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Preface

This report contains the material covered in a series of lectures
given during the autumn semester of 1982 at the Institute of Meteorology
and Oceanography, University of Utrecht. The principal lecturers were
Erland Kd11lén and Leo Maas. The course intends to demonstrate some
techniques which can be applied to tackle nonlinear problems in
geophysical fluid dynamics and it is mainly directed towards research
students in meteorology and oceanography. The notes give a fairly
detailed account of the topics covered on the course and we have also
included some exercises which were discussed during the course. The
solution of exercises was very valuable for a deeper understanding of
the underlying and are to be seen as an integral part of the course.

These notes were written in a first preliminary version by A. van
Delden, M. Scheffers and H. de Swart. As a result of one of the
exercises, W. Verkley of the KNMI supplied a very general solution which
is given in an appendix. L. Maas gave the lectures corresponding to
chapter 3 of the notes, while E. Kdllén's lectures covered the rest of
the material. A careful reading of the notes by G.J.E. van Heijst, H.
Oerlemans, J.D. Opsteegh and C. Schuurmans has very much improved the

readability of the material,



1. Introduction

One of the basic equations governing the dynamics of fluid flow
both in the atmosphere and in the oceans, is Newton's second law of

motion. Following a fluid particle with velocity v (X,t) we have
dv _ ¢ =
CE (.1

where ;-ﬁi is a summation over all viscous and pressure forces acting on
the fluid particle. The.fi's are expressed as force per unit mass. The
velocity field v is a function of space x and time t.

As equation (l.1) is written following a fluid particle we have to
expand the total time derivative g;—in its space and time dependent

parts to investigate what happens at a certain time and place, i.e.

2

t+?:‘.\7 V=Zfi (1.2)
1

When the equation of motion is written in this form, we see explicitly
the nonlinear character of the equation. The local acceleration of a
fluid particle at a certain point in space is governed not only by the
forces at that point but also by the advection of momentum by the fluid
itself in an infinitesimal surrounding of the point. It is this implicit
nature of the advective nonlinearity which makes it rather complicated
to handle in many cases. The nonlinear character of fluid flow is
however also the reason why fluid dynamics is such a fascinating field
of research. The nonlinearity is responsible for the lack of
predictability of atmospheric flow beyond a week or so, but it may also
contribute to the appearance of certain stable flow types which persist
for a week or more. The onset and maintenance of turbulence in a fluid
is certainly due to nonlinear advection while also regularly appearing
convection patterns result from nonlinear advection. The advection may
thus have a stabilizing effect depending on the particular flow
situation.

In this series of lectures we will investigate how nonlinear
advective effects may be analysed in simplified models based on Newton's
second law of motion. The method of expanding the space dependent part
of the velocity field in a series of orthogonal functions and then to

limit the expansion to only a few terms will be applied to some



different models of geophysical fluid flow. The emphasis will be on the
methods used, although some geophysically relevant examples will be
worked out to show the applications of the various models. In order to
demonstrate the nonlinear phenomena of breaking waves and to show a
simple example of a series expansion of the solution in terms of
orthogonal functions, the one dimensional advection equation will be
analysed.

Some models including wave dispersion as well as an advective term will
be used to discuss breaking of water waves. In this connection the
Korteweg-de Vries equation will also be taken up.

In the second part of the course, the atmospherically relevant
example of two dimensional, non-divergent fluid flow on a rotating
sphere will be studied. The method of expanding the space dependent part
of the solution in spherical harmonics and analyzing the advective
effects through a coupled set of nonlinearly coupled ordinary
differential equations, will be covered in detail. Examples of Rossby-
Haurwitz wave instability and instabilities associated with mountain
forcing at the lower boundary of a quasi-two dimensional flow will be
given. Some particular localized two dimensional flow solutions of a
modon type will be discussed.

In the final chapter we will discuss the two types of motion
associated with the shallow water equations in a rotating coordinate
system namely the Rossby and gravity modes. The modes are only a linear
concept, we will discuss how nonlinear advection will effect the
transfer of energy between the modes and how the structure of the modes
change due to a change of the basic state. The relation between the
practical problem of providing initial data for a numerical forecasting

model and the concept of normal modes (Rossby and gravity modes) will be

discussed.



