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Abstract The equation governing the passage of monochromatic, long waves over variable topography can be transformed
into a Schrodinger equation. ‘I'here are several transformations accomplishing this. A ‘naive’ transformation (in which only
the horizontal coordinate is stretched) has a ‘potential’ that is non-vanishing, even if the slope in topography vanishes. A
travsformation, in which also the surface elevation field is stretched, has a ‘potential’ vanishing outside the sloping region.
This transformation has the property that it displays scattering against a background of adiabatic variations. That is, the
plane waves that result if the potential is approximated to vanish identically, display amplitude and wave length variations,
in the original frame, as in WKB-theory. For smooth bottom profiles, typical for the continental slope, the potential has a
positive lobe, the top of which acts as a *Lopographic cut-off frequency’. This lobe is missed by piecewise-linear topographies.
The trapped modes of the adjacent negative side lobe are the topographic Rossby wave modes. For a particular smooth
bottom-profile, long waves, coming from a specific dircction, can be shown to pass reflectionless.

Schrodinger equation

It 18 often instructive to consider scattering prob-
lems I terms of a Schrodinger cquation, because it
allows one to qualitatively assess the local nature of
the wave field under consideration. The relevance of
this cquation for the long-wave cquations is discussed
in the next section. The Schrodinger equation,

>

dr?

(£ = V(x)]¥ =0, (1)

describes the shiape of the state variable ¥(«), related
to the wave field, v+(x,t) = ¥(2)e™™7¢ (with ¢ denot-
ing tine and o the frequency), due to inhomogeneities

of the *medium’ through which the wave propagates
as a function of the coordinate x. The variations of
the medium are here represented by the ‘potential’
V).
natural to expect the potential to vanish outside the
r-region for which these variations occur. For values
of the ~energy’ F greater than the maximum value of
the potential, Vi, qr, (like £y 1n Figure 1) the quantity
i square brackets in (1) is everywhere positive and

l'or localized variations of the medium 1t 1s

hence the solution 1s locally sinusoidal. It 1s there-
fore expected that the wave will not be greatly at-
tenuated by the scattering potential. If £ drops
helow this maximum, but is otherwise positive (L
in Figure 1), this quantity 1s negative over some a-
interval and hence the wave field will be exponcn-
tially decaying over this range leading to great at-
tenuation of an Incowming wave field: waves can pass
only through ‘tunneling’. For negative values of the
energy’, Vinn < £ < 0, like Fy in Figure 1. trapped
waves can oxist. Finally, for still lower values, like
EYy, wave solutions no longer exist. Here we will con-
centrale on positive values of the ‘energy’ parame-
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Figure 1. Sketch of a ‘typical’ potential V(2) and four
levels of the energy, E1 to F4. Solid (dashed) parts of the
energy levels refer to sinusoidal (exponential) behaviour of

the wave field.

ter. . Actually, this quantity is usually not related
to the true energy of the wave field, but rather is
to be regarded a metaphor for the frequency of the
wave involved. Therefore, for an incoming spectrum
of waves, the existence of a maximum in the poten-
tial, Vipae, can directly be interpreted as a (soft) cut-
off frequency: for waves with energy (frequency) well
above 1t, waves can pass unimpeded, for waves with
energy ([requency) below Vj,.,, waves are strongly
attenuated. The cut-off frequency 1s soft, however,
since no rigorous cut-off (zero transmission) of the in-
coming wave field below this frequency is implied. A
potential like the one shown in Figure 1 thus acts as
a high-pass filter.
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Topographic filtering

Consider a long, plane wave propagating on an f-
planc at the surface of a homogeneous {luid incident
on a smoothly and monotonically varying topogra-
phy H{z). Let the surface elevation take the form
() exp(ily — iot). Here | indicates the wavenumber
in the along-slope direction y. We non-dimensionalize
with length (L) and depth (Hp) scales appropriate to
the shelf edge and with the inertial frequency, f:

x = Lx, l=1/L, H—= Hyh(z). ¢ = fo,

where h(z) is a nondimensional shape-function, mod-
eling the shelf edge. The cross-isobath structure of
the elevation field, {(z), is then determined by

d d 0, 9 9 L di
(hgi—;) + [e“((r“ -1 —1"h— ;?l;l] ¢=0. (2)

