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Preface

This thesis is the result of 8 months work at the NIOZ institute for sea
research, at which I performed my Master’s thesis.

In 2004 I started with my (Bachelor) studies of Mechanical Engineering
at Eindhoven University of Technology (TU/e). During this broad orien-
tation I found out that the field of fluid mechanics drew my attention the
most. Especially numerical models, with which I worked during my Bache-
lor’s thesis on boundary layer stability.

To combine the experience of living abroad and have more concrete
courses on fluid mechanics, I applied for the Master in Engineering Me-
chanics at the Royal Institute of Technology (KTH). From 2008 I studied
both courses on solids as well as fluids, but now choosing as many elective
courses related to fluid mechanics as possible. By the course in Turbulence
I met Henrik Alfredsson, KTH supervisor of this thesis.

Almost by accident I met Sjoerd Groeskamp (IMAU, Utrecht University)
in Stockholm, through which I got in touch with the Royal Netherlands
Institute for Sea Research (NIOZ) on the island of Texel, The Netherlands.
Although I passed by this institute numerous times during the visits to my
family on this island, before I met Sjoerd I had no idea of what interesting
research was performed actually. Soon I agreed with Leo Maas (supervisor
at NIOZ) on the topic of this final thesis: the dynamics of a tidal estuary.
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Chapter 1

Introduction

Tides have been of great interest and importance in coastal areas for a long
time. Not in the least place for fishermen, sailors and navigators who used
simple rules of thumb to ‘predict’ the tide during medieval times (Mooers,
1999). More recently, the interest has shifted towards coastal engineer-
ing (harbor management, flooding areas, tidal energy), oceanography (tidal
mixing, (Beerens, 1995)) and applied mathematics (Khokhlov et al., 2007).
Already in 1908 investigations were done to study ‘secondary undulations’
of oceanic tides, in the light of basin response to tsunamis (Honda et al.,
1908). Some coastal areas like the Baltic and Mediterranean Sea hardly
experience tidal elevation, others have semi-diurnal or diurnal tides, which
in turn can be amplified in coastal basins (Cartwright, 1999). The Bay of
Fundy is the most famous of these, for its tidal difference of 16 meter.

The periodic orbits of the earth, moon and sun have been linked to the
tides for many centuries. These orbits range in period from 12 hours (S3)
to 18.6 years (Lunar nodal), resulting in a fixed forcing of the earth’s deep
oceans. Due to hydrodynamic effects and local bathymetry the frequency
content of the tidal wave changes as it approaches shallower seas and coastal
basins (Parker, 1991). Prediction at such sites is often done by analyzing
the present tidal constituents in water level measurements and extrapolating
this behavior into the future.

For shallow estuaries however, such linear prediction of tidal water level
elevation might be inappropriate (Maas, 1997). Almost-enclosed tidal basins
with a nonlinear bathymetry (i.e. an increasing water surface area for in-
creasing water level) might experience multiple equilibriums (Maas, 1997) or
even chaotic behavior (Maas and Doelman, 2001) to the deterministic tidal
forcing. Such a nonlinear bathymetry can be a simply triangular (Maas,
1997), hyperbolic (Doelman et al., 2002) or stepwise linear (examined in
this thesis) cross section of the bay.

An amplified tidal response can induce increased mixing and flushing of
an estuary, being of importance for nutrients, silt deposition and the local



ecosystem (Sanford, 1985).

The aim of this thesis was to investigate the behavior of a co-oscillating
estuary (Mok Bay) and to see if any of the theoretical mechanisms of oscilla-
tion is present in practice. Current research on coastal co-oscillation charac-
terizes the measurements rather than the underlying mechanism (Khokhlov
et al. (2007), Frison (2000), Abarbanel et al. (1993), Flinchem and Jay
(2000)). Concerning the tidal Helmholtz oscillator, most work is theoretical
(Maas (1997), Maas and Doelman (2001) or laboratory-experimental Terra
(2005)).

Measurements have been carried out and show the presence of oscillations
with a frequency one order higher as compared to that of the tidal forcing.
Water level oscillations are two orders of magnitude smaller than the tidal
elevation; the oscillating flow at the bay’s entrance is almost of the same
order of magnitude as the tidal flow.

A simplified analytic model of the Mok Bay (viscous, forced, stepwise-
linear Helmoltz resonator) has been set up to extend the bathymetries which
have been implemented in tidal Helmholtz oscillators so far, in the search
for nonlinear behavior. The stepwise bathymetry introduces a stepwise-
linear restoring force and consequently the possibility of self-oscillations in
the basin. This dynamic system is to some extent comparable to a Duffing-
oscillator (where the restoring force changes sign instead of magnitude) for
which nonlinear (chaotic) behavior is known to exist (Kreuzer et al., 1991).
Simulations for different parameter settings showed period-adding bifurca-
tions (nonlinear and possibly chaotic behavior) but do need further research.



Chapter 2

Theoretical background

The theoretical base of this thesis is the principle proposed by Maas (1997)
that a basin can experience multiple equilibriums or even chaotic behavior
to deterministic forcing. This chapter will show the complete derivation for
an inviscid Helmholtz oscillator (a frictionless almost-enclosed bay) and its
corresponding behavior. After this, friction will be included but further de-
tails regarding that derivation are left out: the analytic base of an Helmholtz
oscillator is shown and only the consequences of the added friction are of
interest here.

Figure 2.1: Schematic representation of a tidal estuary, showing an almost-enclosed basin
connected to a tidal sea by a small channel (from Maas 1997).

2.1 Tidal Helmholtz resonator

A simplified model of a tidal estuary (‘basin’) connected to a tidal sea can
be set up as follows. Let H be the maximum depth in the basin, its water



surface area A,, and B and H be the width and depth of the connecting
strait respectively, see figure 2.1. The vertical coordinate z, is measured
depth upward from the mean water level.

A first assumption is that the basin’s length scale A[l)/ % and the strait’s
length L are much shorter than the tidal wave length A. The tidal wave is
now expected to travel instantly through the basin and water level elevation
will be in unison. Here Ay = A,(0) is the basin surface at z, = 0, the
tidal wavelength A = 2wc/o. (where ¢ is the wave velocity) and the lunar
semi-diurnal frequency o, = 1.4 % 107* rad s~%.

The external tidal elevation at sea (.(oct.) is a periodic function of time
te and will be the forcing of the system in the following. In the case of a
relatively broad basin, the momentum equations are reduced to lowest order
and the horizontal pressure gradient vanishes. This implies that horizontal
gradients in surface elevation vanish too and the response will be dominated
by a spatially uniform Helmholtz mode.

The parameter describing the state of the system is taken to be the
excess volume of water in the basin, i.e. the volume added to mean sea level
state. This excess volume is defined as Vi = [;* A.(2./H,)dz. The change
of excess volume is related to the volume flux through the strait

= —uo(H + {)B, (2.1)

where the subscripts 0 indicate evaluation at the entrance of the basin (z =
0). Furthermore, u(x,t,) is the depth-averaged flow along the channel and
Ce(z,ty) is the surface elevation within the strait. The flow through the
strait is described by the momentum equation

Du 1
——=__V v? 2.2
Di p p+vV-u, (2.2)

to which the Reynolds decomposition will be applied according to Pope
(2000). This decomposes the instantaneous velocity and pressure (u and p)
into their ensemble averages (u) and (p), and the fluctuations
u =u-(u) (2.3)
P =p—p) (2.4)
The material derivative in (2.2) can be expanded (using tensor notation) as

Duj . 8Uj (9 o
ﬁ = E + %(Ul’u]), (25)

which has the mean

DUj _8<uj) 8 .
TR T P LIS

(2.6)



Substituting (2.3) yields
(wing) = (((u; + ) ((u >+u'-)>
= ({ua) (uz) + wiCug) +ujlus) + v
(i) (uj) + (uguj).

The derivative of the first term on the RHS can be expanded to

0 0 0
) ) = () 5 () + )5 ()
0

= <Ui>%<uy‘>7

(]

using the continuity equation (0(u;)/0x; = 0). The ensemble average of the
material derivative can now be written as
Du; 9 <UJ>
500 =0 iy () + )

_ 0u > u > 9.,
= o + (u > +8$i<uzu‘7>'

A

Here, (u;uj) represent the Reynolds stresses which are obtained by the de-
composition of the flow field. Application of (2.3) to the remaining terms of
(2.2) finally yields the mean-momentum equations

0(uj) O(uj) Iusuj)  10(p)

— 200\ _
ot ox; vV () 0x; p Oz

+ (u;)

(2.7)

For the z-direction (aligned with the channel, j = 1) this can be simplified

to
ou 10p ou 1071
— = —u—t - 2.8
ot p O0x “ow + p 0z (28)
The mean flow velocity notation (u) is replaced by u and 7 represents the

shear stresses consisting of a laminar and turbulent part

T = Tiam T Tturb
ou ;)
= pu— —puv.
Ha, —P
The momentum equation including turbulent stresses (2.8) can be integrated
over the channel height H + (, in order to implement an approximation for
the friction:
z:H) 7

(2.9)

or
gdz

0z

(H+C*)g —(H+¢) agi* + = < 8Td
~



where also the pressure gradient due to water level elevation p = pg( is
included. Here the first integral on the RHS (evaluated at z = () is the
expression for surface stresses, for example wind-stress. Such stress is ne-
glected here and thus set equal to zero. The second integral however, is
the shear stress evaluated at the channel bottom. This is related to bottom
friction, the vertical transfer of horizontal momentum. Since there is no
explicit expression for the Reynolds stresses available, it is approximated by

the relation
1 or
— [ —dz

e ~ k|ulu, (2.10)

z=—H

and now related to the mean flow velocity u. In this, k is the bed-stress
coefficient and k = 0.0025. Dividing the obtained result by (H + () yields

ou 0 1,

E:—%(QQ—FiU ) —

Julu. (2.11)

After integration in the vertical direction (2.11) is now integrated over the
channel length L. This results in the final expression containing only known
quantities and system parameters. Because the flow velocities just outside
the channel are different, a pressure gradient over the channel is present.
The integration is thus performed from z = 0~ to x = L™ to include this;
the exact derivation of the different velocities (due to spread inflow and
jet-like outflow) is shown later.

The expression for the momentum equation applicable to the complete
length of the channel (using ¢, = ¢ for consistency with Maas (1997)) is

found as
du 1,5 9

k
Ldt* = g(G — Ce) + 5(%‘ —Ug) — Lﬁ\u|u. (2.12)

The surface elevation (, is assumed to be much smaller than H, being no
longer present in the last term on the RHS. Practically this means that the
channel is modeled as a pipe. The subscripts ¢ and e refer to the evaluation
at the interior- and exterior-side of the channel respectively. To include the
depth-dependence of the flow, an additional factor can be included in the
dynamic pressure term (second term on the right), but is excluded here.
The third term in the above expression arises from bottom friction. The
modeling of the channel by a pipe also simplifies the expression for the
excess volume (2.1) to

dVi
dt.

= —uHB. (2.13)
2.2 Adding damping

Several processes can be modelled as damping in the current simplified
system. Inflow to the channel occurs in a potential-flow-like way; outflow
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roughly in a jet-like way. Let d be an empirical proportionality constant,
then a widespread inflow (u; > 0) can be expressed as u; = (1 — §)u < u.
Here, u is the flow velocity in the channel. A jet-like outflow initially keeps
its width and thus can be approximated by u. = u, so that for small values
of §, (0 < 0 <« 1), the pressure difference can be expressed as

S — ) = S~ [0~ by =

5 (ue = 5 5 (26u?) + O(6%) ~ 6u?.  (2.14)

| =

Note that p was already eliminated from the momentum equation. For re-
versed flow (u; < 0), u; = v and u. = (1 — §)u so that this contributes as
-0u®. The dynamic pressure difference can thus be implemented as —&|u/u.
Since this form is similar to the term of bottom friction, they will be com-
bined in the following.

Apart from the dynamic pressure drop and bottom friction, also radia-
tion of waves into the sea adds to the damping of the system, albeit linearly.
When the oscillating motion is amplified inside the basin, waves transmit
energy from the basin back to the sea. Not only does this influence the
damping, by making the sea oscillate the ‘mass’ in the system increases: the
effective length of the channel L increases as

LE:L—g [m (WAB) +F—3/2] (2.15)

In this expression, I' is Euler’s constant (I' = 0.5772...). Increasing the
channel length (involved mass) reduces the Helmholtz frequency, as can
be seen in the following expression for the Helmholtz frequency or. The
additional linear damping by radiation will then be visible too.

Non-dimensionalizing is done by using z, = Hz, (; = H(, A«(z/H) =
ApA(z), Vi = A,HV, where the non-dimensional excess volume V now is
expressed as

¢
VE/O A(z)dz. (2.16)

Also, (, = HZ. and t. = t/opg, where the Helmholtz frequency opg (in
rad/s) is
0% = gHB/AoL. (2.17)

Substitution of the above into (2.12) and (2.13) results in the following
expression for the Helmholtz resonator in terms of the excess volume V' (t):

2
d“v dv ’(i;t/ dv (2.18)

L = Z.(ot) —r— — =
o TCV)=Zelot) = = T

Here, Z, = F cos(ot), the radiation damping coefficient » = 0 B/2L, v =
(6/L + k/H)Ay/B is the combination of both quadratic damping terms
(Maas, 1997). The complete process of non-dimensionalizing the expression
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for the Helmholtz resonator in terms of the excess volume V' (¢) can be found
in Appendix B.

In this expression, the separate terms can be interpreted as follows. The
evolution of the excess volume V' (¢) in the basin is driven by the difference
between the tidal forcing (first term on RHS) and the (restoring) water level
overshoot (second term on LHS). The two negative terms on the right hand
side represent the dissipation of system energy. This is, the radiation of
waves back to the tidal sea (linear, second term on RHS) and the combined
bottom friction and pressure difference over the channel (quadratic, third
term on RHS).

2.3 Simple sloping bottom

For a basin with uniform water surface area, the non-dimensional excess
volume is V' = ( since A(z) = 1. The restoring force is thus linear in this
case. For many basins in the Wadden Sea, including the Mok Bay, the
bottoms are sloped. Consequently, a nonlinear restoring term is formed in
the momentum equation.

A simple form of a sloping bottom, is one with surface area increasing
linearly with height. Using non-dimensionality again, the largest depth of
the basin is at z = —1. Also, A(0) = 1. This results in the simple expression
for area

A(z) =1+ z. (2.19)

Note that having a depth H which is not constant any longer, an effective
depth should be used in determining the Helmholtz frequency .. From
(2.16), the excess volume is

V =(+¢?2 (2.20)
This relation can be inverted as
C+1)2=1+42V — ((V)=1+2V)/2-1 (2.21)

which will be used as the non-linear restoring force in (2.18) in the following.

2.4 Inviscid response

Recall the equation for a Helmholtz resonator, (2.18), which can be made
inviscid by simply using r = v = 0. Substituting (2.21), this becomes
&V
de?
Even though an inviscid tidal resonator will not be found in nature, it is

interesting to have a look at this idealized model. For example, the ampli-
tude of a linear inviscid (undamped) oscillator tends to infinity. A nonlinear

+ (1422 -1 = Z,(t). (2.22)
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oscillator on the contrary is not necessarily singular, since it detunes itself
at amplification. Possibly, this results into multiple equilibria (and even
chaotic behavior) since the system might jump between different states.

In a numerical integration of (2.22), Maas (1997) found that for a fixed
forcing (both frequency and phase) the corresponding oscillation is modu-
lated slowly. A system near resonance has an amplified response, which in
turn changes the system itself. This now leaves its resonance-state and ex-
periences in turn a less amplified response, returning to the old state. This
quasi-periodic behavior was not only found for forcing at the Helmholtz
frequency oy, but also for 20y.

0.7 0.7

(a)

ar

500 -0.5

Figure 2.2: (a) Numerical integration of the inviscid forced evolution equation for the basin’s
excess volume V, demonstrating resonant growth, natural detuning and subsequent decay. (b)
Phase-space trajectory of this solution and (c¢) with different initial conditions (from Maas 1997).

Figure (2.2) should be interpreted as follows. In (a) the response in time
of the modelled system is shown, one modulation period as full response,
the second modulation period only as a stroboscopic plot. For this stro-
boscopic part a frequency equal to the forcing frequency is used, resulting
in one dot per period. In (b) a series of these stroboscopic ‘dots’ forms a
trajectory within fixed bounds, shown in phase-space. Phase-space repre-
sentation is a standard way of presenting self-similarities in periodic signals
Cvitanovic (1983). Finally, (¢) has different initial conditions for the system
as compared to (b).

Switching between states was suggested by observations of Golmen et al.
(1994), who observed a modulation of a resonance-like pattern in the Nor-
wegian Moldefjord. This fjord can be regarded as a deep, almost-enclosed
tidal basin. Especially in current measurements a super-tidal frequency was
found, with evolving amplitude. The frequency of forcing was thus much
larger than the observed ‘resonance’, i.e. o > 1. Whether these observations
can be attributed to chaotic behavior is unclear.
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F igure 2.3: Irregular observed sea level (a) and current (b) observations over time in Moldefjord,
Norway (from Golmen et al. 1994).

