figure 1.6�D�, we 

observe the same pattern. The dominant wavenumber in this case is slightly greater than in 

figure 1.6�D�. This difference could be attributed to the different fluid height, 6, and 

stratification, 	, used in the two experiments; these two parameters together with the 

kinematic viscosity, `, set the value of the dominant wavenumber. We also plot the evolution 

of the wave number spectra during the whole oscillation period (figure 4.3). There the 

gradual built up of the attractor can be seen; until about t=20T the spectrum grows from low 

to high wave numbers and then it reaches equilibrium (steady state). 

 

4.3  Hilbert Transform (HT) 

To investigate the direction of propagation of the waves in the attractor we apply the Hilbert 

transform method, as described in chapter 3, to the harmonically analyzed buoyancy gradient 

field. With this method it is possible to discriminate the direction of a wave beam by 

identifying the sign of the wave vectors  � ,   �. The filtered images of figure 4.4 show in detail 

the four directions of energy propagation for the default experiment attractor. From here on  
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Figure 4.2 Wave number spectra for the four attractor branches S1-S4 of the default experiment at N = 50b along the white sections visible in figure 4.1 

 

 

Figure 4.3 Evolution of the wave number spectra along section S1 during the whole oscillation period 

(t=1:50 T). Notice that the colorbar used here is not scaled as figure 4.1 

 

we are going to denote the direction of energy propagation as A for � � > 0,   � < 0�, B for � � > 0,   � > 0�, C for � � < 0,   � > 0� and D for � � < 0,   � < 0�. In this case the attractor 

branches are mono-directional, meaning that the energy in each branch propagates only in 

one direction. If backscattering was taking place this would not have been the case. 

 

4.4  Superposition of spectra 

We apply a Fourier transform on the Hilbert filtered data similar to the one described in 

section 4.2. Then we superimpose the obtained spectra to the one shown in figure 4.2. This is 

done for each branch separately. In the ideal case of no backscattering, as the default 

experiment, the spectrum of the 1st branch (along S1) should be represented only from the A  
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Figure 4.4 Hilbert transform for the default experiment showing the four propagation directions. In A:  � > 0,   � < 0, in B:  � > 0,   � > 0, in C:  � < 0,   � > 0, in D:   � < 0,   � < 0. 

 

 

Figure 4.5 Superposition of wave number spectra of the four attractor branches S1-S4 with the wave 

number spectra after the filtering with Hilbert transform. The blue solid line indicates the wave number 

spectra before the filtering. The dotted coloured lines indicate the wave number spectra after the 

filtering, red is used for quadrant A, black for B, purple for C and green for D. 

 

spectrum, the 2nd only from B and so on. This can be seen in figure 4.5. In this figure there is a 

clear match between the energy directions and the branches. We observe a slight mismatch 

regarding the power of the superimposed spectra; the power of the HT spectra possibly 

depends on how the selection is done in the Fourier space. However, this mismatch is not 

very important here as our prime interest is in matching to each wavenumber peak a 

direction of propagation. The peak wavenumber of each branch is clearly indicated by the 

filtered data. 
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Chapter 5  

 

 

Perturbations 
 

 

Following the procedure described for the default experiment we investigate the behaviour of 

the fluid when perturbations are present. First we scan the basin with a series of forcing 

frequencies, then we fill the tank with a non uniform, three layer type of stratification and at 

last we perturb the geometry of the tank by introducing corrugated sidewalls. A discussion 

for each set of experiments accompanies the presentation of the results.  

 

5.1  Frequency scan 

In a smooth tank filled with linearly stratified water of 	 = 2.15 CD� EF=, we perform a series 

of experiments in which we vary the frequency. By varying the frequency the τ parameter is 

changing and different attractors are established following the bird eye view diagram of 

figure 2.1. We use ray tracing to simulate the experiments and its results are shown next to 

the amplitude and phase obtained by harmonically analysing the last four periods of the 

oscillation (figure 5.1). In general ray tracing is in good agreement with the observations. The 

parameters of all the experiments are shown in table 5.1. The experiments are coded as FS# 

(Frequency Scan + number of experiment). We aim in checking both the (1,1) and the (2,1) 

attractor regions visible in figure 2.1. For this we start with a low frequency and we 

subsequently move to higher values.  