2. The one-dimensional advection equation

2a. General properties

To study nonlinear effects on fluid flow we should really start by
considering the full 3-dimensional Navier-Stokes equations with some
relevant boundary conditions. Except for some rather special cases, this
would very quickly lead us to a mathematical problem with such a
complexity that it would be difficult to overview. Therefore we will
instead start with the simplest possible equation which contains the
advective nonlinearity in its most rudimentary form. Following Platzmann
(1964) and K#11lén and Wiin-Nielsen (1980) we will discuss some
particular properties of this equation which are characteristic for
advective models of fluid flow in general. It is difficult, if not
impossible, to relate the one-dimensional advection equation to any
particular fluid flow situation, but the presence of the advection term
gives the equation properties which are related to the properties of
more realistic models of fluid flow.

We start by considering the advection equation in one dimension without

any external forces:

du ou
T Uax =0 (2.0

The equation simply states that the velocity of a fluid particle u(x,t)
is conserved following the particle motion.
We impose the following boundary conditions

u(0,t) = uw(L,t) =0

An initial condition which obeys these boundary conditions is

2nx)

u(x,0) = u sin( L

which is shown in Fig. la. This initial state may be thought of as a
wave disturbance in a fluid flow and we will now investigate how the
advective process changes the shape of this wave. One way of doing this
is to use the method of characteristics, i.e. to determine curves in the

x~-t plane which fluid particles follow. For eq. (2.1) these curves are



simply straight lines where the slope u =-%§ is given by the initial

value of u.
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Fig. la. Initial distribution of u (t = 0, full line) and distribution

just at the onset of breaking (t = 1, dashed line).

Some typical characteristics of equation (2.1) (i.e. lines of constant u

in the t-x plane) have been drawn in Fig. 1b,

-
I”'
e T T

,awuzaazgzzgggz%ZZ%%%%?V

0y
»,
.......
29
el

0 . T —>t
1 2 3

Fig. lb. Characteristics of eq. (2.1) in the t-x plane. Inside the
hatched, cuspshaped region the solution is multivalued,

i.e. breaking has occurred.

We see from the figure that after some time the characteristics from

different initial points will intersect and thus we have a multivalued



velocity at certain points. Also shown in fig. lb is the envelope of the
"cusp-region', inside which the solution is triple-valued (three
characteristics through each point). This behaviour is clearly
unphysical, but we may interpret it in terms of a wave breaking in the
following way. Since each value of u is propagated along x with speed u,
it follows that the wave crest(u > 0) is propagated forward and the
trough (u < 0) backwards. So the slope S = Eg-of the wave profile

ax
becomes steeper where S is negative initially and flatter where S is

positive initially. This breaking process may be examined quantitatively
by computation of the change of slope along a characteristic:

ds d du 3 du

dt = 3r ()t vax G
After changing the order of differentiation in the first term on the

right-handside and using (2.1) we obtain

Integration yields

-1

1) ,

S = (t+ S
(o]

where S, is the initial value of S. This equation shows that for each
value of u where S, < 0, the slope becomes increasingly negative until
at a critical time tc = - S;l it becomes infinite, after which it is
positive and declines to zero. At the critical time t. we may say that
breaking occurs and after this time the model solution is no longer
meaningful. The minimum value of t. occurs for u = 0 at x = L/2, since
there S;l has its minimum value of -1. Breaking will therefore occur
first at time t = 1.

Physically this is not a satisfying model because of the discontinuity
forming at the breaking point. We therefore incorporate a simple

dissipation term into equation (2.1):
sftuz;=-¢€u (2.2)

The slope equation now becomes



g _ . - 2.3
o s“ -¢s (2.3)
If we substitute y = s7L we get

dy _

it = 1+ ey

which has the solution

1 t
y=-E+C' eE
Thus,
€
S = —
cet -

where C is a constant which we can relate to the initial slope S0 as

follows

€
C——S—+1
[¢)

Breaking occurs if S goed to infinity, in other words if

Since -1 < (e—et - 1) < 0, breaking only occurs if - w < so < - ¢, Thus,

not all initial slopes will lead to breaking. This is illustrated in
Fig. 2. in which three solutions for three different initial conditions
are drawn. Note that the value of parameter € determines for which
initial slope breaking will occur.