Here ¢ = L/R is the ratio of the external scale L and
the Rossby deformation scale, R = \/gHy/f. The
square of ¢ is known as the divergence parameter. In
general this is a small quantity. For instance, taking
Hy=1km, L =100 km, g = 10m?s~!, f = 1074571
one obtains ¢ = 10~'. However, since the theory may
equally be applied to interfacial waves this quantity
may be order one. In this case depth is replaced by
equivalent depth, he(z) = hiha(z)/(hy + ha(x)) and
gravity, g, by reduced gravity ¢’, being equal to g
multiplied by the relative density difference of thetwo
layers. Typical values of these lead to a phase speed
of about one-hundredth of its value in the barotropic
case.

Equation (2) can be ‘naively’ transformed to a Schro-
dinger equation by multiplying it with & and identify-
ing hd/dz with d/d¢, which amounts to a stretching
of the horizontal coordinate,

g:/ﬂ et (3)

in inverse proportion to water depth. The equation
then takes the form

d*¢ 9, o 2,9 { dh

— - —U*h -——=|¢(= 4

v+ [ e - g - Z =0 @
where A(€) = h(z(€)). This cquation was employed
by Saini-Guily (1976), who, for the depth profile

h(€) = 1+ Atanh¢, (5)

with A € (—1,1), was able to calculate the trapped
modes — the topographic Rossby waves — exactly.
For the case of free, propagating waves, however, the
potential is not ‘physically realistic’ as one may ob-
serve by concentrating for example on waves of nor-
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mal incidence ([ = 0). In this case (4) simplifies to

+ o = DAEK =0,

i

62

which, for the tanh-shaped topography considered,
leads to a potential that is non-vanishing at infinity
and therefore does not satisfy the requirement that
the scattering be localized.

For this reason a transformation is employed that
stretches not only the horizontal but also the verti-
cal coordinate (the elevation). Discussion is for the
sake of simplicity here limited to waves of normal in-
cidence (I = 0), for which case (2) takes the form

The general case of obliquely incident waves can
be treated likewise. If we now adopt the following
stretching (Morse and Feshbach, 1953, p.730)

o1 Z
= —dz’ =
5 /0 h(J}/) x ) ( h1/4> (7)
then (6) takes the form

1 d2nt/4

d?z
1)~ R4 de?

—5767-{-[62(02— Z =0,
which is a Schrédinger equation once we identify en-
ergy and potential as E = €*(c? — 1) and V(§) =
h=14d%h1/%/de? respectively. This shows that ‘en-
crgy’ E is indeed related to frequency o. Since the
second &-derivative of h/* is related to first and sec-
ond z-derivatives of the topography h(z) (see below),
which vanish away from the sloping region, it is ev-
ident that this form of the potential does also van-
ish outside that region and hence is of the localised
form we expect it to have as a scattering potential.
Also, the expression for F nicely identifies its positive
values with freely propagating, superinertial {o > 1)
waves and its negative values with trapped, subiner-
tial (o < 1) waves.

Without actually solving the resulting equation a
number of inferences can be drawn from the form it
has.

First, assume that wc are dealing with energy-
values (frequencies) which are much greater than the
maximum value of the potential E >> Vimae. Then,
we can approximate the potential by assuming that
it vanishes identically, V(€) = 0. In this case, the
solutions in the transformed plane consist, of course,
of plane waves of the form Z = Zo exp(£iVEE). In
the original frame this solution reads
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Z , o1 .
¢ = hT?‘l—exp(:i:z\/E/O dz’ —iot),

Vh(z')

which contains wave number variations (the z-deri-
vative of the phase factor) inversely proportional to
Vh and amplitude variations inversely proportional to
R/% The latter is known as Green’s law (Mez, 1989).
These are consistent with adiabatic variations such
as occur in WKB approximation, which would have
group velocity ¢4 and phase velocity proportional and
hence wave number variations inversely proportional
to v, and which would require conservation of en-
ergy flux, proportional to |(|?cy. Since amplitude
(and wave number) variations associated with adia-
batic changes do not form part of the scattering pro-
cess the physically appropriate frame of reference in
which to consider scattering is that based on (7). Any
amplitude and wave number variations obtained in
that frame are truely associated with scattering.