2.5 Viscous response

Now both energy dissipating terms will be included, as a more realistic ap-
proximation requires. Numerical integration of (2.18) using the sloping bot-
tom as in (2.21) yields a steady state response to the fixed forcing. Although
the steady state depends on the frequency of forcing, it does not necessarily
have one response state. In the following, the amplitude response curve for
the analyzed system is derived, from which multiple equilibriums appear for
forcing close to the system’s eigenmode.

Assuming only small changes in excess volume, forcing and friction, one
can scale (2.18). More specific, V. — €V,r — €?r,y — 2y and F — &F
(where € < 1) will result in an equation where damping, forcing and non-
linearity all appear at the same order in the perturbation scheme. Skipping
intermediate steps, the solution up to second order is then given by

V =V cos(ot — ¢) + iefﬂ [1 - écos (2(ct — QS))] + O(€%). (2.23)

The response is clearly phase-locked and from the steady-state amplitude
and phase the frequency-response curve is (leaving further derivations out)

1, 1 (F\? 87 o\ 2 1/2
w==V ig{ (V> —<’r—|—37TV> } . (2.24)
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This characteristic (see figure 2.4) shows that for certain parameter values
two possible equilibrium amplitudes can be found in the response, while
experiencing fixed forcing. On such ‘resonance horn’ two stable equilibriums
are found (A,C) and one instable (B).

Figure 2.4: Amplitude response V-curves against detuned frequency w = (o — 1)/e2 (with
€ < 1 the detuning parameter). For cases of near-resonant forcing, o & 1, it has bent ‘resonance
horns’ indicating multiple equilibriums and an increased response when F' increases from 0.1 to
0.3 and 0.5, for frictional parameters r = v = 0.01. Near w =~ 0.5 three equilibriums, A, B and C,
are obtained where the vertical line intersects the amplitude-response curve (for F' = 0.5). The
smallest and largest of these intersections are stable and correspond to a choked (C) and amplified
(A) regime respectively. (from Maas 1997)

If one approaches the frequency w ~ 0.5 from a lower frequency, the
system will experience the response amplitude at A. On the contrary, when
approaching from a higher frequency (say, w = 1), the response amplitude
at C will be found. Such possibility of different responses is called multiple
equilibriums (Nayfeh and Mook, 1979). For only minor changes in system
state such sudden jump can take place, being a first step to unpredictable
(chaotic) behavior (Maas, 1997).

15



Chapter 3

Methodology

3.1 Approach

As the title of this thesis implies, part of the behavior of the estuary will be
caused by the tidal forcing outside the estuary. An important distinction
between the mathematical descriptions of different tidal estuaries can be
made based on their shape: the size of their connection to the tidal sea.

Mainly open bays

A mainly open bay (i.e. with a wide connection to the tidal sea) can respond
as a so-called quarter-wavelength resonator (Rabinovich, 2009). The lowest
eigen-mode of a mainly open bay corresponds to the motion of a quarter
wavelength inside the bay, always having a node at the entrance. Standing
waves have their largest flow velocity at the nodes, here being the entrance
of the bay. For a lake, in fact being a completely enclosed bay, similar
standing-wave modes are called ‘seiches’ (and in fact half-wave oscillations).
When forced at one (or more) of such eigen-frequencies, the bay or lake will
start to resonate.

Almost-enclosed bays

Harbor oscillations are named after the oscillations in typical almost-enclosed
bays: harbors. The fundamental mode is now the so-called Helmholtz mode.
Equal elevation of the water level will occur throughout the bay, resulting
in a pumping motion at the entrance. This distinct difference in surface
elevation —a fixed node at the entrance or equal surface elevation— makes it
possible to distinguish between the two types of oscillatory motion.

As will be shown later, the restoring force in the system of a Helmholtz
resonator is related to the bay’s water surface area. If this area is not
constant during a change in water level, a non-linear relation occurs (Maas,

16



1997). For the Mok Bay (and other basins in the Wadden Sea) this is the
case, resulting in non-linear behavior, possibly even chaotic.

3.2 Measurement site and setup

To investigate the dynamic properties of the Mok Bay, measurements will
be performed at two different locations. The water level should be measured
at the head and mouth of the bay in order to distinguish the two above men-
tioned types of resonator. Photographs about the used setup, installation of
the equipment and performed measurements can be found in Appendix A.

A global view of the location of the Mok Bay can be found in figure 3.1,
the specific locations of measurement are shown in figure 3.7.

560

559 — North Sea Wadden Sea —

550
108 110 115

x k]

Figure 3.1: Location of the Marsdiep inlet (main panel) in the Dutch coast (bottom right
panel), connecting the North Sea to the Wadden Sea. The Mok Bay on the Southern part of the
island Texel is in turn connected to the Marsdiep inlet. The Marsdiep bathymetry is shown in
10-meter contour lines, relative to mean sea level.

The moored frame - MK?2

A frame is moored at the bottom of the entrance of the ship route into the
Mok Bay. An Acoustic Doppler Current Profiler (ADCP) is mounted on
the aluminum frame, which is filled with lead. Furthermore, it is connected
by a steel cable to a beacon named MK-2 and owned by the Ministry of
Public Works and Water Management (Rijkswaterstaat). This steel cable
avoids any tension in electronic wires connected to communication electron-
ics, mounted at the MK-2 beacon.

The ADCP measures the water current profile in the whole column of
water in sight of the ADCP. Here, the ADCP is facing upward and thus

17



measuring from bottom to the water surface. The principle of measurement
is based on the acoustic backscatter to determine the Doppler based veloc-
ity. Backscatter occurs from solvents and particles carried by the water.
The resulting Doppler shift of the four spread ADCP beams is decomposed
into a vertical and two horizontal velocity components. A specific time in-
terval in the received acoustic backscatter corresponds to the reflections at
a certain distance from the ADCP. This allows to resolve the velocity over
the complete water column in sight of the ADCP, being the major advan-
tage as compared to a traditional (single point) current meter. For internal
calculations, the temperature and depth are measured by the ADCP.

Depth meter - Mok Harbor

Mok Harbor is located at the head of the Mok Bay, see figure 3.7. At high
water this is not the furthest point, but it is during low water. Because of
this, the relatively deep ship route that ends in the Mok Harbor is expected
to have large contribution to the bay’s behavior. Consequently, an identical
pressure sensor is mounted inside the Mok Harbor to find any phase delay in
water level. The pressure sensor measures pressure relative to the ambient
air by using a thin reference tube that extends above the water surface.
Atmospheric pressure differences are now ruled out and only differences in
water level cause a pressure difference. From here on, the pressure meter is
referred to as depth meter.

Communication and recording

As an experiment, communication between the two sites of measurement
and the NIOZ institute was done by two wireless CPE Ethernet bridges
instead of local data storage. These LAN-bridges work as long as the devices
are in optical sight of each other: if the chain is broken on one place the
complete communication ‘downstream’ is blocked. The NIOZ institute is
the location of the main computer and thus defined as the ‘upstream’ edge.
The first bridge was formed from the NIOZ institute to the MK-2 beacon
(communication with the moored frame), the second bridge from the MK-2
beacon to the Mok Harbor.

The purpose of such set-up is twofold. It allows to directly read the
measured data and to detect instrument failure. Also, for the ADCP com-
munication to the sensor is possible: instrument settings can be changed on
distance using the main storage computer. Especially in the first week of
measurements different setups for ADCP-settings were planned to be tested,
to find an optimum in power consumption, accuracy and sample rate among
others. The main properties of the used instrumentation can be found in
table 3.1, properties of the NIOZ Jetty pressure sensor are available upon
request.
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Instrumentation Depth Vel. Temp.

ml  [m/s] _[C]

Workhorse Range +5 —5—45
Rio Grande Acc. N/A  £0.006  £0.4
Res. 0.001 0.01

Keller Range 0-3 N/A 0—50
0.3bar/8935 Ace. N/A N/A N/A

Res. 0.01 N/A 0.01

Table 3.1: Instrumentation properties (working range, accuracy and resolution) of the setup as
used during the measurements from February 25" to March 6t". Measured quantities are depth,
velocity and temperature. Note that depth (or, pressure) is not measured directly by the ADCP
and consequently no properties are available (N/A). Instruments and application: Workhorse Rio
Grande (ADCP) and Keller PR-46XH/0.3bar/8935 (depth meter).

To resolve the tidal behavior of the Mok Bay to a good approximation,
the largest tidal constituents and their modulation should be measured for
at least a few periods. The largest constituents in the Marsdiep inlet are M,
and Sy, which are modulated with a 14.76-day cycle (M,¢) (Buijsman and
Ridderinkhof, 2007). This constituent is in turn modulated by a 7-month
period, being too long to resolve in measurements during this thesis. The
desired time of deployment was set to be two months, both to capture the
14-day cycle more then once and to be able to find the best ADCP settings
in practice.

Overconsumption by communication electronics made this impossible
though. The available battery capacity could power this setup for only
one month. Apart from this, a higher discharge rate reduces the capacity
even more. When discharging the batteries at a rate larger than 25 mA, the
capacity is not the rated 19000 mAh, but drops to 15000 mAh. Furthermore,
the low temperature decreased the capacity to 11000 mAh at a temperature
of about zero degrees. In the end, the battery pack powered the setup for
only 9 days, which can be explained by the above and the fact that the
batteries were already five years old. Table 3.2 summarizes the estimated
power consumption of the individual components of the measurement setup.
Different load cases illustrate the gap between the expected and final output
capacity that powered the setup for only 9 days.

Other mounted instruments were an OBS (optical backscatter) and CTD
(conductivity, temperature, depth meter) to investigate any possible rela-
tions with sediment, salinity and/or temperature. The CTD suffered from
failure within two days and the short time of deployment shifted the fo-
cus of the research to water level and flow measurements, leaving the OBS
(sediment) and CTD (salinity, temperature) out of further consideration.

Water level measurements from the NIOZ Jetty (less than 500 meter
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Consumption

ADCP 1 0.10 14.0 1010
OBS 1 0.02 14.0 202
Depthmeter 1 0.01 14.0 101
T /R-unit 2 0.25 14.0 5040
UDS 2 0.10 120 173
Hub 1 0.10 12.0 864
Total 8950  29.5
Capacity Load case Output

°C] [mA] [A) [Wh] [d]
TekCell 20.0 1.00 19.0 266

0.00 1.00 18.5 259

0.00 29.5 11.0 154
(30 x 4pack) 20.0 1.00 7980  26.8
(80 x 4pack) 0.00 29.5 4620 15.5

Table 3.2: Total power consumption of electronics mounted at the MK-2 beacon and moored
frame (top) and battery capacity for different load cases (bottom). The CTD has its own power
supply and is not listed. Communication electronics (quantity g) consume the most power by far
(85%): osBridge transmitter/receiver (T /R-unit), universal device server (UDS) and communica-
tion hub. Assumed time of power consumption: 30 days (720 hours). Battery capacity calculated
for TekCell SB-D02 (3.5V/, Lithium-ion D-cell), assembled as 4-pack (14V'). Note the decrease in
battery capacity (Ah) due to the increased applied load (mA), and consequently the reduced time
of employment (d).

separated from the MK-2 beacon) will be used to determine long-term tidal
behavior, local events will be looked for in the 9-day spanning data set.

3.3 Bathymetry

3.3.1 Depth measurements

Depth measurements of the Mok Bay are available from both the Ministry of
Public Works and Water Management (Rijkswaterstaat) measured in 1998
and by Stema Survey Services B.V. (measured 2009), after the ship route
was dredged. The 1998 measurement covers the shallow part of the bay, in
0.20 meter steps, the 2009 measurement covers only the dredged ship route.
Since the shallow part is roughly that part that floods during high water, it
is as important as the ship route itself in determining the hypsometric curve
of the bay: the increase of water surface area as function of water level.
The quickest and still an accurate way of charting the Mok Bay’s depth
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was by means of the jet ski that the Delft University of Technology (TUD)
equipped with an echo sounder. Not only their horizontal position (z- and
y-coordinates) was measured by GPS, but a satellite-correction made lo-
calization in the (vertical) z-direction possible. Despite the shallow depth
of the jet ski itself, the blanking distance of the echo sounder (1.20 meter)
made it impossible to measure the shallow part of the bay (shown in red in
figure 3.2).

Using a hand-held GPS and the NIOZ Jetty Pier water level measure-
ments as a reference, the shallow part of the Mok Bay was charted. The
main assumption is that the water level at the NIOZ Jetty is equal to the
water level within the Mok Bay. Standing at the waterline within the bay at
the instant the water level at the Jetty is at +0 N.A.P., the current position
given by GPS corresponds to +0 N.A.P. within the bay. Aligning the GPS-
tracked waterline and the water level measurements of the Jetty in time, a
complete correction for the z-coordinate of the walked x- and y-coordinates
can be made. Having this, the waterline’s level relative to N.A.P. can be
traced from ebb to flood (or vice versa) and by walking along it, the depth of
the complete bay can be charted. The GPS device stores its position every
5 seconds and a typical average walking velocity was 1.27 meter per second,
resulting in a measurement (roughly) every 6.35 meter. This allowed to
capture small creeks and ponds fairly well, without running out of memory.

About 52.1 kilometer of waterline is tracked with the hand-held GPS
and the jet ski track covers about 21.0 kilometer. The combined result of
all depth measurements is shown in figure 3.2. Since tidal banks flood in a
short amount of time, the spatial density of the waterline-tracked paths is
not constant throughout the bay, see figure 3.3. The bird reservate in the
most Northwestern part of the Mok bay resulted in lack of measurements,
whereas oyster beds could not be walked around just Northwest of the center
of the bay. It is almost impossible to stand on the bottom next to the beds
due to the silt, the razor sharp edges of the oysters are another danger.

3.3.2 Assumptions, uncertainties and errors

As described above, not every part of the Mok Bay is covered by the jet
ski measurements or GPS-tracked water lines. Especially the Northwestern
part lacks localization measurements of the flood line. The available coast-
line from Rijkswaterstaat is used to define the outermost edge of the bay
and is set to +1 N.A.P. At interpolations, the profile of the bay is assumed
to increase linearly to this edge. At this edge the boarders are steep and no
further increase in water surface area is found. Another important assump-
tion is that there is no significant time delay between high (or, low) water
at the NIOZ Jetty and the water level inside the bay as tracked using the
GPS device. Figure 3.4 shows that there indeed is no significant difference,
except for a few centimeters at the quick flooding during flood phase. This
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Figure 3.2: Top view of the Mok Bay, containing depth contours estimated from all depth
measurements, relative to N.A.P. (Amsterdam Reference Level). Broken lines indicate the location
of the Mok Bay’s entrance (E) and the length of the channel during low- (Lgpp) and high water
(Lrroop)- All wet area Northwest of such L; contributes to Ag as listed in table (3.3).
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F igure 3.3: Measurement density throughout the Mok Bay. The measurement density as
defined here is the number of GPS-located depth measurements per 88 by 88 meter. Jet ski mea-
surements performed in the ship route result in a high measurement density by the closely aligned
measurement paths. Tracked water lines at the (flat) tidal banks result in a low measurement
density. Two areas are not covered (density: 0) by GPS-tracked waterlines: the bird reservate at
the complete head of the bay and an oyster bed at 5.5775e5 N, 1.1275e5 E, in meter from Paris.

allows to link a position of the waterline inside the Mok Bay to a water level
measurement at the Jetty. Apart from this last assumption, still an offset
between both data sets is present, as will be shown later.

Uncertainties occur in the localization by the GPS, but are expected
to be of O(1m) and consequently not significant. Typical length scales
of creeks, ponds and oyster beds is one order of magnitude larger. The
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Figure 3.4: 1-Day fragment of water level measurements from the Mok Harbor (black), MK-2
mooring (blue) and NIOZ Jetty (green). Oscillations at the Mok Harbor and the absensce of any
significant time delay are visible. Time relative to ADCP start-up.

GPS-tracked water line is walked by multiple persons, possibly interpreting
‘waterline’ slightly different. The definition of waterline is clear when the
slope of the beach is visible, but less clear when rough parts of the beach
flood slowly. Interpolation between the tracked waterlines, the skipped bird
reservate and between jet ski and waterline tracks is linear and brings un-
certainties especially over larger distances.

The main errors can be found in the estimation of the water area of the
Mok harbor, which is not included in the jet ski or walked paths. From the
chart after dredging by Stema Survey this area is estimated to be 7500 m?
but might differ due to the difficult shape of the bay. As stated earlier, the
bird reservate and the oyster bed in the Northwestern part of the Mok Bay
are large surfaces that are simply interpolated, while in fact being little hills
or ponds within the bay. Finally, the Mok Bay has no distinct separation
from the Wadden Sea. The sudden increase of depth at the ship route is set
to be the ‘entrance’, the jet ski measurements showing depths less than -5
meter N.A.P. are taken to be the boarder with the Wadden Sea.

Another error is found in the overlap between jet ski and GPS-tracked
measurements. This error in overlap might be present throughout the com-
plete overlap from jet ski to GPS-tracked depths, but was noticed too late
(the combined depth measurements interpolated to a grid does not show a
sudden jump) in this thesis to find the cause of. There is no significant time
delay from NIOZ Jetty to the Mok Harbor (see figure 3.4) to cause this 20
cm gap, nor was the cut-off frequency of filtering of the NIOZ Jetty data
too low to cause this amplitude difference.