 

The FS1 experiment reveals the first attractor found in the (1,1) region. The amplitude of this 

attractor compared to the default experiment is very weak but the phase structure is clear. By 

looking at the ray tracing of this experiment we find a slight disagreement. This points out the 

limitations of ray tracing when used to simulate the experiments. Ray tracing is sensitive to 

changes in the τ parameter, which is a function of the stratification and forcing frequency; 

given the uncertainties in the observations, typically at the order of a few percent, ray tracing 

gives an approximate idea of the position of the attractor. The FS2 experiment gives a clear 

(1,1) attractor, similar to the one in the default experiment. The FS3 is again a (1,1) attractor, 

however, the amplitude and phase do not clearly reveal the four branches. For this, we 

perform a Hilbert transform which clarifies the clockwise direction of energy propagation. In 

the filtered figure 5.2, the four branches can be distinguished. The ray tracing for FS4 and FS5 

reveals complicated attractor shapes. However, the amplitude and phase structures of these 

experiments give a distinguishable signal in the regions that the rays are dense. Finally the 

attractor of FS6 is a (2,1) attractor with a clear signal. We also perform a Hilbert transform for  
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Figure 5.1 Overview of the frequency scan experiments. Ray tracing, 1� amplitude and 1� phase are 

shown for the range of frequencies used. For experiment parameters see table 5.1   

 

this attractor to show the direction into which the energy propagates subsequently along the 

branches labelled 1-6, that make up this attractor (figure 5.3). 
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Figure 5.2 Hilbert Transform of the FS3 experiment, revealing the four branches of the attractor.  

 

 

 

 

Figure 5.3 Hilbert transform of the FS6 experiment showing the branches of a (2,1) attractor. 

 

 

FS3 

FS6 
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Basin length 2L def gg 

Fluid height H 300 !! 

d Parameter d −0.32  

Forcing amplitude A 20 !! 

Buoyancy frequency N 2.15 CD� EF= 

Forcing frequency ω   

FS1  1.22 �2h 5.14⁄ �  CD� EF= 

FS2  1.31 �2h 4.80⁄ � CD� EF= 

FS3  1.47 �2h 4.28⁄ � CD� EF= 

FS4  1.63 �2h 3.86⁄ � CD� EF= 

FS5  1.71 �2h 3.68⁄ � CD� EF= 

FS6  1.78 �2h 3.52⁄ � CD� EF= 

Table 5.1 Parameters for the frequency scan experiments 

 

5.2  Non uniform stratification 

The tank is filled with a three-layer, smooth transition stratification as described in chapter 2 

(see figure 3.3) and it is oscillated with a frequency of 
 = 1.3 CD� EF=. The top and bottom 

layers have the same stratification. Despite the presence of the middle layer an attractor is 

established; we present the amplitude and phase structures in figure 5.4. Because the 

amplitude is much weaker than the default experiment we use a different colorbar scale, set 

an order of magnitude lower than the one used in the rest of the experiments. The ray tracing 

model assumes a uniform stratification so it is not used for this experiment. The parameters 

of the experiment are shown in table 5.2. 

 

The propagation angle of the internal waves depends on the stratification so the attractor  

does  not  have  a  simple  structure  anymore.  The  branches  appear  to  be curved, 

indicating the smooth stratification transition between the layers. By taking a closer look we 

can distinguish the shape of two attractors, normal to each other. However, this might be 

associated with transmission and partial reflection at the interface of the layers (Nault & 

Sutherland, 2007). To have a qualitative view of what kind of effects are taking place, we filter 

the HA field to detect the directions of energy propagation, shown in figure 5.5. Only one 

attractor is clearly visible, with each branch changing its angle of propagation when it enters 

a different layer. A thinner beam starting from the top layer is visible in the A and B direction 

but it doesn’t appear in C and D. This beam seems to contribute to the enhanced amplitude 

visible as reflection of the first attractor branch in the middle layer. This renders the existence 

of a wave beam being trapped in the middle layer less probable. The branches of the attractor 

are thin enough to be transmitted from one layer to the other with minimum reflection taking 

place. 

 

5.3  Sawtooth topography 

We perform a series of experiments in which sawtooth sidewalls with varying number of 

corrugations are inserted in the wall opposite to the slope. We start with a small perturbation 

and subsequently move to larger ones. The characteristics of the corrugations are shown in 

table 3.1 and the parameters of each experiment are shown in table 5.3. The experiments are 

coded as ST# (Sawtooth topography + number of experiment). 
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Basin length 2L def gg 

Fluid height 6 290 !! 

Middle layer height ℎ 50 !! 

Forcing amplitude � 20 !! 