Second, consider a typical monotonic shelf edge,
like /4 = 14+ Atanh £, which is similar to the topog-
raphy employed by Saint-Guily (1976) except that it
now applies to the quarter power of the topography.
Then, the potential takes the form
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Figure 2. Sketches of the topography h(§) = (1 +

Mtanh £)* for A = 1/2 as a function of ¢ (a) and, paramet-
rically, of = (b). The potential V(€) = h=*/*d?h!/*/d¢?
can be obtained from these, both in the transformed (c),
as well as, again parametrically, in the original frame (d).
Here the z-dependence on ¢ is given by z = f: \h(§)dE =
€(1+ A%) + 22 In[cosh £] — A® tanh £, see (e).

where T = tanh &, sce Figures 2 and 3a. The poten-
tial is observed to have the typical two-lobed shape
adopted in the discussion of Figure 1, the positive lobe
extending over the top of the shelf edge. The posi-
tion of the maximum value of the potential, T)nqaz,
as well as its value at this position, V4, can be
determined analytically as a function of the ‘depth-
contrast parameter’ A\. Their cxpressions are rather
cumbersome and are therefore just shown graphically
(Figure 3b). Now, since the topology of the prob-
lem would not change when we vary the shape of the
monotonically sloping topography, we may expect the
occurence of a positive lobe (V(£) > 0 for some range
of &) to be a generic feature of this scattering prob-
lem. Therefore, following the discussion in the intro-
duction, one may infer that there exists a topographic
cut-off frequency o7 = (1 + €= 2Vmar (A))Y/2, for any
monotonically-sloping topography, which is a function
of the geometrical parameters (the divergence param-
eter ¢ and the depth-contrast parameter A). For the
parametcrs considered previously ¢ = 107!, and for
A = 1/2, which has Ve = 1/2, we obtain o7 ~ 7.
For interfacial waves, with € & 1, o approaches the
inertial frequency even closer (op | 1). It is likely
that this quantity o must be observable as a dividing
frequency when comparing adjacent directional deep-
sea and shelf spectra, such that for o > o, waves can
pass the sloping region fairly easy (and vice versa).

Third, expanding the expression of the potential
we find

yo Ldh 3 (1dh * 1dh 1 (dh\?

~ 4h de? _Té(hdg) T 4dz? 16k (E) '
Since A > 0 for all z, the second term in the last
expression at the right is always negative. Hence
the potential is positive only because of the existence
of the first term in that expression, which is related

to the (convex) curvature of the topography at the
top of the shelf slope (Meyer, 1979). It is clear that
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Figure 3. (a) Potential V as a function of T for A =
0.9. Since T = tanh¢ is a monotonic function of £ this
is a compact way of representing the §-dependence of the
potential. In this figure the position, Timaez, and value of
the peak of the potential, Vinaz, have been indicated, which
are shown as a function of A in (b) and (c).
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this term would be absent in piecewise linear topogra-
phies, which would therefore exclude the phenomenon
of tunneling and, to some cxtent, topographic filter-

ing.
Reflectionless transmission

Another artifact would actually be introduced when
approximating a smooth, monotonic topography by a
piecewisc-lincar topography. This is the spurious phe-
nomenon of reflectionless transinission at certain dis-
crete wave frequencies (which have wave lengths that
are multiples of twice the size of the linearly sloping
region). It is generally regarded that the occurence
of these reflectionless frequencies is not realistic {Aa-
Jrura, 1963; Meyer, 1979; Mei, 1989). Indeed, for
a smooth monotonic profile, Aajiura (1963) showed
that the transmission cocflicicnt is a steadily decreas-
ing function of frequency. Reflectionless transmis-
sion of normally-incident long waves over smooth to-
pographies is found only for (symmetric) ridges. Futz-
Gerald (1976) obtained this result semi-analytically
without restriction on wave length by an iterative
scheme (see also Rouseau, 1952).