This will consequently decrease the accuracy of the estimated bathymetry
(the sudden increase of area and volume in figure 3.6 will occur at a lower
water level value). For the remainder of this thesis however, this finding is
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not significant. At high- and low water the water surface area estimation is
still valid, yielding no change in accuracy in the estimation of the Helmholtz
frequency.

NAP.

1 1 1 1
0 50 100 150 200 250 300 380 400 450
Distance [m]

Figure 3.5: Typical cross section of the interpolated water depth of the Mok Bay. Dots indicate
interpolated measurements from the GPS-tracked water line (0-280 meter) data set and jet ski data
set (280-430 meter), the solid line indicates the interpolation of the combined data set, covering
up the gap between the two sets. Intersection from 5.5700 - 10° N 1.13500 - 10° E to 5.5780 - 10°
N 1.1375 - 10° E.

3.3.3 Dimension estimates

Using the depth measurements performed by the team from Delft University
of Technology, good estimates of the relevant length scales within the Mok
Bay are made. The high-density measurements covering the ship route and
the connection to the Wadden Sea results in estimates for H, B, L and Ay
at low water (see figure 2.1). The hypsometric curve that is obtained from
the GPS-tracked water lines yields the estimate for Ay at high water. It
shows that the water surface area of the Mok Bay increases rapidly from -
0.5 meter N.A.P. and higher, see figure 3.6. It is the aim of this thesis to find
the consequences of this shape to the Mok Bay’s dynamics. An important
note is that the area considered to be the bay’s ‘surface area’, is the wet
area Northwest of the separation line marked by L in figure 3.2. Although
at high water no distinct channel is visible between the ’bay’ and Wadden
Sea, it is used for modeling in the following chapters.
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Dimensions

Ebb Flood unit
H 3.0 5.0 m
B 44+10% 54+10% m
Ay 9.02-10* 1.46-10% m?
L 1050 300+ 10% m

Table 3.3: Estimated dimensions using the combined depth measurements and corresponding
theoretical Helmholtz frequency for both ebb and flood state of the Mok Bay.

Scaled volume of the Mok Bay

T
—Surface area /
-—=Volume : 4
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Figure 3.6: Hypsometric curve for the Mok Bay, giving the relation between water level and
corresponding water surface area and volume (considering the distinction between bay ‘content’
and ‘connecting channel’, shown in figure 3.2) of the Mok Bay.

The Mok Bay in summary

With a typical salinity of 25 — 29 PSU!, the Mok Bay can be considered
brackish. The fresh water discharge from the Lake IJssel into the Marsdiep
(which feeds the Mok Bay) is the major cause for this (Buijsman and Rid-
derinkhof, 2007), natural run-off of fresh water into the Mok Bay is very
small. During the period of measurements the temperature of the sea water
was typically 2 — 4°C and tidal currents at the mouth of the bay typically
0.3 ms~'. In this range of temperature and salinity, the difference in density
was £0.2%. This justifies the assumption that pressure can be used to cal-
culate depth directly, using constant density throughout the measurement
period.

'PSU: Practical Salinity Unit, defined in terms of the ratio K15 of the electrical con-
ductivity of the seawater sample at the temperature of 15 °© C and the pressure of one
standard atmosphere, to that of a potassium chloride (KCl) solution, in which the mass
fraction of KCI is 32.4356 -1073, at the same temperature and pressure.
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Figure 3.7: Aerial picture of Mok Bay (1999) in Westward direction: at the horizon the North
Sea is visible. Vertical arrows indicate the locations of MK-2 beacon (A), TESO Harbor of the
ferry to the main land (B), NIOZ Jetty Pier (C), and Mok Harbor(D). The broken white line
indicates the ship route inside the Mok Bay, the bold arrow indicates the location and direction
in which the picture of figure 5.23 is taken. 26



Chapter 4

Data

4.1 Data collection

The measurements that extend the theoretical base of this thesis were per-
formed during the early spring of 2010. Two depth meters were placed to
recognize and distinguish different resonator models. By measuring the wa-
ter level at both the entrance and head of the bay, a difference in water level
can be quantified. At the entrance of the bay also the velocity profile over
the depth is measured: oscillations in surface motion might be more visible
in velocity fluctuations, especially in the narrow entrance of the Mok Bay.

In the following one can find the details and consequences of the data
collection. The setup ran out of power after nine days (the depth meter at
the Mok Harbor was externally powered) so the water level data set was
expanded by including measurements from the NIOZ Jetty. The details
regarding the time of employment for the individual instruments can be
found in table 4.1. Additionally, this chapter describes the uncertainties in
the measurements and the first step of post-processing: cleaning and filtering
of the collected data.

Time of deployment
Start-up date End date Time [d]

ADCP 25/02 05/03 7.7
depth meter, MK-H 25/02 06/03 9.1
depth meter, MK-2 24/02 06/03 11
NIOZ Jetty 19/01 09/03 44

Table 4.1: Time of deployment for the separate instruments during the early spring of 2010.
Water level is measured at the moored frame next to the MK-2 beacon (depth meter, MK-2), in
the Mok Harbor (MK-H) and (standard) at the NIOZ Jetty, water velocity is measured by means
of the ADCP at the moored frame only. The 44-day period of NIOZ Jetty data coincides and
extends the period of water level as measured by the two depth meters. Details about the used
instrumentation are listed in table 3.1.
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4.2 Uncertainties

At every passage of the nearby ferry, the magnetic field of the ferry’s steel
hull influences the internal compass of the ADCP. This passing is visible
as spikes in the orientation data, the angle of the ADCP relative to the
magnetic North. With a magnitude of about 0.5° this can be neglected,
see figure 4.1. Also, during the total time of employment the change in
orientation is negligible: = 1°. This change might be explained by the fact
that the heavy lead-filled frame settles in the sand under the influence of the
tidal motion in the bay’s mouth. The periodic deviation (at 1.75, 2.25, 2.7,
3.25, ...days) might be due to slight movement of the ADCP in its rubber
mounting, again under the influence of the tidal current. This has an even
smaller magnitude (0.25°) and is neglected as well.

ADCP orientation, internal compass
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Figure 4.1: Raw output data from internal compass of ADCP. Note the settling of the heavy
frame (or ADCP within the frame) after one day from the drop-off, and the influence of the ferry
passage to the internal (magnetic) compass. Time relative to start-up of the ADCP.

To avoid difficulties in mounting the depth meters from an anchored ship,
no exact depth for mounting the depth meters was specified. This resulted
in an unknown offset between the depth meters at the MK-2 beacon and
the Mok Harbor relative to the NIOZ Jetty. It is no surprise that the
depth meter located at the MK-2 beacon shows practically the same water
level measurements (difference from NAP, see figure 3.4) as the NIOZ Jetty,
since they are separated by less than 500 meter. The offset relative to the
NIOZ Jetty (output relative to N.A.P.) is calculated as the difference of a
7-day mean from both sensors, being -1.70 meter for the depth meter at
the MK-2 beacon and -2.24 meter for the depth meter at the Mok Harbor.
This assumption neglects the influence of local (temporary) swell in the
Mok Bay and any oscillatory motion within the Mok Bay. A longer period
of measurements yields a more accurate value for this offset, but for most
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parts of the data analysis the relative water level is of importance, rather
than the absolute level.

4.3 Data cleaning

Passage of the ferry

Every time the ferry to Texel approaches or leaves the Texel TESO harbor,
it blocks the transmitted signal. This is not as visible as a data gap but more
as spikes in the signal of the depth meters, see figure 4.2. Unrealistic depths
are ‘measured’ at many of such events. These short periods are rejected and
are on average 30 seconds in length. For the ADCP data this resulted not in
such obvious incidents, which can be explained by the fact that the ADCP
sends its data not as often. The depth meter reported its measurements
every second, the ADCP averaged its measured values over 6 seconds before
reporting it. Spikes that did appear in the measurements were rejected after
comparison with a running mean.

In order to remove these spikes from the depth meter data, a running
mean was used to compare each following measurement in time. If a fol-
lowing measurement would deviate by more than 10% from the calculated
local mean, it was flagged as unrealistic. This value was then replaced by
the current mean value, to reduce its influence but still have a equal-spaced
dataset. Taking the running-mean window short relative to the tidal time
scale ensures that the current mean value is a good replacement.

Although the unrealistic spikes are removed, the waves that appear at
each ferry passage are still present. Interestingly, these waves have periods
of several minutes and are already visible in the raw data from the depth
meter at the MK-2 beacon. They go however beyond the scope of this thesis
and are not analyzed.

Reflections in ADCP intensity

Solvents and floating particles reflect the signal that is transmitted from the
ADCP transducer faces. Using the Doppler-shift that such particles induce,
an estimate of the local flow velocity can be made. The water surface is
found as a jump in intensity because the reflection from the surface is much
stronger than the reflection from scatterers in the water.

But not just the surface reflects the signal that is sent out from the
ADCRP, it is reflected by the bottom and surface again too. In this case, the
sound has traveled twice the distance before it reaches the ADCP, and a
(twice) too large depth measurement is done, see figure 4.3 (upper). Com-
parison to the depth meters shows that apart from a good estimation, some-
times a 1.5 or 2 times too deep estimate is found. By specifying again a local
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Figure 4.2: Raw (upper) and detail of corrected (lower) depth measurement from Keller depth
meter measurements. Spikes due signal blocking by passage of the ferry, and long-period waves
visible after ferry passage.

(running) mean, each following measurement in time is compared and di-
vided by 1.5 or 2 depending on the size of the deviation from the mean.
Instead of simply rejecting the data, it is now converted into useful data,
see figure 4.3 (lower).

Once the depth estimate is finished, this distance is rounded off to the
used bin size by the ADCP, here 0.25m. The acoustic backscatter that the
ADCP receives is averaged over such bins along each beam and returned as
a single value.

Since the transducer faces of the ADCP ring a little while after emitting
the signal, it is not possible to immediately start recording the received echo
signals. This results in a blanking distance, a distance in front of the ADCP
in which the water velocity cannot be determined. For the used 1200 kHz
RDI Rio Grande this blanking distance is equal to 0.25 meter.

A signal sent out at an angle of 20 degrees from the vertical returns at
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Figure 4.3: Raw (upper) and corrected depth estimate (lower) from ADCP intensity measure-
ments. Reflections by the water surface and bottom are used to estimate the (distance to the)
surface water level.

the same time as the (radiated and reflected) signal that travels the shortest
(vertical) way to the surface. To avoid confusion between these, the last 6%
of the total beam length to the surface should be rejected.

The three-component velocity data in the remaining bins are used for
analysis.

Processing of the NIOZ Jetty data

During 7 years the water level, wind speed and direction have been mea-
sured continuously and recorded at the NIOZ Jetty Pier. The water level
is measured by means of a pressure sensor, recording at approximately 4
Hz. Data reduction is obtained by taking the 1-minute median of this and
is converted to water level relative to N.A.P. (Amsterdam Reference Level).

Wind speed is recorded at about 1 Hz and converted to Beaufort scale.
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By definition of the Beaufort scale, this means that a 10-minute running
mean is taken of the recorded values. Together with the measured wind
direction, wind data is stored in one-minute resolution.

4.4 Filtering and running-mean averaging

Waves appear over a large range of scales and many of them are captured
with a sampling frequency of 1 Hz. By selective filtering, only those fre-
quency ranges of interest remain in the analysis.

To remove high frequencies in the measurements, a digital fourth-order
low-pass Butterworth filter is applied to data. A Butterworth filter is known
for its flat response in the pass-band when compared to other filters (Bodén
et al., 2009). A higher order filter increases the suppression of higher fre-
quencies faster, but the large range of coefficients due to the (very) low cut-
off frequency make this impossible. Already for a fifth-order Butterworth
filter the ratio of the largest (A1) to the smallest coefficient is 1.0 - 10714,
close to machine-precision. This will finally result in singularities when the
filter is applied in the frequency domain. Typical cut-off periods vary from
3600 to 300 seconds (1 hour to 5 minutes respectively) and the low-, band-
and high-pass filters are applied in Chapter 5 (Results) when the distinction
between tidal, super-tidal and short (wind) waves is desired.

In Chapter 5 the method of running-mean averaging is also used to
distinguish oscillations from slower evolving trends, similar to conversion to
Beaufort scale of wind measurements. This method is applied directly in
the time domain and its principle is very simple. Short-period variations are
removed from the measurement by replacing an observed value by the mean
of a surrounding window (a range of measurements in the time series). Such
window ‘runs’ down the time series, and its length determines the strength
of this crude low-pass filter.

Specific settings concerning the power density spectra (window length,
percentage of window overlap, number of FFT-points, etc.) are stated below
the graphs that present the processed data.
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Chapter 5

Results

In tidal areas, frequency analysis is one of the major tools to explain observed
flow fields. Least squares harmonic analysis (LSHA), Fourier analysis and
rotary spectra are traditional tools for this (Emery and Thomson, 2001). In
the search for any high-frequency oscillations, all three are applied to the
collected data from the Mok Bay. The LSHA is used twice, to describe the
presence of expected tidal frequencies but also to distinguish the frequency
content at high- and low-water instants. A model is found that describes the
measured high-frequency oscillations and different forcing mechanisms are
suggested. Especially the properties that could be the driving mechanism
for self-oscillations in the Mok Bay are investigated (Chapter 6).

5.1 Traditional Linear Analysis

5.1.1 Harmonic Analysis

In 1873 Sir William Thomson was able to construct a tidal predicting curve
by means of ten main constituents. Constituent coefficients were determined
from site-specific tidal records. Together with George Darwin this resulted
in the systematic set of frequencies according to the Doodson number, not
further discussed here. Later predictions were done using tidal machines:
water levels for high- and low water were indicated mechanically. From 1966
on tidal predictions are done using computers (Cartwright, 1999).

Standard Fourier analysis determines amplitudes for integer multiples of
the base frequency fi. Since the highest possible analyzable frequency is the
Nyquist frequency fy, the frequencies f1, 2f1, 3f1, ..., fn are all analyzed
(Emery and Thomson, 2001).

Harmonic analysis was originally designed to investigate the tidal vari-
ability, where the largest astronomical constituents are semi-diurnal and
diurnal, then followed by fortnightly, monthly, semi-annual and annual vari-
ability. Since these constituents can differ greatly in period, equal spacing
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of all periods in between would result in too many constituents not present
in the forcing.

A more efficient method to determine corresponding amplitudes to these
forcing frequencies, is thus to only analyze the (most important ones of
the) frequencies which are known to be present in the forcing. For all con-
stituents the corresponding amplitude and phase are calculated, yielding a
simple prediction function. Since the number of measurements outnumbers
the amount of present frequencies, the system is overdetermined. It can
still be solved however, using the method of least squares: minimizing the
approximation error yields the most accurate coefficients. Such a solving
method allows for gaps in the time series, not allowed by Fourier analysis.

The discrete time series of a measurement x(t,), n=1, ..., N can be
split into

z(ty) =T+ 2/ (t,) =T + 2(tn) + 2, (L) (5.1)

where z is the measured value, Z is the record mean and 2’ is a fluctuation.
This fluctuation can in turn be replaced by a least squares harmonic analysis
(LSHA) approximation & and a residual z,. To avoid inaccuracies due to
round-off errors, the mean value T of the record is subtracted, resulting in

M
2 (tn) = 2(tn) + o (tn) = C + Z Cycos(2m fotn — ¢g) + 2, (tn).  (5.2)
q=1

The approximation of the LSHA is done by determining the coefficients C,
and ¢, for all constituents f,; the corresponding derivation of this method
can be found in Appendix C.

Limitations on constituents

Any set of measurements is bounded by its length, temporal resolution and
noise contamination (Emery and Thomson, 2001). These properties thus
determine the amount of information that can be drawn from the set of
measurements, i.e. they put bounds on the resolvability. In order to be able
to extract useful information from a data set, a few criteria should be met.

First, the largest period (i.e. the lowest frequency) that can be resolved
is equal to, or smaller than the length of the measured time series itself, 7.
This frequency is known as the fundamental frequency, and its period T is

expressed as

1
Ty <T=NAt, fr= T (5.3)

where N is the length of the time series vector.
The second criterion is also known as the Nyquist criterion, limiting the
highest resolvable frequency. Roughly said, it states that any sinusoidal
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period should be ‘caught’ twice in order to resolve it. This means that the
highest resolvable frequency is equal to half of the sampling frequency, being

fma:c = % - ﬁ: Tf,maz = 2At (54)
where T’ 4, is the corresponding period. The third criterion that should
be met is a bound on the maximum resolvable frequency resolution. This
Rayleigh criterion states that two different frequencies can only be distin-
guished well if within the complete measured time T both frequencies are

separated by at least one complete period, or,
R
=AF
In Rayleigh’s theorem R = 1, but if a measurement series is contaminated
with noise R can be assigned a value larger than unity. This tightens the cri-
terion and requires more than one complete period separation to distinguish
frequencies properly.

|Tfi - f¢+1‘ =T (55)

Percentage of explained variance

From equation (5.1) one can define
N

SSE = [(w;i — ) — @) = [(}) — (2], (5.6)

i=1
with SSE being the sum of squared errors. Equivalently, the measured (or,
‘total’) and fitted variances are respectively

N N
SST =347, SSF=>d7 (5.7)
=1 =1

Combining this, one can rewrite (5.6) to
SSE = SST + SSF +¢

where
N
e=-2) i (5.8)
i=1

This residual, &, will be used to find one number being a measure for the
goodness of fit by the harmonic analysis.