This is an example of a typical situation in many nonlinear models. From
eq. (2.2) we see that there are two terms governing the time evolution
of u. The dissipation term on the right hand side of (2.2) will try to
damp the initial value towards zero while the advective term will try to
increase the velocity gradients to give a breaking. The two competing
effects will either eventually lead to a breaking or the initial
velocity profile will just be damped down to zero. Which one of these
two possibilities that eventually will occur depends on the initial

slope in relation to the dissipation parameter e. Rewriting the slope
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Fig. 2. Time evolution of the slope for some different initial

values in the presence of dissipation.

equation (2.3) as

ds
E= - S(S + €) (2.4)

we see that if § ¢ -¢, %% will be negative and an initially negative
slope will become increasingly negative, in other words the wave will

break.

d
If S > - ¢, g%—) 0 for S <O and'g% < 0 for S > 0, This will give a

solution which asymptotically approaches S = 0 as t + =, We may also see
from (2.4) that both S =0 and S = - ¢ are steady solutions of the slope
equation. A slight perturbation around S = 0 will eventually lead to S
returning to zero and therefore the steady~state S = 0 is said to be
stable. The steady-state S = - g, on the other hand, is unstable to
small perturbations as any small deviation from it will either lead to
the steady-state S = 0 or § + - o,

The method of determining the steady-states and then analyzing the
stablity of each steady-state to small perturbations will be used

extensively in this series of lectures. In this case we see that we have



two steady—-states, but only one of them is stable to small
perturbations, Solutions starting close to the unstable steady-state
will either reach the stable steady-state asymptotically or they will be
negatively infinite. Solutions starting sufficiently close to the stable
steady-state will always approach this steady-state asymptotically, and
it is thus this steady state which from a physical point of view is most
interesting.

Finally it should be mentioned that we can also parameterize dissipation
by replacing the friction term on the righthandside of (2.2) by a

diffusion term. This result is the so called Burgers' equation:

%‘t—l+u%§=vi—g (2.5)
X

This equation can be solved analytically by the so-called Cole-Hopf
transformation (see Platzman, 1964). This transformation reduces (2.5)
to a linear diffusion equation which may be solved by standard methods.
The solution does not have any discontinuities in contrast to the
solution of (2.2) which also involves a "frictional" process in addition
to the advective one. So different parameterizations of the dissipative
process may lead to a quite different qualitative behaviour. In Burgers'
equation the dissipation term strongly damps the solutions with large
gradients and therefore breaking will never occur. In eq. (2.2) the
dissipation is independent of the particular scale of motion and
therefore the magnitude of the initial slope determines whether breaking

will occur or not.

2b. Spectral method

When examining the nonlinear properties of the advection equation
in section 1, we assumed an initial condition in the form of a sine
wave. Any initial condition satisfying the boundary conditions u = 0 at
x = 0 and x = L may of course be constructed by the addition of sine
waves with different wave lengths in the form of a Fourier series. This
also applies to the solution for all times as long as it is single
valued. When breaking occurs the solution has an infinite derivative at
one point and a Fourier series expansion is therefore not valid. It may

nevertheless be instructive to express the solution of the equation in
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terms of a Fourier series, in particular as this method will be applied
to more complicated models later on this course. We must, however, keep
in mind that a Fourier series expansion is not valid when we get close

to a point of breaking.

As in exercise 1, we will consider the one-dimensional advection

equation with forcing and a linear drag term

du Ju
et Uk T E (i - W) (2.6)

The boundary conditions will be the same as previously, u = 0 at x = 0

and x = L. The same boundary conditions apply for ug. For algebraic
convenience we will non—dimensionalize (2.6) with the length scale L and

the time scale 1/e.

Denoting the nondimensional variables with a star we thus obtain

*
t =t /e
x =LEwith 0 <<CEg <

and equation (2.6) takes the form

3 * * 3 * * *
L*i-u L=uE--u (2.7)
at g

Taking the boundary conditions into account a spectral expansion of o*

and up can be made with sine functions only forming an orthogonal system

as follows:

T
u = ) u (t) sin(ke) (2.8)
k=1

The solution is thus separated into a time and a space dependent part
over 0 < g < T,
*

For u, we similarly have
E
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N
* * )
Up = k§1 U i sin(kg)

with u independent of time.

*
E,k
Note that we have truncated the summation at N terms.