Forcing frequency 
 1.3 �2h 4.8⁄ �  CD� EF= 

Stratification     

top layer 	s 1.8 CD� EF= 

middle layer 	� 3 CD� EF= 

bottom layer 	t 1.8 CD� EF= 

Table 5.2 Parameters of the non uniform stratification experiment.   

 

   

Figure 5.4 Amplitude and phase of the non uniform stratification experiment. 

 

 

Figure 5.5 Hilbert transform of the non uniform stratification experiment 
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Basin length 2L def gg 

Forcing amplitude � 20 !! 

Fluid height 6   

ST1  300 !! 

ST2  264 !! 

ST3  260 !! 

d Parameter �   

ST1  −0.29  

ST2  −0.37  

ST3  −0.38  

Forcing frequency 
   

ST1  1.37 �2h 4.57⁄ � CD� EF= 

ST2  1.26 �2h 4.98⁄ � CD� EF= 

ST3  1.26�2h 4.98⁄ � CD� EF= 

Stratification  	   

ST1  2.15 CD� EF= 

ST2  2.19 CD� EF= 

ST3  2.14 CD� EF= 

Number of peaks M   

ST1  20  

ST2  7  

ST3  3  

Table 5.3 Sawtooth experiments parameters. Note that the d parameters varies between the 

experiments because the height is different. 

 

We use the ray tracing model to simulate the experiments and the results are shown next to 

the amplitude and phase obtained by harmonically analysing the  last period of the oscillation 

(figure 5.6). Considering that the attractor occurrence is affected by the corrugations, as 

discussed in chapter two, we also plot the ray paths starting from multiple surface positions. 

Although ray tracing does not predict any backward scattering from the sawtooth boundary, 

the attractors from the model are in good agreement with the experiments as can be seen in 

figure 5.6. For all the experiments, we plot the superposition spectra and for specific cases we 

show the Hilbert analysis and the evolution of the spectra during the oscillation. 

 

We start with a small perturbation with a sidewall of twenty peaks, experiment ST1. The 

attractor resembles the one in the smooth tank described at the default experiment chapter. 

The only immediate effect of the corrugation is visible in the attractor branches, which are not 

as smooth as in the default case. The perturbation does not influence the wavenumber spectra 

of the attractor, as shown in figure 5.7. A double peak in the frequency appears at the 1st 

branch; this, however, is not considered to be a direct effect of the corrugation as the energy 

direction is the same (clockwise) for both peaks. In the phase figure we can distinguish a 

beam parallel to the 1st branch; the second peak in the spectra of the 1st branch probably 

corresponds to this. No scattering, neither forward nor backward, is observed in this 

experiment. The length scale of the side wall is JK = 10!!. As seen here, this is very small to 

produce waves that can propagate for a sufficient time, as to be visible as individual beams; if 

any waves are being produced they are shortly being dissipated. 
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Ray tracing                            pq Amplitude                             pq Phase 

   

 

  

Figure 5.6 Ray tracing, amplitude and phase of the sawtooth sidewall experiments. In the ray tracing 

figures the red lines depict the paths of rays starting from various surface points and the blue lines 

depict the resulting limit cycles. 

 

 

Figure 5.7 Superposition spectra for ST1. Each branch is mono-directional similarly to the default 

experiment. 
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In the next experiment, ST2, a sawtooth with 7 peaks seems to really perturb the fluid 

response. When the oscillation starts an intense activity is observed immediately at the 

topography, with waves generated at the peaks. However, the focused basin scale generated 

waves are the ones contributing to the observed pattern when the steady state is reached. The 

pattern is recognised as an internal wave attractor, but distorted. More specifically, the 

internal wave energy is still focussed around an attractor, but the corrugation at the  sidewall, 

which has a length scale of JK = 38!!, seems to  break  the beam structure of the branches.  

 

The breaking of the beam structure is clearly seen in the spectral analysis (figure 5.9). The side 

walls introduce new dominant wavenumbers to the spectra. The dominant wavenumber in 

the 1st branch,  =- = 0.13 !!F=, is associated with the presence of the sloping wall. It can also 

be picked in the rest of the branches, subsequently diminishing in power, as expected, due to 

viscous effects. It is not, however, the dominant wavenumber in the 2nd and 3rd branches. 

There, the dominant wavenubers are associated with the sawtooth; in the 2nd branch it is  �- = 0.33 !!F=, and in the 3rd branch it is  a- = 0.39 !!F=. The filtered amplitude, where 

we can distinguish the directional components of the branches, is shown in figure 5.8. The 

superposition of the Hilbert spectra is shown in figure 5.9. With HT we can readily separate 

the incident from the reflected waves. In the superposition of spectra we observe that the 

energy direction of the dominant wavenumber in the 2nd branch, is away from the sawtooth. 