N N N N

Ia . !5 ~2 ~2

—25 xixi——QE xixz—QE xi—i-QE Z;
i=1 i=1 i=1 i=1

N N
:—25 .’fj‘?—?% il(i*z—x;)
=1 =1

= —25SF +e.
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A second residual, €, is obtained in this and is expressed as (using (5.1))

The subscript r, 4 indicates the i*" element of the residual between approxi-
mated fit and measured water level. Again, rewriting (5.6), one finds

SSE = SST + SSF +e. (5.9)

The purpose of the above’s derivation is to obtain a practical measure for
the quality of the approximation by the fit. Numerically performed approx-
imations yielded values of ¢/SSE = 1-10713 indicating that the derived
residuals actually can be neglected.

A measure for the goodness of fit by the least squares harmonic analysis
can be expressed in terms of the fit SSF and the measured water level SST
by

s SSF

Application to data

Among the 22 largest constituents are the fundamental solar and lunar con-
stituents, Sy and My respectively (Buijsman and Ridderinkhof, 2007). Oth-
ers concern higher harmonics (or combinations) of these. According to the
Rayleigh criterion (5.5), one needs at least 14.4 days of time data in order
to resolve both Sy and M,. With 6 weeks of data already 22 constituents
can be solved, and the resulting model gives a fairly good representation of
the original signal, as can be seen in Figure 5.1. For modeling of the water
level, Buijsman and Ridderinkhof (2007) found a goodness of fit of 81% for
a b-year ADCP data set, here 88.9% is found. Buijsman attributes such
differences to the fact that wind set-up in the North Sea can make the water
level locally differ by 0.5 meter. Such behavior cannot be explained by the
tides, and thus decreases the goodness of fit, especially in this short-period
time series.

Although the data is detrended before the LSHA is applied, at low fre-
quencies still large amplitudes are found in the fit. Compared to Buijsman
and Ridderinkhof (2007) the relative amplitudes of M, and M, are very
large. In their harmonic fit for the nearby Marsdiep water level, these am-
plitudes were 1.6 and 1.8% of My respectively. As mentioned above, wind
set-up can have a relevant influence on the water level. Measurements of
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Figure 9.1: Least Squares Harmonic Analysis (LSHA)-fit to a 6-week time series of NIOZ Jetty
water level measurements. Time series reconstruction using the best fit obtained with the Least
Squares Harmonic Analysis (LSHA) from a 3-week NIOZ Jetty water level time series.

wind speed and direction performed at the same NIOZ Jetty indicate this,
see Fig. 5.3. After 7 days of Easterly wind, 7 days of North Westerly wind is
measured, again followed by Easterly winds. Such ‘14-day-period’ of wind is
not due to the astronomical forcing, but is approximated by the two closest
frequencies present in the harmonic analysis: M, and M,; with 27.56- and
14.77-day periods respectively.

Finally, the ratio (K1401)/(M2+S2) indicates if the site of measurement
has a semi-diurnal (< 0.25), mixed (> 0.25 & < 1.25) or diurnal (> 1.25)
tide. Using the data from the LSHA as presented in table 5.1, it follows
easily that at the NIOZ Jetty the tide is mainly semi-diurnal (0.228). This
agrees with the value of 0.20 from the multiple-year measurements in the
Marsdiep inlet (Buijsman and Ridderinkhof, 2007).

5.1.2 Fourier Analysis

Fourier analysis can be applied if one wants to analyze more frequencies
than just those which are expected to be present in the forcing. As de-
scribed above, all integer multiples of the base frequency (up to the Nyquist
frequency) are analyzed.

The largest downside of the Fourier analysis is however the fact that
amplitudes are averaged over the complete analyzed period. This implicitly
means that only stationary signals can be represented well. Another dis-
advantage is the fact that the discrete time series must be equally spaced.
Finally, all time-information is lost when transforming from time domain to
frequency domain. Since one already should be working with a stationary
signal, this is no problem.

In this thesis it is however the aim to investigate the dynamics of an estu-
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Figure 9.2: Frequency analysis of the NIOZ Jetty water level measurements LSHA-fit using
Fourier analysis (black line) and LSHA (o) of a 3-week time series. Results coincide well, showing
the effectiveness of the harmonic analysis.

ary, which might evolve in time. The theoretical background suggested the
possible presence of multiple equilibriums (single frequency forcing, (Maas,
1997)) and/or chaotic behavior (two-frequency forcing, (Maas and Doelman,
2001)), which is a non-stationary behavior.

Application to data

As can be seen in figure 5.2, the frequency components (constituents) that
are used in the harmonic analysis are found with similar amplitudes by
the Fourier analysis. The low-frequency content (0.5 < f < 4 rad/day)
differs, but has been explained by weather influences. Both methods come
to the same results, showing the effectiveness of the harmonic analysis. On
the other hand, both methods also require a stationary signal, whereas the
oscillations might occur at separate occasions.

5.1.3 Rotary component spectra

For a better analysis of the frequency spectra of the local velocity com-
ponents, a local coordinate system is introduced. Using the mathematical
coordinate convention for «, (taken counter clockwise from Eastward, see
figure 5.4), the North-East frame will be rotated by o« = 76° to obtain the
Alongstream-Crossstream frame of reference. The following relation is used
for the coordinate rotation:

Vgl = UN COS (¢ — VR Sin «

Ver = VN SiD @ 4+ VR COS @,
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Constituent f f A %My

rad/d) [cpd] [m] ]
Ap 0.03 5.25
Ms 12.141  1.9323 0.59 100.0 -128.2
Sy 12.566 1.9999 0.21 359 -109.2
Ny 11.913 1.8960 0.12 20.9 36.2
2 11.715 1.8645 0.10 17.1 5.70
Lo 12.369 1.9686 0.08 14.2 -135.0
Mg 36.422 5.7967 0.04 6.66 100.2
2M Sg 36.848 5.8645 0.05 9.36 96.9
My 24.282 3.8646 0.08 13.31 -63.9
N 5.8404 0.9295 0.11 1844 -63.5
K 6.3004 1.0027 0.07 12.65 -4.4
2M Ng 36.194 5.7605 0.03 5.35 -108.5
MSy 24.707 3.9322 0.07 1199 -43.1
MNy 24.054 3.8283 0.05 8&.50 110.0
3M S, 11.290 1.7969 0.02 2.99 172.6
2S5 M, 12.992 2.0677 0.03 5.10 49.6
€2 11.487 1.8282 0.04 6.68 166.0
MSLg 37.076 5.9008 0.02 3.39 75.5
3M Sg 48.989 7.7968 0.03 4.85 -166.6
2M K3 17.981 2.8618 0.01 0.93 91.3
¢ 12.794 2.0362 0.01 2.09 -151.3
Mm 0.2280 0.0363 0.21 36.05 154.9
Msf 0.4255 0.0677 0.13 23.55 -29.0

Table 5.1: Frequency (f, in rad/day and cycles per day (cpd)), amplitudes (A) and phases ()
(relative to the start of measurement, 2010-02-25 14:00) of water level tidal constituents fitted to
the NIOZ Jetty measurements for the period of January 19th to March 8th 2010. The 22 largest
constituents are listed, together with the fitting constant Ag. Goodness of fit 88.9%, o = 18.52
[em].

where vy and vg are the North- and Eastward components of the measured
velocity, the subscripts al and cr indicate the alongstream and crossstream
components respectively. Using this, one can construct a complex velocity
w,

W = Vg + 10y (5.11)

The Fourier spectra of the two transformed velocity components show
—like the harmonic analysis— a large amplitude for the M constituent, see
figure 5.5. Such distinct spikes are present in the spectrum for both the along-
and crossstream direction, indicating that the local flow is more complex
than rectilinear motion (purely alongstream flow) in the entrance of the
ship road.

The spectra of the two amplitudes and phases of the along- and crossstream
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Figure 5.3: 49-day period of water level measurements (upper) at the NIOZ Jetty, relative to
N.A.P. Wind speed and direction measurements (lower) performed at NIOZ Jetty over the same
period. Note the set-up of water at lasting (North) Westerly winds, and the lower water level at
Easterly winds.

|

A

Figure 5.4: Coordinate systems at the MK-2 location. Magnetic North (N) and corresponding
Eastward direction (E), rotated to alongstream (A) and crossstream (C) by an angle oo = 76°
CCW from East. The alongstream direction corresponds to the orientation of the local ship road
in the Mok Bay. Source: Ministry of Public Works and Water Management (Rijkswaterstaat).

flow can be used to construct velocity ellipses. Two circles (a clockwise,
CW, and a counter clockwise component, CCW) together describe an el-
lipse, being the ‘particle path’ at that location. Per depth bin (depth range)
a spectrum of such ellipses can be calculated, describing the local flow field
in a way which is easy to interpret. Here, the second bin from the ADCP
transducers is used. This is motivated by the following: close to the bot-
tom one will find lower velocities due to friction (underestimating the flow).
On the other hand, close to the surface the motion is influenced by waves.
During the period of measurements strong winds were present, of which the
influence is reduced by not including the upper bins. During (very) low
water, only 1 meter of water was present above the ADCP, increasing the
need to exclude higher bins.

Using velocity ellipses, one can for example easily see if it is justified to
assume that a major diurnal constituent (like M) is aligned with the ship
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Figure 5.5: Fourier spectra of the transformed velocity components, in along- and crossstream
directions relative to the ship road. Mas constituent at 12.42 rad/day, period of measurement
februari 26th to march 6th 2010, at MK-2 beacon.

road. If the clockwise (CW) and counter clockwise (CCW) components have
a similar amplitude, the particle travels in a straight line: the semi-major
axis of the ellipse. The orientation of this axis is dictated by the phase
difference between the CW and CCW component. The complex velocity w
now represents ellipses for a frequency range per location (depth); the seven
largest frequencies can be found in figure 5.7.

As can be seen in figure 5.7, none of the largest ellipses is aligned with
the ship road (alongstream direction). Possible reasons for deviations are an
offset of the internal (magnetic) compass and/or significant local disturbance
of the flow field (for example, by the bathymetry or the local coastline). The
different orientations of the semi-major axes of the ellipses show again that
the flow seems to be more complex than simply aligned with the ship road.
Especially since the used data is obtained from the ADCP’s lowest bin, i.e.
the water ‘layer’ located the deepest inside the ship road.

The calibration procedure for the internal compass demands that the
ADCP is rotated 360° relative to North twice, at about 5° per second. This
calibration should have been done when the ADCP is in position (completely
mounted and moored), so this is practically impossible. The influence of
the steel cables, neighboring instruments and the steel MK-2 beacon on the
internal compass is not directly known.

ADCP compass calibration

In the following, the standard oceanographic convention is used to indicate
the direction of flow, i.e. Eastward corresponds to 90°, defined positive
in clockwise direction (CW) from magnetic North (0°). In figure 5.8 the
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Figure 9.6: Rotary spectra of clockwise and counter clockwise components of the velocity el-
lipse. Seven largest separated frequencies are marked with circles for both components. Measured
velocity data from februari 26th to march 6th 2010 at MK-2 beacon, second bin from ADCP
transducer faces (~70 cm from bottom).

rise of water level is accompanied by a —20°-flow direction according to
the ADCP’s internal compass. The ship road into the Mok Bay is however
not aligned in this direction: the internal compass of the ADCP seems to
suffer from the presence of surrounding metals. For almost the complete
tidal cycle the flow direction at the moored frame is completely different
as compared to the Marsdiep, but using the Marsdiep inlet as a reference
and figure 5.8, most of the local flow field throughout a tidal cycle can be
explained reasonably.

Measurements in the centre of the Marsdiep are available from Groeskamp
(2010) for a timespan of 20 days and from this a typical velocity profile for a
tidal cycle is extracted and used for reference. From these measurements the
alongstream velocity magnitudes are used since they are considered to dom-
inate over the crossstream by one order of magnitude (Groeskamp, 2010).

The main assumption in the following is that the offset of the internal
ADCP compeass relative to the magnetic North can be calibrated by the fact
that inflow of the Mok Bay occurs in the direction of the ship road in the
bay (alongstream direction). This offset is considered to be constant over
time: the (magnetic) influence of the nearby ferry and the settling of the
frame in the bottom are negligible, see Chapter 4. Also, the magnetic and
true North are assumed to coincide.

The direction of flow at the moored frame is compared to that in the
Marsdiep for one typical tidal cycle, using the above mentioned assumptions.
The resulting flow field agrees with practical observations:

e A rise in water level (figure 5.8, A) just after low water (I) causes the
outflow of the Marsdiep inlet to stagnate and become an accelerating
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Figure 5.7 Velocity ellipses for the seven largest amplitudes present in the velocity (along-
and crossstream) spectra. Measured velocity data from februari 26th to march 6th 2010 at MK-2
beacon, second bin from ADCP transducer faces (~70 cm from bottom). The ellipse aligned with
the large My ellipse has a frequency of 26.1 rad/day and is not among the 144 largest constituents.
This is to be investigated more, especially because its frequency is quite low for a resonance.

inflow (A). The water level in the bay can only rise if water comes in
through the ship road, upper-left panel, figure 5.9;

e After first flood (II, B) the inflow of the Marsdiep is now at
(constant) maximal velocity, but at the moored frame it decreases to
nearly zero. Although the speed is small, the direction is consistent
over this short period, upper-right panel, figure 5.9;

e In the Marsdiep inlet a period of decelerating inflow follows (C) while
the water level still rises. The direction of flow at the moored frame
turns away from the Mok Bay, towards the Marsdiep. This is also
experienced by co-workers who daily check their fike, Southwest of
the MK-2 mooring. Especially at the end of flood tide this is noticed,
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Figure 5.8: Detail of a period of waterlevel (top) and flow direction according to the ADCP
internal compass (middle) at the moored frame. Reference (alongstream) velocity of a typical
period of the nearby Marsdiep channel (bottom). Intervals indicate accelerating flood flow (A),
constant flood flow (B), deccelerating flood flow (C), accelerating ebb flow (D) and deccelerating
ebb flow (E) of the Marsdiep channel.

which agrees with the measurements during interval C (figure 5.8,
after aligning the direction of inflow along the ship road). Compared
to the NIOZ Jetty, there is no constant water level difference over the
bay for this interval (a pressure difference that empties the bay), but
again the direction is consistent. Possibly a large steady vortex is
formed in this shallow bump in the coastline. At the end of this
period the Marsdiep inflow has become a slight outflow, figure 5.9,
bottom-left panel.

e The decreasing speed of the inflow is followed by an accelerating
outflow (D), for which the direction is clear in the Marsdiep inlet. At
the moored frame, this outflow is almost opposite in direction. The
water mass leaving the Wadden Sea comes for a large part from the
Northeast and is deflected by the sharp edge of the local coastline as
indicated by the small arrow. Just after this sudden change in
coastline orientation, also the local depth decreases from 26 to ~8
meter, causing a back flow just next to the coast. The whole harbor
of the ferry and also the mouth of the Mok Bay are in this wake; for
the outflow of the Bay this means that it can follow the direction of
the channel, and the contour of the local coastline (bottom-right
panel, figure 5.9). The decreased (Southwestward) momentum in the
wake allows the flow exiting the Mok Bay to maintain its
bay-outward direction at least at the location of the moored frame
and just in front of the entrance of the TESO harbor, as experienced
by captains on the ferries;
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F igure 5.9: Schematic representation of the direction of flow in the Marsdiep inlet (large arrow)
and at the inlet of the Mok Bay ship road (smaller arrow) during the four major stages of a tidal
cycle. Accelerating inflow, just after low water (upper-left), constant maximal inflow (upper-right),
decreasing inflow to slight outflow (lower-left) and accelerating outflow (lower-right).

e Finally, in a new tidal cycle the water level rises and the outflow of
both the Mok Bay and the Marsdiep stagnate. The direction of flow
at the mooring slowly turns back to the starting of the cycle, at —20°
relative to ‘ADCP-North’.

A concrete offset of the ADCP internal compass can now be summarized
as follows. The inflow of the bay occurs along a —20° direction relative to
ADCP-North, while this ship road is towards —76° from true North accord-
ing to maps of this area. Rotating the measured directions of flow to fit
this, they now actually fit to the observations. The total influencing on
the internal compass can thus be expressed as a —56° offset, taking true
North and magnetic North equal for now. Using this, the velocity ellipses
are calculated again and shown in figure 5.11.

Knowing that the bay floods and ‘empties’ twice a day (the Ms con-
stituent has the largest amplitude), the direction of flow should for a large
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Figure 5.10: Complex velocity ellipses for the seven largest amplitudes as indicated
in the rotary spectra of figure 5.6. Used frame of reference: along- and crossstream
directions, ~ 70 cm from bottom (second bin from ADCP transducer faces).
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Figure 5.11: Detail of the complex velocity ellipses for the seven largest amplitudes as indicated
in the rotary spectra of figure 5.6. The frequencies of 12.2, 24.5 and 35.9 approximate the tidal
constituents of My, My and Mg respectively.

part be described by the Ms-ellipse. In figure 5.12 two instants of the tidal
cycle are marked, flood- and ebb flow respectively. The rise in water level
during flood flow means an inflow into the bay (o), in the alongstream (A)
direction. During ebb flow, the bay empties and the ‘jet’ out of the bay
follows the local coastline (®). The calibration of the internal compass of
the ADCP is summarized as a 56° offset from magnetic north, and is now
possible to explain the measured and observed directions of flow during a
tidal cycle.
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Figure 5.12: Local water level (upper) and complex velocity ellipse (lower) as obtained from
the rotary spectra. Inflow (o) agrees reasonably with the alongstream direction (A), outflow (®)
to a direction close to F, as indicated in figure 5.9.