Choosing a single sine component as our initial state we can easily
see from fig. la that after some time this single component will not be
sufficient to describe our solution accurately, If there was no
advective term in (2.6) it would have been possible to treat each
component in the expansion (2.8) separately, but due to the advective
nonlinearity we obtain an energy transfer from one spectral component to
another. The more terms we include in our expansion (2.8), the more
accurately this process will be described, but as we have limited our
expansion to a certain truncation N there is always a limit to the
accuracy which we can obtain. In fig. 3 this point is illustrated by
showing how well a wave is approximated when it is just before the point

of breaking, for different values of N.
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Fig. 3. A wave at the onset of breaking (full line) and its approximate

form given by a limited number of spectral components.

To explicitly investigate how energy is transferred between the
Fourier components, we can derive equations for the time variation of

each spectral component as follows.
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Inserting the expansions in (2.7) we have the equation

*
N duk N N
) T osinke+ J ) u u; 1 sin kg cos 1¢ =

=1 k=1 1=1 (2.9)

*
- uk) sin kg

We may now separate eq. (2.9) into a set of nonlinearly coupled ordinary
differential equations by making use of the orthogonal properties of the
expansion functions. By considering the expansion functions as a set of

base vectors we may "project" eq. (2.9) on one base function, sin ng, by

letting the operator

Lt

7 [ dg sin(ng) (2.10)
/ sin? ng dg °
o

act on equation (2.9),

There is only a contribution from the linear terms when n is equal to k.
The nonlinear term, which is more complicated, will require some more

detailed derivationms,

N N

| m
) ' u u* 1 | sin nf sin k& cos 1 dg/ sin2 ng dg (2.11)
k 1
k=1 1=1 o o

We evaluate the equation for every combination of k and 1 contributing

to the component n, on which we are projecting. The integral

n
1 [ sin ng sin ki cos 1 dE (2.12)
o]

may be written

m m
%f sin ng sin(k+1)g dg +—%— [ sin £ sin(k-1)¢ dg
) o
We can now see that only if n =k + 1 or n = Ik - 1| one of the

integrals will be non zero. Noting that n is positive (follows from eq.
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(2.8)) this can be plotted in a diagram (fig. 4).
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Fig. 4. Wave number combinations giving non zero contributions

to the interaction integral.,

The time change of the component with wave number n follows from

equation (2.9)

n -
-3 ( g Up Uiy T 1 g u; u ) +u - u (2.13)

The derivation of the advective term is given as an exercise.

From the structure of eq. (2.13) we see that all nonlinear terms will be
quadratic and that for a certain component (n) terms involving all other
components will be present. Note, however, that a particular component
will not have any terms with its own amplitude squared. The addition of

an extra component beyond the truncation limit (N + 1) will thus affect
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the time evolution of all the other components through the nonlinearity.
The spectral method may therefore seem to be quite useless, as all
components are affected when the truncation limit is slightly changed.
In some cases it will however appear that some interactions dominate
over the others. The closer we come to the point of breaking, the more
energy will be distributed to the small scale components as this is the
only way in which we can describe a function with a large derivative.

To investigate more schematically how the nonlinear energy transfer
between components takes place, we will here analyse some very severely
truncated spectral models. The solutions we obtain are therefore not
very accurate in describing the solution of the original equation but
they do show some very characteristic types of nonlinear behaviour and
we will therefore use them as illustrative examples.

If N =1 there is no nonlinear interaction, because a component cannot
interact with itself to itself.

Now take N = 2 and we define

We insert this in equation (2.13).

This gives a system of two ordinary differential equations,

dx 1
Qe ~2 TR ox
(2.14)
dy 1 2
T TX gy

We first investigate, the behaviour of the solutions when there is no
forcing(xE =Vyg = 0) and no dissipation.
Multiplying the first equation by x and the second by y and summing

gives
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This shows that there is only a redistribution of kinetic energy between
the two components and the total energy is conserved. The kinetic energy
of each component is given by half its amplitude squared, and due to the
orthogonality of the basis functions the total kinetic energy is the sum
of the kinetic energies of the individual components.,

The solution of (2.14) without forcing and dissipation will therefore
lie on a circle as shown in fig. 5. The radius of the circle depends on
the initial energy in the system. The steady-state solutions are defined

as values of x and y for which

o
X
]
o
»
it
(@}

[T

xy =0 y € IR
Together with the equation for the total energy
2 2
E=i(x +vy)

we find that the steady-state points are (O,yo) and (0,-yg).
These points are circled in fig. 5.
The stability of the steady-state solutions can be examined by

linearizing the model around a steady-state and examining perturbations

in the x-direction.