This indicates that backscattering is taking place. The backscattering is also visible in the 1st 

branch. Waves travelling in the anti-clockwise direction reflect at the surface contributing to 

the second wavenumber peak appearing in the 1st branch  =u- = 0.28 !!F=. The smaller 

value of  =u- compared to  �- is due to viscous effects. As the waves propagate, they are 

being dissipated, similarly to the viscous broadening observed in the branches of the smooth 

attractor. They propagate as individual beams along the 2nd branch, but viscous effects erase 

their structure when they have reached the 1st branch. Continuing their anti-clockwise 

propagation along the 1st branch, they reflect on the sloping wall where they are defocused by 

the slope. In the 3rd branch, the direction of the scattered energy is away from the sawtooth 

contributing constructively to the clockwise direction of the attractor. The power of the 

scattered wavenumber compared to the 2nd branch is lower. This suggests that backscattering 

is more significant than forward scattering. The scattered waves reflect at the bottom and 

appear in the 4th branch. Dissipation however has diminished their power to a level lower 

than the wavenumber of the attractor and by the time they reach the slope they have 

disappeared. 

 

Next, we plot the evolution of the wavenumber spectra for the whole duration of the 

oscillation period, N = 50b, and for all the branches (figures 5.10 to 5.13). Note that the 

colorbar is different for each branch. In the 2nd branch the wavenumber associated with the 

sawtooth,  �-, appears simultaneously to the wavenumber associated with the slope,  =-. 

This suggests that the energy in the counter-clockwise direction is purely due to 

backscattering and not due to direct generation at the sawtooth. The same holds for the 3rd 

branch, with the difference that instead of backscattering the waves are scattered forward. At 

the 1st  branch, the wavenumber associated with the sawtooth is established later than the 

attractor’s, indicating its purely backscattering nature, as expected. The backscattered waves 

in the 1st branch appear about 5 periods after they do in the 2nd branch and they are much 

weaker. This is because dissipation processes are acting on it. 
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Figure 5.8 Hilbert transform of the ST2 experiment. 

 

 

 

 

Figure 5.9 Superposition of spectra with the Hilbert transform spectra for ST2. 
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Figure 5.10 Wavenumber spectral evolution for the oscillation period for the first branch of ST2. The 

contour lines are marking the evolution of the Hilbert spectra. The color coding of the contour lines is 

similar to figure 5.9 Red for the A component, Black for B, Green for C and purple for D.  

 

 

Figure 5.11 Wavenumber spectral evolution for the oscillation period for the second branch of ST2. 

The contour lines are marking the evolution of the Hilbert spectra. The color coding of the contour 

lines is similar to figure 5.9 Red for the A component, Black for B, Green for C and purple for D. 
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Figure 5.12 Wavenumber spectral evolution for the oscillation period for the second branch of ST2. 

The contour lines are marking the evolution of the Hilbert spectra. The color coding of the contour 

lines is similar to figure 5.9 Red for the A component, Black for B, Green for C and purple for D. 

 

 

Figure 5.13 Wavenumber spectral evolution for the oscillation period for the second branch of ST2. 

The contour lines are marking the evolution of the Hilbert spectra. The color coding of the contour 

lines is similar to figure 5.9 Red for the A component, Black for B, Green for C and purple for D. 

 

 

 



Chapter 5: Perturbations 

40 

 

 

Figure 5.14 Superposition of spectra with the Hilbert transform spectra for ST3 

 

Another notable point is the fluid between the sawtooth peaks. In figure 5.6 , an increased 

activity is observed which hints at mixing processes taking place at the boundary region. The 

mixed fluid spreads out horizontally. However the time scale is much smaller than the 

experiment time and does not affect the attractor shape.  