5.2 Oscillations in the Mok Bay

Indications of oscillations

Similar as described in Golmen et al. (1994), measurements of the water
level at both the head and mouth of the bay reveal super-tidal water level
oscillations, albeit with smaller amplitude at the mouth. In the case of a
Helmholtz resonator, the strait that connects the basin to the sea does not
elevate as much as the basin itself does, but here the oscillations can be
visible as an oscillating flow.

The water level as measured in the Mok Harbor seems to oscillate around
the level as measured at the MK-2 beacon, see figure 5.13. If a running-
mean (33-minute window) is subtracted from the water level measurements,
the water level residual is obtained. This allows for an easier analysis of
the oscillation around the tidal elevation. Since the amplitude of surface
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oscillations is small (& 1em) compared to the tidal elevations, it is magnified
by a factor 10 in figure 5.13.

As can be seen in figure 5.2, there is a clear relation between the os-
cillations in water level as measured in the Mok Harbor and the measured
current at the MK-2 mooring. This figure also gives an indication of the
significance of the oscillating flow: it is with its O(0.1ms™!) of the order of
magnitude of the tidal current! The small water level elevations (O(0.01m))
needed to transport the oscillating volume through the narrow entrance in
a relatively short time, being the cause for this. Figure 5.15 shows the cal-
culated coherence between the oscillations in water level and flow velocity
(alongstream). Clearly present is the high coherence at the frequencies of
31 and 48 cycles per day. As will be shown later, these are the Helmholtz
frequencies of the bay for flood and ebb respectively.
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Figure 5.13: 15-Hour detail of water level (WL) observations, as measured at both the Mok
Bay’s mouth (moored frame at MK-2 beacon, broken line) and head (Mok Harbor, solid line).
Subtracting the running mean yields the water level residual, indicated as WL res. (bold, solid
line, magnified by factor 10).

For the three sites of water level measurements, a power spectral density
is calculated. Using this, a spatial variation of any oscillations can be found;
the PSD spectra of the three locations can be found in figure 5.16. Clearly
less energy is present outside the Mok Bay for the frequencies of resonance
(27.6 and 31.1 cpd). Outward radiated waves still contribute to the energy
(water level) as measured at the NIOZ Jetty, but most of the oscillation’s
energy is shown to be concentrated within the bay.

Even more specific information can be obtained by splitting the period
of measurements into an ebb and a flood part. The low water (LW) ‘half’ is
defined as the moments at which the water level is below average, and defined
as high water (HW) when it is above average. The measured water level
consists not of purely sinusoids, so a linear spectrum is not the proper way
to visualize results on ground of energy conservation (Bodén et al., 2009).
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Figure 5.14: 23-Hour time window of flow velocity magnitude (black) and water level
residual (blue, bottom) and detail (top). Water level residual obtained by subtracting
a 20-minute running mean (tidal curve) from the low-passed water level measurements
(Mok Harbor, cut-off period: 5 minutes). Flow velocity magnitude is low-pass filtered
with a cut-off period of 10 minutes. At t=172 (t=176, 184, 189) hours the order of
magnitude for water level oscillations (O(1lem), bottom frame) and magnitude of flow
oscillations (O(0.1ms™!, top frame) is visible.

But only the earlier introduced harmonic analysis allows gaps in input time
series, so a linear spectrum is used to show an important distinction between
ebb and flood moments.

The least squares harmonic analysis (LSHA) is performed over the se-
lected intervals that are flagged as ‘ebb’ or ‘flood’, and the resulting (band-
passed) frequency content is shown in figure 5.17. Again, amplitudes should
be interpreted relative to each other. Two things are visible here: during
ebb moments resonances occur with ~ 48 cycles per day (~ 31 during flood)
and during ebb tides the water level residual has larger amplitudes (for all
f < 85 ¢pd) as compared to flood instants. The flooded tidal bank at
high water allows water to enter and leave the bay without flowing strictly
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Figure 5.15: Coherence between low-pass filtered current measurement (MK-2 beacon) and
water level measurements (Mok Harbor) of the 7.7-day period the ADCP was in use. High
coherence at 31 and 48 cycles per day (cpd) is clearly present, as indicated by the arrows. Low-
frequency content (<15 cpd) is due to tidal motion. Cut-off frequency for low-pass filter: 288 cpd
(T = 5 min.). Settings for coherence calculation: 5 - 10%-point Hanning window, 60% overlap,
5-10%* FFT-points.

through the ship road, which might explain the lower amplitudes for this
spectrum.

No clear peaks of the oscillations are found in the power spectral den-
sity of the alongstream velocity. Although the oscillations are found in the
water level throughout the measurements (see figure 5.2 and 5.13), they do
not necessarily have a similar (or, constant) phase lag relative to the tide.
Moreover, if separate events of oscillations have opposite phase, they cancel
each other in the calculation of the (complex) power spectral density. Av-
eraging of amplitudes rather than complex vectors can in turn give insight
on the existence of these peaks in separate PSD-windows.

5.2.1 Attributing resonance

The time for the ferry to leave and enter back into the TESO harbor (Texel)
is approximately 44 minutes, repeating every hour during day (0600-2100
hour). This period is quite close to the observed period of water level os-
cillations. To make sure the ‘measured’ waves are not smoothed-out peaks
in the data set, raw data from the Mok Harbor depth meter is compared
to the ADCP internal compass. It is known that this compass has an offset
relative to North, but now only the deviations due to the ferry’s hull at every
passing are relevant. Figure 5.19 shows that oscillations in the Mok Harbor
are visible in the raw data also at times for which the ferry stopped sailing
3 hours earlier. So a simple check shows that the observed oscillations are
not due to passage of the ferry (directly) or to data analysis.

50



" NIOZ Jetty
——Mok Harbour {
_________ ---MK-2 ’

LA
S NNVAALT
A

PSD [cmZfcpd]

Frequency [cpd]

Figure 5.16: Power Spectral Density spectra for water level measurements at the NIOZ Jetty
(broken line), Mok Harbor (solid) and MK-2 beacon (bold, broken line). Common low-frequency
energy due to tidal movement, less energy in Mok Harbor for frequencies above 60 cpd by it’s
sheltered location. Resonance peaks at 31.1 and 48.4 cpd used to determine Q-factor of the Mok
Bay.

The observed frequency of 30 cycles per day corresponds to a period of
48 minutes, close to the oscillations observed in the Norwegian Moldefjord
by Golmen et al. (1994). Following their analysis and Rabinovich (2009),
several models are tested to describe the oscillations.
Merian’s formula for natural periods in a rectangular basin of uniform
depth with an open entrance is
4L

Ty=— " n=01,23,..., 5.12
@n+ 1)l (5.12)

as described in Rabinovich (2009). Here /gH is the shallow-water wave
speed and L the basin’s length. The lowest mode (n = 0) corresponds to a
period of Ty = 12.8min (L = 1200m, H = 4m), and is too short to explain
the observed period. Including a part of the Wadden Sea in L (similar to
including the Sildegapet at the Moldefjord) is not justified since oscillations
are shown to be localized to the Mok Bay. Higher modes have even shorter
periods (71 = 4.3min), so this is not the suitable model.

For the lowest (or fundamental, n = 0) mode Wilson changed Merian’s

model to
2L

Vol

where a is a shape-factor (Rabinovich, 2009). For a semi-elliptic basin shape
(and semi-circular shape as well) a = 2.22 and the fundamental frequency
for the Mok Bay should be Ty = 14.2 minutes. Wilson assumed a semi-
paraboloidal depth profile, which is more applicable in a fjord than the

To=a (5.13)
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Figure 5.17: Frequency content of the least squares harmonic fit to the waterlevel residuals h
at ebb (h < h) and flood (h > h) periods between februari 26th and march 6th 2010. Frequency
of resonance at ebb tide f¢*® ~ 48 cpd (T = 29 minutes), ff'°°¢ ~ 32 cpd (T = 45 minutes) for
flood tide. The common peak at f & 72 cpd (20 minute-period) is approximately the frequency
of the ferry leaving and entering the TESO harbor.
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Figure 5.18: Power Spectral Density spectrum of the 7-day low-pass filtered alongstream
velocity, as measured at the MK-2 beacon. Most energy present at tidal frequencies (2, 4, ...
cycles per day), hardly visible is the energy present at the Helmholtz frequencies (31 and 48 cpd).
Settings for power estimation using Welch’s method: 56-Hour (Hamming) window, 75% overlap,
15 - 10* FFT-points.

shallow Mok Bay. Again, this is too short as compared with the observed
48-minute period. Moreover, the increased water depth (H) at high water
decreases the period of oscillation (in both Wilson and Merian’s model),
opposite to the observations.

As with all resonators, the eigen frequency depends on the dimensions
of the resonator. For the Mok Bay, the dimensions differ much between ebb
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Figure 5.19: 40-Hour detail of raw depth meter (water level) data as measured at the Mok
Harbor (left axis) and heading of the ADCP internal compass (right axis). The steel hull of the
ferry causes spikes in the heading (magnetic compass) data, and shows no coherence with the
observed oscillations in the water level of the Mok Bay. Step in heading-data at ¢ ~ 30 hour
due to settling of the heavy frame or settling of the ADCP within the frame. Time is relative to
start-up of the ADCP.

and flood tide, so the Helmholtz frequency might as well. Equation 2.17
describes the Helmholtz frequency as a function of two dimensional length
scales. Using this, the period Ty for a Helmholtz resonator can be estimated

as:
Ty = 27 ( AoL ) (5.14)

gHB

In Golmen et al. (1994) a Helmholtz resonator is ruled out as the driving
mechanism for the oscillations, since the period Ty = 50 minutes demands
an effective strait length being four times the real entrance length. An
effective length includes mass outside the strait that oscillates too (outward
radiated waves), and so increases the real channel length to an ‘effective
length’ (Maas, 1997).

For the Mok Bay however, the Helmholtz model describes the measured
frequencies of oscillation quite well. Table 3.3 lists the estimated dimensions
and the resulting theoretical eigen frequencies are shown in table 5.2.

The difference in water surface area between high and low water is large,
just as the length of the channel that connects the ‘bay’ (that part described
by Ap) to the Wadden Sea. Their product, AgL decreases by a factor 5.01
from flood to ebb, but also H decreases (factor 1.57). This all changes within
the square root, resulting in a decrease of the Helmholtz frequency by only
a factor of 0.56. This comes close to the observed ratio of 0.64 between 31
and 48 cycles per day for flood and ebb respectively.
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Helmholtz
Frequency Ebb  Flood unit

[gHB/AoL]Y/? 53+3 3443 cpd
Measured 48 31 cpd

Table 5.2: Theoretical Helmholtz frequency for both ebb and flood state of the Mok Bay,
estimated using the dimensions as listed in table 3.3. Theoretical frequencies match well with the
observed frequencies of oscillation, assuming the complete channel oscillates during ebb tide.

5.2.2 Mechanisms for generation of resonance

Oscillations in enclosed waters (lakes) are usually caused by direct external
forcing on the surface, for example by atmospheric pressure changes or wind.
The semi-enclosed Mok Bay can be forced by many possible mechanisms,
for which the probability will be discussed here. If the oscillations match the
basin’s eigen frequencie(s), the basin’s seiche (eigen frequency) is said to be
resonantly forced. Opposite to this, oscillations are non-resonantly forced
when driven at a different frequency (Rabinovich, 2009).

As with lakes, atmospheric pressure differences can cause long waves in
the ocean. Due to nonlinearities they span a wide range of frequencies when
they finally reach the basin. This holds as well for the interaction of wind
waves and swell (set-up of water at coasts), although the latter are in gen-
eral of higher frequency. Tsunami waves occur when an earthquake suddenly
moves water masses. For increasing distance from the earthquake, the ‘ring-
ing’ in the ocean increases, and energy concentrates in the local (basin’s)
resonance frequencies. Meteorological tsunamis exist as well, though be it
with smaller amplitudes. Sudden changes in atmospheric pressure create a
sea level difference, which is amplified if the pressure front travels with the
wave speed. Internal ocean waves can have large amplitudes and travel over
long distances before they reach a basin. For some basins close to an ocean
these long waves showed direct correlation with resonance oscillations. Fi-
nally, a tidal current is in an extreme form related to basin-oscillations in
Japan (Nakano, 1957). Here the tidal current reached a free stream velocity
of 6m/s and large eddies triggered oscillations in coastal basins.

Most of the above described mechanisms can be ruled out for the Mok
Bay however. In the ten-day period of water level measurements in the Mok
Bay at almost every slack (of flood and ebb) oscillations were measured.
This excludes causes like (atmospheric) tsunamis and nonlinear wind wave
interactions on ground of their occasional character. Instead the tidal cur-
rent present in the Marsdiep can be related to basin-oscillations in different
ways.
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Jet-like currents and shear currents

A tidal current can generate a chain of antisymmetric counter-rotating von
Karman-like vortices behind an obstacle or (symmetrically) in a jet-like flow.
If the frequency of passing of these vortices matches the frequency of a bay or
harbor, standing oscillations can be induced (Rabinovich, 2009). In the Mok
Bay oscillations are measured at both ebb and flood tide, so the production
of vortices should take place at both parts of the tidal cycle. Although
during ebb flow such vortices seem to shed-off due to flow deflection by the
local coastline (see Fig. 5.20), for flood flow this is not so obvious.

Figure 5.20: Picture taken from NASA ISS space station on May 15t 2007, 13:54:08 UTC
above Marsdiep channel. Ebb flow (flow from upper-right to bottom-left) causes the vortex-like
structures in the black-lined box, caused by (and downstream of) the sudden change in coastline
and bottom topography (possibly a consequent local convergent flow) that causes a foam streak.
Length measure inserted to indicate the distance between the mouth of the Mok Bay and the
shear layer.

In Fabrikant (1995) the oscillation-problem is approached from the oppo-
site side. Instead of looking for models that describe external pulsations that
might force a basin to resonate, here the reflective properties of a shear flow
are investigated. A disturbance from the basin itself (travelling outwards)
can be reflected by the passing shear flow, and, dependent on a reflection
coefficient and phase difference, its reflection can be amplified. Based on the
principle that the reflection coefficient R is dependent on shear flow velocity
Up and frequency w, Fabrikant (1995) proposes a model that can explain
harbor oscillations due to a shear flow.

The growth rate v for a disturbance corresponding to Kelvin-Helmholtz
instability of the vortex sheet (see Fig. 5.22) is expressed as:

w?a owl, 2wL
_ —2wL/Ug :
=-——7¢e sin| — 4+ — | . 5.15
7 7rnc\/§ ( Uo 4) ( )
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Figure 5.21: Schematic top view of a shear flow at a distance y = L from the open end (with

width a) of a basin. Formation of Kevin-Helmholtz instabilities (KH) in the shear layer allow
frequency-specific amplification of disturbances from the basin.
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Figure 9.22: Scaled growth rate ¥ = ~Y/Ymaz of harbor oscillations generated by a vortex
sheet as a function of the velocity U = Up/2wL, as by Fabrikant (1995). Used scaling: Ymaz =
w?a/(mncy'2).

Here a is the channel width, n the number of wavelengths in the channel and
¢ = v/gH the shallow-water wave speed. A uniform depth H in both the
basin and the sea is assumed, just as a rectangular neck for the Helmholtz
resonator. The maximum growth rate

w2a

ney2

occurs when the flow velocity Uy = 0.3(2wL). From the measurements in the
Mok Bay the frequencies of interest (resonance) w®® and w/!°¢ are known.

Ymax = 0.03 (5.16)
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13-Hour measurements in the nearby Marsdiep channel (being the shear flow
at distance L from the mouth, with velocity Uy), showed a typical magnitude
Up = 1.5 m/s. This consequently means that the shear layer reflects (the
frequencies of interest) the most efficient at typical lengths of L¢® = 400
meter and L% = 600 meter. If the foam streak in the black-lined box of
figure 5.20 is considered the shear layer, on can see that this really is the
typical length between the shear layer and the entrance of the Mok Bay.

Figure 5.23: Observation of a shear current during flood flow, in front of the entrance of Mok
Bay. The sharp border between wavy and calm water indicates the shear layer. Horizontal arrows
indicate the shear layer, downward arrows show location of the MK-2 beacon (A) and entrance of
TESO Harbor (B). Picture taken on June 8th 2010, approximately 12:00 UTC from R.V. Navicula.
Estimated location and direction in which this picture is taken is indicated in figure 3.7

In figure 5.23 the shear layer is visible too, but distances are difficult to
estimate. At least for both ebb and flood flow a clear shear flow is observed,
which might contribute to the magnitude of the observed oscillations.