Surprisingly, as will be shown below, reflection-
less transmission may also occur for a smooth, mono-
tonically-incrcasing depth profile. This occurs for a
particular angle of incidence of the long waves. [ron-
ically, this can be demonstrated most easily by em-
ploying the naive transformation (3) and using the
Saint-Guily (1976) lopography (5). Eq. (4) then
reads

— 4+ [E—P(1+ X)) + ME - 21%) tanh €

1 9
—I{\(= — [X)sech~€]¢ = 0.
e
This 1s of the form
d*¢

i + [E’ +n(n+ 1)sechgf] =0,

with n € N, for which Kay and Moses (1956) showed
that the potential is reflectionless for any positive
value of the energy It (see also, Lamb, 1980). Identi-
fying coefficients betwcen these equations we find that
long waves are able to pass the tanh-shaped shelf edge
reflectionless provided

E =20 (8)

and

l/\(—l- —IN) = —n(n+1). (9)

a
Because [/ = E — (1 + A?) we verify from (8) that
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F’ satisfies the positivity constraint: L' = (*(1 — A\?).
Since

E=c (o - 1), (10)

whicly, [ron the dispersion relation applied in the far
field. equals h{I® + k%), we find, assuming the waves
to enter from the deep region, where h = L + A,
li’
E=(1+X———.

sin” «a

Here the absolute value x of the wavenumber vector
k = (k1) = k(cosa,sina) that makes an angle «
with the w-direction, has been replaced in terms of /
and «. Hence, inserting this expression for £ in (8)
and eliminating [*, we [ind thal waves coming from
directions o, determined by

2 1+

sin” o 5 (11)

are able to pass this shelf edge reflectionless, provided
they satisty also the second constraint (9). From (10)
and (8) we obtain ¢ as a function of 6 = [A:

=1+ a%b?, (12)

where a® = 2/X%¢%. Inserting this into (9) and plot-
ting both the left and right-hand sides of this equation
as a function of b (Figure 4), we find at their intersec-
tions the wave numbers for which waves coming from
directions determined by (11) are able to pass the
shelf edge reflectionless. From (12) their frequencies
can be obtained. For a > 1, these are approximately
determined by the two asymptotic (dashed) curves of
Figure 4 which lcad to

- -
-~
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/ N
l/ N
/,
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a =2
2 9 2
->b

Figure 4. Plot of b/+/1+ a?b? — b and —n(n + 1) (solid
lines) as a function of b for two values of a and integer
n € {0,1,2}. Heavy dots indicatc values of b (i.e. scaled
along-isobath wavenumber {) for which waves, coming from
a direction a4 given by (11), are able to pass the tanh-
shaped shelf edge reflectionlcss. Dashed lines indicate the
two asymptotes £1/a — b?.
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ci=1+ |§_|a +a’n(n+ 1),
For n = 0 ouly one physically realistic solution is
obtained, having the coast at its left (in the Northern
Hemisphere), seen from the along-shelf propagation
direction ({ > 0). The expression of the frequency for
general values of a is slightly more involved.

n & N.

Conclusions

It is shown qualitatively that a monotonically-
sloping shelf edge generally acts as a topographic filter
for incoming long super-incrtial waves. This filter can
be characterized by a (soft) cut-ofl frequency above
(below) which waves can pass the topography with-
out (with) much attenuation. This frequency is solely
dependent on parameters characterizing the gcome-
try of the problem (topographic scales, latitude and
earth rotation rate). The filtering properties are cru-
clally dependent on the existence of a convex part of
the bottom shape al the top of the shelf edge. It pro-
vides the positive lobe of the localized potential in the
Schrodinger equation to which the scattering problem
can be transformed. It is attractive to view this posi-
tive lobe of the potential of a shelf edge as providing a
natural shicld by which the shelf region is ‘protected’
against incoming waves. Each shelf edge, however,
also has an Achilles’ heel. Tt is transparent for waves
of particular discrete frequencies, coming from two
directions detcrmined by the ‘depth-contrast param-
eter’, that are able Lo pass the shelf edge without any
reflection. These are the two directions for which the
shelf edge under consideration is particularly ‘vulner-
able’. Although no parameter-sensitivity analysis of
these results has been made yet it is conjectured that
a true shelf edge should show its ‘vulnerability” over
some range of angles and frequencies around those
calculated. It would be useful, therefore, to make a
catalogue for shelf edges around the world identify-
ing these reflectionless angles and frequencies at each
location.
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