 

In the ST3 experiment, the corrugation has three peaks but it also includes the first quarter of 

the fourth peak. Even though we used only three peaks in the ray tracing, the results are 

satisfactory (figure 5.6). The dense rays emanating from the topography edges are observed 

as the breaking of the attractor branches. The effects of the corrugation are similar to the ST2 

experiment described before but they are much more pronounced. In figure 5.14 the 

superposition spectra are shown. The sawtooth associated wavenumbers are dominating the 

structure. The peak wavenumber of the 1st branch is  =- = 0.13 !!F=, similarly to ST2. The 

dominant peak wavenumber of the 2nd branch, associated with the sawtooth, is  �- =0.37 !!F=, however two more peaks appear at  �u- = 0.19 !!F= and  �s- = 0.53 !!F=. The 

spectra are heavily disturbed by the sawtooth and a detailed description of it becomes 

complicated. With the present means of analysis we can only speculate for some features. For 

example, the spectra of the 1st branch has a secondary peak corresponding to a clockwise 

propagation direction, at a higher than the dominant one wavenumber,  =u- = 0.43 !!F=. 

This could be a signature of the forward scattering at the sawtooth; the scattered waves with  au- = 0.22 !!F= in the 3rd branch reflect at the bottom and appear in the 4th branch with  m- = 0.19 !!F=. Subsequently, they reflect at the slope, where they are being focused, and 

appear at the 1st branch at a higher wavenumber  =u- = 0.43 !!F=. The focusing factor, 

v = wxy�z�{�
wxy�zF{� (e.g. Hazewinkel et al. 2008), for this experiment is v = 2, which partially justifies 

the above assumption.  
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What appears to be defining the extent that the sidewalls influence the attractor are: the 

length scale of the attractor, 2h  -⁄ , the viscosity length scale, J_, and the topography length 

scale, JK . For the experiments presented here, the viscous length scale is estimated to be: J_ = 10 !!, (see also section 4.1). The attractor length scale is 48 !!, for  - = 1.3 !!F=. 

 

If JK ≤ J_, the sawtooth correlated internal waves are shortly dissipated and the attractor 

branches are unaltered. We observe this in ST1 with JK = 10!! . If JK > J_, then, the sawtooth 

associated internal waves have a sufficient wavelength to propagate in the basin. They appear 

as individual beams that propagate along the attractor branches and they change the 

wavenumber spectra (see ST2 and ST3). The corrugation separates the attractor branches, 

with the maximum amplitude appearing along the centre of each beam rather than in the 

centre of the attractor branch. The individual beams propagate in a clockwise (forward 

scattering) or in a counter clockwise direction (backscattering) and are attenuated by 

viscosity. If JK < 2h  -⁄ , the original shape of the attractor is preserved, (see ST2, JK = 38!!), 

while if JK > 2h  -⁄ , (see ST3, JK = 78!!), the attractor branches are not clearly distinguished 

and the spectra are dominated by the wavenumber related to the corrugation. In all cases the 

wavenumber associated to the slope, is still traceable in all the braches 
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Chapter 6  

 

 

Conclusions 
 

In this chapter a summary of the conclusions of chapter two and chapter five is given. 

 

In the simple domains of previous internal wave attractor observations, ray tracing was 

always used as a tool to find the attractor location. The present observations have shown that 

the use of ray tracing in distorted domains still can predict the position of the attractor, even 

when the perturbations are significant. It’s weakness in not  accounting for the backscattered 

components does not diminish its predictive power. Ray tracing reveals features of the 

distorted domains, like the occurrence of multiple attractors and the discontinuity of the bird 

eye view τ-x diagram. 

 
Changing the forcing frequency led to a change in shape of the attractor. Although 

convoluted attractors imply regions of high shear, the fluid domain is not filled with shear 

regions. When the ray tracing shows a very complicated attractor, we find that some traces 

remain, especially in the phase of the HA. In general, the simpler the attractor, the stronger 

the fluid responds. The use of the Hilbert transform gave insight in the directional 

components of the complicated attractors.   

 
Perturbations in stratification featured a noticeable fluid response when a simple attractor can 

be formed. The internal wave attractor initially grows by the ongoing focussing of large 

waves at the sloping wall starting from the weak sloshing of the water in the whole tank. 

Even with a non-uniform stratification the focussing at the sloping wall is not prevented by 

the middle layer and the attractor is formed. 

 
Perturbations in the geometry of the domain with a corrugated sidewall raised the 

importance of the corrugation length scale. The attractors remain unaltered by corrugations 

whose length scale is smaller than the viscous wavelength. However, when the corrugation 

features approach the attractor’s length scales, a spatial partitioning of the attractor branches 

is observed. Hilbert transform revealed the backscattered components at the topography and 

their contribution to the anticlockwise propagation. 

 
We conclude that the fundamental response of a stratified fluid in a confined domain has to 

be described in terms of internal wave attractors. These attractors are influenced by the 

perfectness of the geometrical setting (stratification or domain) but they are still strongly 

present. 
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