Another possibility for the generation of the observed oscillations is the
principle of self-oscillation. At high water the Helmholtz frequency is differ-
ent from the one at low water; it is a function of the water surface area. The
sudden change in surface area between high- and low water is mathemati-
cally equivalent to a sudden change in system parameters. Such change can
trigger oscillations without any external reflection or disturbance, as will be
shown in Chapter 6.
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5.2.3 Damping properties

A measure of the amount of damping in a harbor (or similar coastal) system
can be found in Rabinovich (2009). From the spectral analysis a measure
for the width of the resonance peak can be calculated, which is linked to
the systems dissipative behavior. This width-measure is called the quality
factor, or ‘Q-factor’, representing the quality of resonance. A highly resonant
tuning fork has typically Q = 1000 whereas a damper on a door is typically
@ = 0.5 (highly damped). The expression of the Q-factor according to
Rabinovich (2009) is

af _ QL. (5.17)

fo
where Af = ff;z — f1_/2 and the resonant frequency fo = 1/Ty. Here f; /2
indicates the half-power frequency, and can easily be found from the water
level power spectra, see figure 5.16. For the Malokurilsk Bay (Japan), de-
pending on the site of measurement within the bay, Q-factors of 9-10 (side)
and 12-14 (centre) were found (Rabinovich, 2009).

Similar to the Japanese Malokurilsk Bay, the Mok Bay has distinct peaks
in the power spectrum of water level measurements. One difference is that
here only ten days of measurements are available, compared to multiple
months for the Malokurilsk Bay. Probably more important is that the power
spectrum of the Mok Bay represents two states: ebb and flood. According
to figure 5.17 the main difference between the two states is at 31.1 and 48.4
cycles per day (roughly no other major changes in the spectra happen),
which partly justifies the use of one figure representing two states.

From figure 5.16 two Q-factors can be estimated for the resonances, at
31.1 and 48.4 cycles per day: Qg = 5.6 and Q31 = 3.0. The latter is
lower due to the larger side-lobes. These values of QQ are comparable to
for example the Bay of Fundy and Gulf of Maine (Q = 5.25), the North
coast of British Columbia (@ = 9.5) and as mentioned the Malokurilsk Bay
(Q = 12 — 14). Super-tidal oscillations are found for large parts of the time
series, and thus the Q-factor was not expected to be small. The Chesapeake
Bay is considered highly dissipative, having a Q-factor of 0.9. The Mok
Bay’s characteristic is pretty average compared to the other bays, but more
dissipative at flood tide. This again can be explained by the fact that most
of the Mok Bay at flood is shallow and the bottom topography less ‘even’
compared to ebb.
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Chapter 6

Self-oscillations

Various phenomena can trigger oscillations in a harbor, bay or lake as de-
scribed in the previous chapter. Self-oscillations are especially interesting
from a mathematical point of view. The different eigenfrequencies of the
Mok Bay during ebb and flood tide indicate that the system parameters
change as a function of water level. This classifies the system of the Mok
Bay as a dynamic system: parameters change as a function of the state
variable (water level, or excess volume).

The Mok Bay’s bathymetry can roughly be simplified to a step function:
a significantly smaller water surface area during ebb tide as compared to
flood tide (see figure 6.1). In terms of modeling, this results in two linear
systems that are connected by boundary conditions that are imposed by
continuity. The separation of the two linear systems (i.e. the sudden change
in surface area) is assumed to take place at mean sea level (¢ = 0). This is
clearly not the case for the Mok Bay (see figure 6.1), but this is assumed in
the simplified model.

In the following both an inviscid and a viscous stepwise linear Helmholtz
oscillator are analyzed. Numerical implementations of the analytic system
are investigated for its recursive behavior to see any similarities with Maas
(1997) and Terra (2005) (multiple equilibria) and Maas and Doelman (2001)
(chaotic behavior).

The equation describing a Helmholtz oscillator in terms of the excess
volume V' (related to the water level ¢) is given by Maas (1997) as

d2v dVv dv |dv
a "Y’dt rn (6.1)

1w +¢(V) = Ze(ot) —r

In Appendix D the exact (analytic) derivation of the inviscid and vis-
cous response of such system. Here the focus will be more on the system’s
behavior rather than the corresponding derivation.
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Figure 6.1: Typical cross section of the charted bathymetry of the Mok Bay (black) and
simplified bathymetry being a step function (red) as function of height. Depth (in m) relative to
N.A.P.

6.0.4 Phase space

A dynamic system is characterized by the fact that the future behavior is
determined by its current state, more than being a direct function of time.
The current state can be expressed in terms of current values for ¢ and C . To
exclude the direct dependence on time, the system’s behavior is not plotted
as function of time, but of in terms of instantaneous system state-variables.
This can for example be water level against water level velocity. Another
possibility is the evolution of a single parameter, which is then shown relative
to previous values. The water level can for example be shown relative to
the same water level but with a phase-delay. Repetitive patterns in time are
now ‘mapped’ on top of each other, time is implicitly visible in the length of
the plotted characteristic. This phase-shifted analysis is also called ‘analysis
in phase space’, and will be applied in the following.

As described above, the solution of a driven viscous, linear oscillator
consists of a decaying (homogenous) and steady-state (particular) part. The
steady-state part is a response with fixed frequency and fixed phase relative
to the forcing of the system. This state is reached after the influence of
initial conditions has decayed, depending on damping properties. Since the
forcing is periodic, the repetitive solution is a single ellipse in phase space.
From the moment the system is started, it tends to reach this particular
solution: the broken-lined circle in Figure 6.2. The radius of the particular
solution is described by (D.18), or, rewritten in terms of the water surface

area A,
Ap = Fo/A . (6.2)
V(k/A = w?)2 + 122
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Figure 6.2: Relation between water level ¢ and its instantaneous derivative Q for a simple
oscillator. The particular solution (broken line) is reached after decay of the initial conditions,
which clearly oscillate around this steady-state solution.

Figure 6.3 shows that a different water surface area (and consequently a
different value of wy) of the modelled bay results in a new circle to which
the system’s behavior is ‘attracted’. For w < 0.1wg however, such a change
in amplitude is minor. Under the assumption that wy < w, (D.18) (which
is equal to (6.2)) reduces to

/A Ky

A, (6.3)

which is independent of w.

For a step-wise linear oscillator, the transient part of the solution plays
a more significant role. For high damping rates, the transient part can be
significantly present. Each time the system passes a threshold (say, ¢ = 0),
the system parameters change and it tries to reach a new end-state. Before
the transient part has decayed it will pass the threshold again, keeping the
oscillations present.

Continuity of inflow (or the bay’s volume V = (A) is satisfied by the
condition:

A
Aip1
The derivative used to calculate the future part of the analytic solution
(i 4+ 1) is compensated for a sudden change in water surface area A;11/A;.
Here, i denotes the HW or LW state. Otherwise an equal large jump would
occur in the bay’s volume and thus would require a discontinuous inflow.
The (excess-) volume of the modelled bay is shown in figure 6.4, where the
threshold that triggers the system to switch state is at ¢ = 0.

Giv1 =G (6.4)
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Figure 6.3: Amplitude of the particular solution Ap as function of water surface area A, for a

few values of the damping parameter r. Surface area is for convenience defined as A = \/w/wo,
when w = 1. For the range of interest (w < 0.lwg) the change in amplitude due to change in
surface area is very little.

System-locking

The direct time-dependence of the system has been removed from the plot-
ting by using only system parameters, related to the system’s current state.
Repeating orbits of the system are now easy to detect, especially the re-
peating consequences of the switching between states (having different water
surface area and thus different system parameters). To find whether the sys-
tem switches states in a fixed pattern, the response within phase space will
be investigated in more detail. Although the eigenfrequency of the system
is not necessarily an integer multiple of the forcing (tidal) frequency, its re-
sponse can still be phase-locked. Subsequent cycles of the solution coincide
in this case. If more than one of such phase-locked solutions can occur, that
are visited randomly, then the response is said to be chaotic. Subsequent
crossings of the threshold can give insight in the sensitivity to different ini-
tial conditions to the ‘amount of phase-lock’ in the response. Although each
crossing of ( = 0 (and consequently V' = 0) new oscillations are triggered
in the system, these periods of transient behavior reache a ‘steady state’.
The system is now said to be locked to the forcing. Figure 6.5 shows such
behavior in phase-space for about ten steady-state cycles that coincide. The
corresponding point of crossing V' = 0 (for dV > 0) is approached as shown
in Figure 6.6.

The set of equations ((D.18), (D.20), (D.21), (D.22) and (D.24)) still
has plenty of system parameters to vary. This makes it very difficult to
analyze the system’s behavior throughout parameter space (the range of all
possible parameter combinations) efficiently. By scaling amplitudes, phases
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Figure 6.4: The use of continuity conditions around ¢ = 0 closes the characteristic to a
continuous function (dV/dt = (A and V = (A). Broken-lined semi-circles (red) indicate the
steady state solution for the separate steady-state solutions for each state of the bay (high, low
water) to which the characteristic tends to decay. Used parameters: w/w, = 1/11 (at LW),
w/wp =1/7 (at HW), r = 2.0 and k = 1.0.
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Figure 6.5: Steady-state behavior of the modeled Helmholtz oscillator. Used parameters:
w/wn =1/10.0, w/wp = 1/8.50, r = 0.1 and k = 1.

and frequencies, the number of parameters can be reduced. Linearization
can in turn be done using some assumptions regarding various magnitudes.
6.0.5 Simplification and linearization

With the above mentioned set of expressions for Ay, ¢n, A, and ¢, the most
general form of the exact solution can be composed. However we do not have
an exact expression for the duration of a half cycle, which is obtained by
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Figure 6.6: From the first low- to high water crossing (green circle) the subsequent crossing’s
behavior is attracted to a fixed equilibrium state, which is reached after about 15 forcing cycles.
Used parameters: w/wp = 1/10.0, w/wp, =1/8.50, r = 0.1 and k = 1.

a zero-finding procedure. The simplified expression of this duration will be
used to find a linearized expression for the next instant at which the system
switches states (and thus its system parameters). Having such an expression,
one can now try to find a recurrence relation describing the system including
switching of states.

The exact solution is stated again here for convenience,
z(t) = Ape” " sin (W't + ¢p) + Ap cos (wt — ¢). (6.5)

To eliminate ¢ and turn the forcing into a sine function (first zero at ¢t =~ ),
the following substitutions have been inserted:

B T (o +5\ (o 7
¢—(wt*—§) — t*<w2><w+2w)
t=t—t, — t=t+t, (6.6)

The solution now reads:

z(t) = Ape Wl gin (W'[t" + ta] + dn) + Ap cos (w[t' +ty] — wty — g)
= Ape '+t gin (W'[t' 4+ ta] + dn) + Ap cos (wt’ - g)

= Ape '+l gin (W't + W'ty + dp) + Apsin (wt') (6.7)
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Figure 6.7: Time series of the viscous, stepwise linear Helmholtz oscillator. Amplitude of the
response scaled by the forcing Fy, shown against the number of forced periods n. Oscillations are
‘modulated’ with a frequency being half that of the forcing, resulting in a period-2 motion. Used
parameters: w/wy = 1/14.12, w/wp = 1/7.06, r = 0.01 and k& = 1.

One expression containing w, ¢ = ¢(dq) and w’ = w'(7y) is obtained by using

o), = W't + ép
:w’(¢+w>+¢h
w

2w
W' T
yielding
z(t') = Ape W) gin (W't' + ¢},) + Apsin(wt'). (6.9)

This can in turn be simplified by scaling time ¢ = wt', frequency @ = w'/w,
amplitude A, = Ape™ 7" and Z(f) = z()/A, to find

#(t) = Ape sin (W + ¢},) + sin (£), (6.10)
where 4 = v/w. Initial conditions Z(f = 0) = 0 require that ¢} = jm,
for j € N. The case for which j = 0 has physically the same meaning as
j = 2,4,... so that only a distinction between j = 0 (first term on RHS
positive) and j = 1 (first term on RHS negative) should be made. The term

,, is thus left out and the fact that A}, can be both positive and negative
is kept in mind: )
i(t) = Ape "sin (@f) +sin (£) . (6.11)

This form of the solution clearly shows two superposed sines which fulfill
the initial conditions and have an amplitude ratio of &.
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Figure 6.8: Phase-space representation of Figure (6.7), where the two states (alternated with
w = 0.5w) are clearly present: the response passes through similar points every 2% loop. Used
parameters: w/wn = 1/14.12, w/wp = 1/7.06, r = 0.01 and k = 1.

Finding zeros in Z(t)

The first instant of #(f > 0) = 0 is estimated to be around f ~ m. An
expression for this instant is

t=m+T, (6.12)
where € < 1 and T = O(1). Inserting this yields
F(n+el)=0= Ape 1+ gin (&1(77 + eT)) + sin(m + €T). (6.13)

This can be fulfilled in two ways, either @ € N (zero by argument) or
A, = O(e) (equal but opposite amplitudes). So far, only the term €T is
considered small: both w and w’ are still considered to be of the same order
of magnitude. If they were not, @ did not have to be an integer (natural)
number as will become clear later. Linearization of the separate terms in

(6.13) around ¢ = 7 + eT gives the following approximations:
flhe_&(”“ﬂ = (1 - ’%T) Ape™ (6.14)
sin (JJ(W + 6T)> = sin(@r) cos(eT') + cos(@n) sin(eT)
~ sin(0m) 4 €T cos(@m) (6.15)

sin(m + €T') = sin(r) cos(eT') + cos(m) sin(eT)
~ —T, (6.16)
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Figure 6.9: Phase-space representation of subsequent derivatives of the water level (d¢/dt) at
the crossing from ¢ < 0 to ¢ > 0. After decay of the start-up behavior (last 25% of 400 periods
are shown) an equilibrium position consisting of two states is visible.

so that
0= (1 - ief) Ape ™ (sin(dm) + T cos(dnr)) —T. (6.17)

Case I: w/w' = O(1)

Consider the case where the frequency of forcing is close to the frequency of
resonance, i.e. w' = O(w), then Ay, is expected to be finite and of order e.
Small-amplitude motion is required in order to find intersections of x = 0
close to those expected based on the forcing function. In this case the terms
of order € can be neglected in the first term on the RHS, yielding

Ape 7™ sin(Om) — €T ~ 0. (6.18)
Again use A, = A, JAp and insert A = €A, = eAp/lhfrom which follows that
€Ay (Apsin(or) — T) = 0, (6.19)

and consequently T' can be found as
T = Ay sin(nd). (6.20)

Case IT: w/w' < 1

Obviously more applicable to the Mok Bay is the case where the frequency of
resonance is much higher than the frequency of forcing, so that e = w/w’ <
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1. Insert this into (6.11) to find the expressions for z(t) and its derivative
x(t):

/

r = eAe M sin (wt> + sin(t)
w

= eAe 7 sin (t) + sin(t)

(6.21)

and its derivative
t t
&= Ae " [cos <> — yesin <>} + cos(t). (6.22)
€ €

Again the instant at ¢t = 7 + €T is considered and using the linearization
introduced earlier, this yields

z = eAe 7™ (1 — eyT) sin (E + T) —¢T. (6.23)
€

Substitute A = Ae™7™ and neglect terms of order € in the first term on the
RHS to obtain o .
¢ [A sin (— + T) - T} ~0. (6.24)
€
The argument in the expression above has physical meaning only over a
certain interval, defined by the floor function. Outside this interval, 27 can

be added or subtracted to yield the exact same result. The floor function of
the current argument is expressed as

€ €

o=|"]=x <1 - 2n> , (6.25)

where n is chosen such that the argument is within the effective interval,
and n € N. Inserted into (6.24) this becomes

Asin(p +T) —T =0, (6.26)
which can be written even simpler by using the substitution F = ¢ + T
¢ = E — Asin(E) (6.27)

This expression is known as Kepler’s equation describing the (polar) position
of a celestial body (like a planet) and the time elapsed from a given initial
point. Here it is the relation between ¢ and C in phase-space describing such
orbit. Equation (6.27) has a known solution for E (provided A < 1) and
consequently it can be solved for T since E = E(T):

E=p+ Z %Jn (n/l) sin(ny). (6.28)
n=1
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Substituting T = E — © back simply yields
L X2 .
T = —Jn( A) i , 6.29
; - nA) sin(ny) ( )

where J, is the Bessel function of the first kind, i.e. the solution to the
Bessel differential equation.

Application

It is now possible to write an analytic approximation for the time instants
where x = 0. This in turn can be coupled to find similar crossings, i.e.
being one cycle separated instead of half a period. The analysis of periodic
similarities can give insight whether this system of coupled linear oscillators
can experience nonlinear (and eventually chaotic) behavior.

From (6.29) an expression for 7" is found and from (6.22) it follows that

g‘cO:A+1:A+g (6.30)
jfl/QZBA‘f‘C,

at (t =0) and (t = 7 + €T) respectively, where

<7r—|—6T> . (W—l—eT)
Ccos — 7yesin
€ €

C':cos(7r+d~“>.

B = e—'y(ﬂ—&—ef)

This can be rewritten to

o= A+ g (6.31)
T2 B C

= _ A4+ = .32

C C + c (6.32)

If one subtracts (6.31) from (6.32) and solves for & /5, an analytic expression
linking the derivatives of two subsequent crossings of z = 0 is found:

In the case of different water surface areas at low- and high water, continuity
of inflow and water level require that the RHS of (6.33) is compensated
according to (6.4). In (6.33), A itself is a function of & according to (6.30):
A = &g — 1. Similarly, T is a function of A (and consequently of @) and
thus are B and C' too.

B

i’l/g =B (i’o - 1) + C1, (6.34)
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Subscript 1 indicates that the corresponding term is evaluated using €; (be-
ing the HW for sine-forcing) and &y. For @ this yields

T, = By (i:l/g — 1) + Cs. (6.35)

Here the subscript refers to use of €2 and evaluation at /3, which can be
rewritten to o using (6.34). Combine this to form

1 = {Z%}Bg{ (Zz) [Bi (30— 1) + C1] — 2} + O, (6.36)

1 2

where

and the fractions containing ¢; are inserted by continuity. In order to elimi-
nate @/, completely, again (6.34) will be substituted:

A(ig) = (550 - 1)6*77r
Ay ) = ([31 (i0 — 1)+ C1] — 1)5%.

Calculation of recursive system behavior

As shown above, an analytic start is made to find properties of the periodic
behavior of the coupled oscillators. Theoretically an infinite sum of Bessel
functions is required to find 7', according to (6.29). This is impractical by
computational means and a simple calculation shows the outcome of T' as
function of the number of summed Bessel functions. Figure 6.10 shows a
typical behavior for the current calculations (model, assumptions, etc.) and
thus no more than the first hundred Bessel functions of the first kind are
used.

One can now find properties of the periodic crossing of z = 0 (C > 0),
see Figure 6.12. The procedure to actually calculate the periodic behavior
of the system is as follows:

e having an initial condition (¢ = 0, #(0) = wvg), the solutions z(¢) and
#(t) can be calculated exact using A = vyp — 1 from (6.22) in (6.21);
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Figure 6.10: Asymptotic behavior of the number of summed Bessel functions (n) in the solution
to Kepler’s equation (7). For the calculation performed here no more than the first hundred Bessel
functions (first kind) are necessary: the further increase in accuracy is very little.

e ¢T is approximated by the finite Bessel summation under the
condition z(t = 7 + €I') = 0;

e i(t = m+ €T is interpolated from the exact solution;

e i(t =7+ €T is multiplied by a factor expressing the areal ratio to
assure continuity of inflow and water level of the modeled bay;

e having the new initial condition on & and defining the time at this
instant to be zero, one follows the procedure from start again.

Although this procedure finds the subsequent (half-period) crossings of z = 0,
every second result of it yields the one-cycle intersections with the Poincaré
plane (¢ = 0 and ¢ > 0). Note that in the following ( = & = v is used. In
summary, one can state that

é(t1/2) =F, {C (to)}
((h)=F [C (751/2)} :

Equivalently, linking two passings of the Poincaré plane (being separated by
one cycle), this corresponds to

((t) = Fy {Fa [é (to)] } : (6.37)
An example of such a function Fy(F,(¢)) is shown in Figure 6.11. The

broken black line indicates the bisector. If the intersection with the bisector
happens with a slope of less than —1, the following intersections will spiral
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Figure 6.11: Subsequent values for C of the intersections of the Poincaré plane over time. The
initial value of { = 2 converges in time to ¢ ~ 2.36. Used damping parameter setting: v = 0.11.

away: this equilibrium is unstable. Having a slope of exactly —1, the system
is in equilibrium and experiences two distinct intersections with the bisector.
In the case of a slope larger than —1 the system will spiral towards one fixed
intersection: the system is stable (Adams, 2002).

Poincaré plane

Now consider the plane ¢ = 0, C > 0 and mark all crossings of it with a
dot. Such plane is called a Poincaré plane and shows the system’s stability
in a very easy way. If subsequent dots coincide, the system is apparently in
a steady state, as a linear system would be. For a slightly different system
parameter a new crossing of the Poincaré plane might be found, showing a
new equilibrium state.

A typical example of a system consisting of simple nonlinear equations
which experiences a chaotic response is the logistic map

Tpp1 = 1Tp(1 — zp). (6.38)

If the position of the crossing of the Poincaré plane is shown as function of a
system parameter, one obtains a bifurcation tree, see Figure 6.14. Starting
with » = 2.4, only one value for x is found. The system is thus in a steady-
state (one-cycle motion). Increasing the system parameter r up to 3.0, a first
bifurcation occurs. In such state, the system experiences similar crossings
every second cycle: the two-cycle motion. This happens again for r &~ 3.45,
bringing the system in a repeating cycle of four periods: the four-period mo-
tion. A bifurcation point is thus the point at which the circumstances force
the system into a higher-period motion; further bifurcations occur before
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Figure 6.12: Behavior in phase-space of the example-function ¢ = sin(¢) 4 0.01sin(10t). The
dynamic system will switch parameters (radius in phase-space) when crossing ¢ = 0, which is
excluded here. From tg (at ¢ = 0) the system travels in the direction of the arrow, until it reaches
t1/2, again at ¢ = 0. Here the system switches from its high water state to a low water state, to
the instant of ¢1 (back at ¢ = 0). Finding a relation between tg, 1, ...can give insight in periodic
system behavior.

the system reaches the chaotic regime. Slight changes in initial conditions
result in dramatic changes in the end situation: a main characteristic of
chaos. An example of period-2 motion of the piecewise-linear oscillator that
models the Mok Bay can be found in figure 6.7 and 6.8.

Bifurcations and higher-period motion

A linear Helmholtz oscillator experiences a fixed amplitude and phase after
decay of initial conditions, as shown in the above derivation. This means
that for a single linear Helmholtz oscillator each passing of (¢ = 0, ¢ > 0)
the conditions of ¢ and C will be equal. For both the original and linearized
model (consisting of two coupled linear models) however, higher-period mo-
tion is found. For certain parameters not every first crossing, but every
second crossing has similar conditions, at least in the linearized model. This
is a first indication that the behavior of the oscillator might experience
transition to chaotic behavior by bifurcations. Bifurcations are the points
at which the system gets into a new equilibrium state. This can consist
of multiple stable (and unstable) points: the higher-period motion. Of the
various types of bifurcations, the bifurcation tree in figure 6.14 describes the
period-doubling motion. Under conditions of an increasing system parame-
ter (on z-axis), the periodic motion of the oscillator is doubled to period-2,
doubled again to period-4 motion, etc. before chaos is observed.

The original analytic model (D.9) shows also (for certain parameter set-
tings) each third (see figure 6.16), fourth, ..., eleventh period similar con-
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Figure 6.13: Subsequent values for C of the intersections of the Poincaré plane, now as function
of its preceding value. The black broken line indicates the bisector of the axes. The slope at the
intersection with the bisector indicates the stability of the function. Two different values for the
damping parameter v are shown.

ditions of crossing. Though after for example the period-11 motion, the
system is stabilized again yielding period-3 motion. Such bifurcations are
comparable to the piecewise-linear oscillator described by Coombes and Os-
baldestin (2000), modeling the human neural response. Here period-adding
bifurcations are found and the corresponding bifurcation diagram consists of
windows of periodicity and chaos. Yang and Lu (2004) found period-adding
bifurcations without intermediate chaotic regimes (also in a model describing
neural oscillatory responses and also consisting of a piecewise-linear oscil-
lator). Duarte et al. (2006) reported similar (discontinuous) return maps
(Poincaré representations) as found in this thesis (see figure 6.16), having
both period-doubling bifurcations and saddle-node bifurcations.

As can be seen in figure 6.17, the underlying characteristics of subsequent
passings of the Poincaré plane are significantly different for the original (o)
and linearized model (x). This indicates that for initial conditions (y ~ 1
(very small oscillations around the sine forcing, which local derivative is
equal one) the models might be similar, for larger initial values of C the as-
sumptions at the linearization is not accurate enough for further comparison.

The bifurcation diagram of the piecewise linear Helmholtz oscillator can
be found in 6.18. A bifurcation diagram with higher resolution should be
made using a more efficient algorithm and more general nonlinearity param-
eter. The varied parameter ~ represents only friction, whereas nonlinearity
is varied more directly by the forcing, ratio of water areas etc. Decreasing
the amount of parameters (ideally into one nonlinearity parameter) is also
recommended.
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Figure 6.14: Bifurcation diagram for the logistic map Tp+1 = T@n(l — zn). For increasing
system parameter r through period-doubling bifurcations finally the chaotic regime is reached
(r > 3.6). Clearly visible are the period-doubling bifurcations at r ~ 3.0, r ~ 3.45, etc. and
system stabilization at r ~ 3.82. From hitp : //en.wikipedia.org/wiki/Bifurcation_diagram.

Conclusion

Further investigation on the presented piecewise linear Helmholtz oscilla-
tor can give insight whether its behavior in parameter space is described
by period-adding bifurcations (and possibly) with intermediate regimes of
chaos, as described by Coombes and Osbaldestin (2000), Duarte et al. (2006)
and Yang and Lu (2004). Localizing the shallow Mok Bay in parameter space
can in turn show the theoretical presence (or absence) of such behavior for
this bay.

Both the presented model and its implementation are thus topic of fur-
ther research since hardly anything is documented on dynamics of driven,
viscous, piecewise-linear Helmholtz oscillators. A better linearization might
be related to small variations in derivative (C), rather than amplitude ().
Such linearization can be used to find a simplified analytic expression, from
which directly specific parameters can be found that lead to bifurcations
(slope -1 in return map). Both the simplified model and a reduced number
of parameters (that span the parameter space) will yield a more efficient
calculation of system behavior (return map or Poincaré plane, bifurcation
diagram).

75



0 1 A 2

Figure 6.15: Period-adding bifurcation diagram for the neuron-oscillator as described by
Coombes and Osbaldestin (2000). For stimuli period A < 0.1 one finds period-1 motion which
soon becomes chaotic motion for increasing A. Stabilization occurs however, yielding period-6

motion (A = 0.22), followed by a chaotic regime, period-5 motion, etc. From Coombes and
Osbaldestin (2000).
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Figure 6.16: Discontinuous return map (x) of the subsequent crossings of the Poincaré plane,
as response to an initial condition of (g = vg = 2 (red line). After a few periods the stable period-3

motion (marked by red circles) is reached. Used parameters: w1 = 12.12, wy = 8.06, v = 0.1 and
At = 0.001.
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Figure 6.17: Underlying characteristics of the subsequent passings of the Poincaré plane for
the analytic (o) and linearized model (x). The single-frequency sine function has local derivative
equal one at intersection of the Poincaré plane, explaining why the linearized and analytic model
coincide for this point: the oscillations are small enough for the linearization assumptions to be
valid. The local slope at the intersections with the bisector (green) indicates whether these are

(in)stable equilibriums.
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Figure 6.18: Bifurcation diagram for the piecewise linear Helmholtz oscillator

035

as function of

the friction parameter v = ¢/2m. Used parameters: w; = 12.12, wy = 8.06 and At = 0.01.
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Chapter 7

Discussion

Based on the theoretical proof that an almost-enclosed co-oscillating bay can
behave as a nonlinear Helmholtz resonator, measurements have been per-
formed at the entrance and head of the Mok Bay (Texel, the Netherlands).
Traditional analysis (harmonic and Fourier analysis) have been applied and
show agreement with the nearby obtained results from 5-year ferry observa-
tions.

Splitting the measurements in a high- and low water series allowed for
separate analysis of the Mok Bay during these events. Using LSHA (allowing
gaps in time series) two distinct frequencies of resonance were linked to high
and low water. Together with high coherence between water level and water
flow at these frequencies, the Helmholtz model turned out to describe the
oscillations well. Oscillations in water level might be small, @(0.01), the
corresponding flow oscillations are of the order of the tidal flow, O(1). This
shows the significance of understanding the system behavior, especially if it
is highly nonlinear.

Measurements with the TUD jet ski and the GPS-tracked waterline re-
sulted in an estimation of the hypsometric curve of the Mok Bay, yielding
dimension estimates for the Helmholtz model. For both high- and low wa-
ter, the model made an overestimation of about (10%). This can however be
attributed to the effective entrance width being smaller than the real width
due to wall- and bottom friction. Also, the length of the channel in practice
can differ from our estimate from the depth measurements.

The obtained time series is however too short (9 days) to quantify any
presence of chaotic behavior. Wind-setup can have a major influence on the
water level, especially for such short series. Consequently an analytic model
was set up to analyze the behavior of two coupled Helmholtz resonators,
representing the high- and low water states. The piecewise linear Helmholtz
oscillator was linearized in order to obtain an analytic expression for the
subsequent crossings of the Poincaré plane, but turned out to be only ap-
plicable for too small amplitudes of oscillation. Such analytic expression
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should give insight to what parameters are relevant for bifurcations to occur
in the system’s parameter space. Assuming small derivatives (C ), rather
than amplitudes (¢) might give a better linearization without having a too
small domain of applicability.

The original analytic model for the piecewise linear Helmholtz oscilla-
tor has too many parameters to map its behavior properly, but certain sets
of parameters already show period-adding bifurcations. These are indica-
tions of nonlinear behavior that possibly leads to a chaotic response. After
mapping the complete range of interest using one nonlinearity parameter,
placing of the Mok Bay in this regime will show whether chaotic behavior
could be present in the Mok Bay. Extended measurements can in turn show
the actual presence (or absence) of this behavior, of which especially the os-
cillating flow is of importance for estuarine flushing and consequently to the
local ecosystem. Furthermore, already this first attempt to find a chaotic re-
sponse to (assumed deterministic) tidal forcing in a natural estuary showed
promising results, both from measurements and further simulations. This
gives rise to the question whether many more tidal estuaries behave in a
similar unexpected nonlinear fashion.
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Appendix A

Photographs

Figure A.1: Aluminum frame on deck of R.V. Stern, including the mounted CTD (A), ADCP
(B) and OBS (C).
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Figure A..2: Picture of the box with communication electronics as mounted at the MK-2 beacon
(yellow, bottom). Visible are the step-by-step guide for connecting the electronics (yellow, left)
and battery pack in the lower half of the box.

Figure A.3: Preparation of the electronics before the actual drop-off of the frame. In this
picture (clockwise from upper-left corner): Jordy de Boer, Jan-Dirk de Visser, Jack Schilling and
Ewout Adriaans (bottom).
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Figure A .4: Aluminum frame with electronics moments before drop-off. Yellow cover protects
the ADCP transducer faces and was removed before actual measurements.

Figure A.5: Radio-controlled (fish-feeding) boat equipped with GPS to chart the oyster beds
(bottom half). This was only partly successful due to battery capacity and difficulties when
stranding.
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Appendix B

Non-dimensionalization of
the Helmholtz equation

Starting with the momentum equation integrated over the strait’s length L,

dv 1, 9 k
Lo = 96— 6) + 5 = u?) = Ly fulu (B.1)

and the basin’s excess volume

(i/j = —uHB,
the non-dimensional parameters
Vi=A,HV, t,=t/oy, o5 =gHB/AL, (B.2)
and
G=H¢, C=HZ, (B.3)

are substituted. Use the expression for the excess volume and B.2 to obtain
a dimensionless expression for the channel velocity u
dV, dV, 1 dV. HAy dV Agog

a, v dt, HB ~  dt HBL it B

and its time derative

du A1 d*V HAy,  d*V HAogHB _ d?V gH

dt, A2 HB A HBL A2 AJHBL A2 L~
H

The first term of B.1 can now be made dimensionless as

du A2V gH a2V
L _ et gt
dt, a2 L 9542

(B.4)
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Caused by the water level difference over the strait (or, pipe), the pres-
sure difference can now be written as

9(Gi—C) =g(HC—HZ(at)) = gH{(V) — gH Zc(ot). (B.5)

Note that now the inverse relation ( = ((V) is used, in stead of V = V(() as
in 2.16, and o is the scaled frequency o./og. The water level overshoot that
restores the system (first term on RHS) will be taken to the left hand side,
and the tidal forcing (second term on RHS) we have now made dimensionless
too.

The radiation damping term is by Maas (1997) introduced as simply
being

dv
Hr— B.
gHr (B.6)
where
.8
2L

The dynamic pressure %(uf — u?) over the strait was already derived in

the text, and is now combined with the (also quadratic) bottom friction.
The dimensionless form of this is obtained by substituting

§(u2—u2) =  —Oluju

together with the bottom friction term —L £ |u|u as

k 6 k §  k\|dV|dV Ako?
— L— =-L|{—=+—= = —L{—+—=)|—| =291
<5+ H) [ulu (L * H) fulu <L + H) ‘ at | at B2
In short,
k dv|dv
where

(9 n k\ Ao
TS\ H) B
Changing sign in and taking out gH from every term (B.4, B.5, B.6 and

B.7), we now can write the final dimensionless expression for a Helmholtz
resonator in terms of the excess volume V' (¢):

L+ V) = Zelot) -1 = | | S

azv v |dv]dv
il B.
dt d ’ dt (B8
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Appendix C

Derivation of the Harmonic
Analysis

The discrete time series of a measurement x(t,), n=1, ..., N can be splitted
into
z(ty) =T+ 2/ (tn) =T + 2(tn) + 2, (ty) (C.1)

where z is the measured value, 7 is the record mean and 2’ is a fluctuation.
This fluctutation can in turn be replaced by a least squares harmonic analysis
(LSHA) approximation & and a residual z,. To avoid inaccuracies due to
round-off errors, the mean value T of the record is subtracted, resulting in

M

2 (tn) = &(tn) + 2p(tn) = C + > Cyeos(2m fotn — ¢g) + r(tn).  (C.2)
q=1

Since the mean of measured fluctuations (2/(t)) is per definition zero,
the following holds:

M
(2(tn)) =0=(C) + <Z Cqcos(2m ftn — ¢q) + :J:r(tn)> . (C.3)

q=1

Using (C) = C,

M
C=- <Z Cq cos(2m ftn — ¢q) + xr(tn)> : (C.4)

q=1

in which C is thus the negative mean value of the LSHA fit and residual
together. Assuming a good LSHA fit (i.e. a small residual z,),

M
C=— <> Cqeos(2mfotn — ¢q) > . (C.5)

q=1
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Physically this stands for the flux (when analyzing velocity) due to uncom-
plete cycles of sinusoids, which does not contribute to a possible total flux
in the measurement site. The total flux in that case would be found by
adding both 7 and C. The summation term in (5.2) is a best fit by the
LSHA which approximates . Cy, f; and ¢, are the constant amplitude,
frequency and phase of the qth constituent respectively. Apart from non-
stationary behaviour in the present constituents, it is the residual z, that
contains information on the local (estuarine) behavior. Substituting

Cq = (Ag + 32)1/27 bq = tan_l(Bq/Aq), C =4 (C.6)

into (5.2), one finds

M
2 (ty) = Ao + Z [Ag cos(2m fqty) + Bgsin(2m foty)] + xr(tn), (C.7)
q=1

in which the coefficients A, and B, are now to be determined.
The target of the LSHA is to minimize the variance, e?, of the residual
time series x,(t,), which is defined as

N N M 2
Q—Eﬁ%%zKﬂM—&ﬁzM%)} (C.8)

where
M(t,) = [Aqcos(2m fytn) + By sin(2m fyty,)] .

Minimizing the variance means finding zeros for the partial deratives of the
variance to both A, and B,. Setting the partial deratives to zero and using
the chain rule,

9 N M
aqu =0= 22 {xln — |Ao+ ZM(tn) }[_ cos (27 fgtn)]

M
%}-%+2M%)hﬂm%mm (C.9)
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One constituent simplification

To show how this can be solved by matrix inversion, we assume only one
tidal constituentset, M = 1. Then,
N

iiZOZQH {'—@%+Phwd%ﬁmy+&ﬂm%ﬁ%m}
Oe? al
o4, ~ 0= 2; [{x — (Ap + [A1 cos(2m fity,) + By sin(27rf1tn)])}[— COS<27Tf1tn)]]
De? N
a5, '~ 2 nZ:l H — (Ao + [A; cos(2m fity,) + B sin(27 f1ty)]) } [~ Sjn(QWfltn)]]
Substituting

c=cos(2mfitn), s=sin(2nfit,), Ap=7= (C.10)

and bringing all constants outside the summations gives

N N N N
A021+A1Zc+B1ZS:Zx;.
n=1 n=1 n=1 n=1

N

AOZC—}—A120 —{—Blzsc—Zmnc
n=1 n=1
N

AOZs—FAlZsc—FBlZS —Zay s
n=1 n=1

This, in turn, can be rewritten to the matrlx equatlon Ax = b, where

N N N
Z?jmvzl 1 ZJGZI c ZJGZI S
é = Z?Vzl c Z}({:l 62 Z?Vzl scf (Cll)
Zn:l S Zn:l sc Zn:l 82

= A1 s (C12)

and
Zfzv | T,
b= zﬁl%p. (C.13)
ZnNzl xns
Inverting A, one can solve the system
z=A"b (C.14)

for the coefficients Ay, A1 and By. These are the desired constants describing
the contribution of each constituent to the quantity on which the LSHA is
applied.
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M-constituents

For a LSHA with one constituent, the dimension of A is 3x 3, which increases
as (2M +1) x (2M +1) for M constituents. This can be explained by the fact
that T or, Ag, appears only once in every equation. So this contribution does
not increase for increasing M, whereas A, and B, both appear M times.
The vectors x and b increase on the same ground to length (2M + 1):

N c1 co ... Cm s1 S9 .. Sm
C1 CC11 CC12 e CC1 M CS11 CS12 e CS1 M
(&) CC21 CC92 e CCoOM CS21 CS9292 . CSoM
A: Cy CCpp CCpg2 ... CCM M CSpr CSp2 o.. CSMM
S1 SC11 SC12 e SC1 M S$511 S$512 N SS1M
59 SC21 SC29 e SCoM 8591 S$599 e SSaM
LSmM SCym1 SCym2 - SCMM SSM1 0 SSM2 .- SSMM |

Ao yco

Ay yer

Az yco

z= [Am|, b= |ycu

By ysi

By ys2

| B [YsM |

For visualization reasons, a few substitutions have been done:

N N
c = Z[cos(27rf¢tn)], 8; = Z[sin(27rfitn)]
n=1 n=1
N
CCijj = CCj; = Z[COS(Zﬂ'fjtn) COS(QWfitn)]
n=1
N
$Sij = S8j; = Z[Sin(%rfjtn) sin (27 fity,)]
n=1
N
csij = §Cj; = Z[Sin(Qijtn) cos (27 fitn)],
n=1

and

N N
yei = 3w leos@nfita), ysi = . hlsin(nfita)]
n=1 n=1
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After solving the matrix system (C.14) all coefficients A, and B, are
now known. Using (C.6), these can be transformed back into ¢ specific am-
plitudes and phases which together form the best LSHA fit of the measured
data.
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Appendix D

Analytic derivation of the
inviscid and viscous response

D.1 Inviscid response

For now, the inviscid form (i.e. 7 =~ = 0) of (2.18) is used for a simplified
model of this parametric oscillator:

d?v

FIol + (V) = (e(t). (D.1)
The tidal forcing (.(t) is a single-frequency forcing: (.(t) = Fpcos(wt).
Using V' = (A and a solution of the form

¢ = asin(wt) + bcos(wt) (D.2)
this can be rewritten to
— Ajaw? sin(wt) — Azbw? cos(wt) + asin(wt) + beos(wt) = Fycos(wt). (D.3)

Here A; is the instantaneous surface area (at high- or low water state), a
and b are to be determined. Since the forcing of the inviscid system consists
of only a cosine term (with frequency w being equal in all terms), it follows
that a = 0. Consequently b can be determined to be

a 1-— Aiwz '
The particular solution to the second order differential equation (the homo-
geneous part is zero for this inviscid system) is in the general form

b (D.4)

¢(t) = c1sin(wot) + c2 cos(wot) + bcos(wt). (D.5)

The system’s eigen frequency is wg = 1/1/A and the coefficients ¢; and co
are determined from the initial conditions (¢(0) = 0,{(0) = 0) by solving
the matrix equation

Cx=D. (D.6)
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Here

sin(wot) cos(wot) cos(wt) c1
C = |wpcos(wt) —wpsin(woet) —wsin(wt)|, z= a1
0 0 1 b
and
UL
D= 1¢0)] = |0
b b

At every switch between ebb and flood (and vice versa) the system (D.6)
is solved again for x since it now has new system parameters. The condition
of the bay at the switch is used as initial conditions for this new solution.

Continuity between two states requires that both the water surface level
and volume transport through the channel (modelled as a pipe) are continu-
ous: (T = (T and Q™ = QT, where Q denotes the channel low. Superscripts
indicate the instants before (7) and after (*) switch of states. Using the
fact that the inflow is related to surface area A as Q = CA, the following
should be satisfied: A

Cr=¢ =0 (D7)
Obviously the surface area experiences a sudden jump, it is a step function.
Satisfying ¢+ = (~ would cause a discontinuity in the water flow through
the channel. The sudden increase in surface area demands a sudden increase
of flow and thus QT # Q. By setting the sudden change in ¢ equal to the
increase in area, a continuous flow through the channel is obtained. For as
long as the bathymetry is not defined as a continuous function, this is a
proper continuity relation.

Knowing the initial conditions, an exact solution of the water level (or
excess volume) can be calculated separately for each LW and HW. As soon
as the water surface area switches to its new value, an exact derivative can
be calculated and used as new initial condition. This results in an exact
representation of the inviscid stepwise-linear oscillator.

D.2 Viscous response

If one does include friction and assumes only linear dissipation (neglecting
the last term on the RHS in equation 2.18), the standard solution to the
widely documented mass-spring system can be used here. Leaving quadratic
friction out, (2.18) becomes

d*v dv
W + C(V) = Ze(O't) - TE. (D.S)
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Substitute Z(ot) = ((t) = Fp cos(wt — ¢g) and V = (A to find

d? d
Ad—tg + rAd—g + ¢ = Fycos(wt — ¢g). (D.9)
This is similar to the equation of motion for a forced, viscous mass-spring

system:
d?z dz
m—s + c— + kx = Fycos(wt — . D.10
= Teg T 0 cos(wt — ¢a) (D.10)
Here, x represents the system’s excitation, k is the spring constant and c
the damping constant. Subscript d indicates that the phase is related to the

driving force, time ¢ is explicitly related to the forcing.

D.2.1 General solution

The solution to (D.10) consists in its general form of a transient and a
steady-state solution (or, homogenous and particular solution respectively).
By the use of boundary conditions this general solution can be applied to the
problem of concern to find the exact solution. Initial conditions decay over
time as described by the transient solution, after which a state is reached
for which both phase and amplitude are constant. In the case of coupled
linear oscillators, consisting of two such systems as described by (D.10), the
transient solution might be of importance continuously.

Transient solution

The transient solution is described by the equation of motion when no forcing
is applied, i.e. the RHS of (D.10) is equal to zero:
d?z dz

A decaying solution is expected, for which the form z = e is used. Note
that r is different from the damping parameter in D.9. Inserting this in
(D.10) yields

mr2e™ + cre™ + ke =0,

for which x = €" only is a solution if 7 satisfies the auxiliary equation
mr? 4+ cr +k = 0.

This equation has roots given by

—c D
r=—=+ —,
2m 2m
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where D = ¢? — 4mk. The system is said to be overdamped if D > 0,
critically damped if D = 0 and underdamped when D < 0. For the Mok
Bay we assume an underdamped system (D < 0), so the roots are complex:

r=—ytiw,

where w’ = /w3 — 1?2 and v = ¢/2m. The found values for v and w’ can
now be used in the general form of the homogeneous solution:

xp(t) = Cre” " cos(w't) + Cae M sin(w't). (D.12)

Substituting C; = Apsin(¢p), Co = Apcos(¢p) and making use of the
trigonometric relation

sin(a) cos(B) + cos(a) sin(f8) = sin(a + 3),
the following expression for the homogeneous solution is found.
xp(t) = Ape " sin(w't 4 ép) (D.13)

Both the amplitude A; and phase ¢; will be determined using boundary
conditions.

Steady-state solution

After the transient solution has decayed, the system responds ‘fixed’ with
respect to the periodic forcing. Both the amplitude and phase are now
constant, i.e. the steady-state (or, particular) solution. Again one starts
with the equation of motion for the viscous mass-spring system, now having
a periodic forcing;:
Az dz

ma + S + kx = Fycos(wt — ¢g) (D.14)
The ‘complex variables method’ introduces an imaginary part to the equa-
tion, after which only the real part of the solution is used. For the current
equation of motion this yields:

2
m((iin + C% + kx = Fy [cos(wt — ¢q) + isin(wt — ¢g)]

= Fpe!@i=¢a), (D.15)

Assume a solution of the form z(t) = A,e’ @) then (D.15) can be rewrit-
ten as

—w?mA et @0 iweA, @) 4 kA @9 = Fpel@ttda) (D.16)

94



Dividing both sides by the exponential as used on the LHS results in the
auxiliary equation:
—meAp +iwcA, + kA, = Fye'(0—%d)
= Fo (cos(¢ — ¢q) + isin((¢ — ¢a)) -
(D.17)

The real and imaginary part of this equation can be solved separately to
find

Fycos(¢p — ¢q) = Ap(k — mw2)
Fosin(¢ — ¢q) = wcA,.

This can in turn be used to find the amplitude A, and phase ¢ of the steady-
state part of the solution (particular solution). Using cos?(¢) + sin?(¢) = 1
and solving for A, and ¢ yields

Fo/m
\/(wg — w?)2 + 4202

(0= 00 =t (5.

A, = (D.18)

k — mw?

Here v = ¢/2m and w? = k/m. The particular solution can now be written
as

xp(t) = Ay cos(wt — @), (D.19)
where
_ cw
¢ =tan ! [W} + Pa- (D.20)

The general solution to (D.10) is simply the sum of the homogenous and
particular solution:

z(t) = Ape sin (W't + ¢p) + Apcos (wt — @), (D.21)

consisting of a decaying homogeneous solution (first term on RHS, subscript
h) and a steady-state particular solution (second term on RHS, subscript

).

D.2.2 Exact solution

To obtain the exact solution for the water level z(¢) (or ¢ in D.9), the bound-
ary conditions are used to find expressions for Ay, and ¢y, in the homogeneous
part of the general solution. Boundary conditions at ¢ = ;. dictate x = xp,
and 9|,—;, = vp.. Using equation D.21 one finds

Tpe — Ap cos(witpe — @)

Ay = .
" et sin(W'tpe + op)

(D.22)
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The derivative of equation D.21 can be found using the product rule, and is
expressed as

d

d—f = —yApe "sin(w't + ¢p) + Ape MW cos(W't + ¢p) — wA, sin(wt — ¢).
(D.23)

Using the fact that

Ap et sin(w'tpe + op)
tan(w't =
(Wtpe + Dn) Ape Ve cos(w'tpe + ¢p) ’

and the equations (D.21) and (D.23) at ¢ = tp., the expression for ¢y, is
found as

1 wl(wbc - Ap COS(Wtbc - ¢))
Upe + Y (@pe — Ap cos(wipe — @) + Apw sin(wtpe — @)

- wltbc.

(D.24)
To use the widely documented solution for a viscous mass-spring system
for the Helmholtz resonator, one uses x = (, m = A, c = rA and k = 1
(equation D.9 and D.10). The set of equations ((D.18), (D.20), (D.21),
(D.22) and (D.24)) gives an analytic expression to the solution of the viscous
Helmholtz oscillator, albeit in a very general way.

¢ = tan~
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Appendix E

Nomenclature

E.1 Symbols

A The water surface area

Ay idem, at zero surface elevation from mean sea level
A, Dimensionless water surface area

A, Amplitude (homogeneous solution)
A,  Amplitude (particular solution)

B Channel width

c Damping constant

C Sample mean value

Cy  Amplitude of ¢"" constituent

e Euler exponent

fr Fundamental frequency

fn  Nyquist frequency

fq Frequency of ¢ constituent

fs Sampling frequency

Af  Frequency resolution

J1/2 Half-power frequency

g Gravitational acceleration

H Channel depth

H, Dimensionless channel depth
Jn nt" Bessel function of first kind
k Spring stiffness constant

L Channel length

Lp  Effective channel length

Mass
Number of constituents
Number of measurements

223
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Hﬁ“EmﬁQE

Val
Ube

Ver

y@p@mmmmm%\ggg

=

Pressure

Quality factor

Friction parameter

Reflection coefficient

Time resolution

Time

Time (external forcing)

Period (1/f)

Fundamental period

External flow velocity

Internal flow velocity
Channel-averaged flow velocity
Free-stream velocity

Velocity vector

Eastward velocity

Northward velocity

Alongstream velocity

Time derative of water level (boundary condition)
Crossstream velocity
Dimensionless volume

Water level excitation (Chapter 6)
Measured quantity (Chapter 5)
Water level (boundary condition)
Vertical coordinate

Dimensionless vertical coordinate
Amplitude of external water level forcing

Coordinate rotation angle

Friction parameter (Chapter 2)
Growth rate (Chapter 5)
Proportionality constant (Chapter 2)
Proportionality constant (Chapter 2)
Proportionality constant (Chapter 6)
Residual (Chapter 5)

Residual (Chapter 5)

Water level elevation from mean sea level
Dimensionless water level elevation
External water level elevation
Internal water level elevation

Wave length

Dynamic viscosity

98



Tlam
Tturb
P

g
oH
¢
Pa
On
Pp
g
v

w
Wn
Wp
wo

Kinematic viscosity

Shear stress

Shear stress by laminar flow

Shear stress by turbulent flow

Density

Frequency of forcing

Helmholtz frequency

Phase

Phase of external forcing

Phase of homogeneous solution

Phase of particular solution

Phase of ¢'" constituent

Gradient operator

Frequency

Basin eigen frequency (for waterlevel { < 0)
Basin eigen frequency (for waterlevel ¢ > 0)
Basin eigen frequency

E.2 Abbreviations

ADCP
cpd
CCW
CTD
CwW
FFT
GPS
LAN
LSHA
N.AP.
NIOZ
OBS
PSU
SSE
SST
SSF
TUD
UDS

Acoustic Doppler current profiler

Cycles per day

Counter clockwise

Conductivity, Temperature, Depth meter
Clockwise

Fast Fourier Transform

Global Positioning System

Local Area Network

Least squares harmonic analysis
Normaal Amsterdams Peil, Amsterdam Reference Level
Netherlands Institute for Sea Research
Optical backscatter meter

Practical Salinity Unit

Sum of squared errors

Sum of squared total

Sum of squared fit

Delft University of Technology

Universal Device Server
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