Defining the perturbations as

X =x + 8x
0

y =y, +3dy

we have from eq. (2.14) without forcing and dissipation terms and when

neglecting second order quantities in the primed variables,

dx

Frae } (xoéy + yoéx)
dy _ _

dt Xo6X
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y

unstable

-yo

stable

Fig. 5. Steady-states and stability properties of conservative two

component system.

Perturbing around the steady-state (O,yo) we have for the derivative %%
ax>o+3—’z>o

5x<0+3—’é<0

so the point (0,y,) is unstable to small perturbations,
For the steady-state (0,~y,) we similarly have

ax>0+j—’t‘<o
dx
§x < 0 » at >0
so the point (0,-y,) is stable to small perturbations (see fig. 5.).

The non-linearity thus transports energy from the larger scale component

(x) to the smaller scale component (y). This may be demonstrated with an
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example. If we start with an initial condition where we only hdve energy
in the x-component and the y-component is equal to zero, (see fig. 6,a)
we find after some time that they have changed as shown in fig. 6,b.

Because of the non-linear interaction the y component grows at the

expense of the x component. Finally the x component is equal to zero and

a steady~state solution where y = ~Xo is found (see fig. 6,c).
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Fig. 6. Time evolution of the velocity field in the two component

model. Initial state is given by curve labelled a), b) is an

intermediate state while ¢) is the asymptotic state.

If we change the sign in the initial state we get a similar type of

behaviour (see fig. 7,a). After some time we see that all the energy in

the x-component goes to the y-component (fig. 7,b and 7,c).

7 3
u
XA PR
o c, \
a N
/ \
/ \
* \
/ —_— g
/ b.- \\\\\.
1 1 1 1 % 1l 2™ 1 1 i N\ >
A s g
'\\ / /
3 / ’
\\ ’
\' /7
S ;s 7
N\, /
NN, S Q
- \\\'—', /’
\‘wf

Fig. 7. Same as fig. 6, but for a different initial state,
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This is called a cascade process. It always stops in the smallest scale
which is taken into account; in this case the y-component. Breaking will
never occur because we have truncated the expaunsion of u and up after
two terms. If we would have taken more terms into account the process
would finally have resembled breaking. Next we will consider a two
component system with forcing and dissipation. We first suppose that
there is only a forcing in the small scale, i,e. we set xg = 0. We are

then able to find the steady states of (2.14) for which

dx _ dy _
holds. Combining (2.14) and (2.15) we find
3 x(y-2) =0
(2.16)

2
-3 x + Yg Y = 0

From this it can be seen that

= . = = <+ - . = .
x. =0 3 Vg = g OF X _\/2(yE 2); v, =2 (2.17)

are the steady states. It will be clear that as long as the forcing YE
is less than two there only exists one steady state; in all other cases
three steady states are found (see fig. 8).

The sudden change from one to three steady states as the forcing
parameter is increased is called a bifurcation. When dealing with the
full one dimensional advection equation in exercise 1 we had a similar
type of behaviour, only there we went from zero to two steady states as
the forcing was increased beyond a critical value.

From fig. 8 we also see that the behaviour of the two component system
changes drastically as forcing aand dissipation is included. In the
conservative case, with only nonlinear terms coupling the two
components, the energy which initially is in the system is exchanged
between the two components. In the forced and dissipative system we have
a constant energy supply in the small scale component while energy is
being dissipated in both components. If the energy supply is low enough

(yg below a certain value) we have one steady-state where the energy is
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Fig. 8. Bifurcation diagram for the the two component system with

forcing only on the smallest scale of motion and dissipation

on both components.

just dissipated in the small scale component. If the energy supply
exceeds a critical value (yg > 2) the non-linearity can take care of the
energy transfer to the larger scale component in more than one way and
the system now has three different steady state solutions. All of these
steady states cannot be stable to small perturbations and we will now
turn to the problem of determining the stability of the linearized
equations.

Considering only small perturbations (8x, 8y) around a steady-state

(xg, yg) we have

X =X + 0x
s
(2.18)
y =y, + 8y

Insertion of (2.18) in (2.14) gives the linearized equation (neglecting

terms of second order in &8x and 8y).
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§x = (4 - 1) §x + % X Sy
(2.19)
. = - 6 -
Sy x, 6x 8y
where a dot indicates time differentiation.
We can try solutions of the form
§x x' At
(50 = (5o ) e (2.20)
Substitution in (2.19) leads to
1 '
ty -1-2 3 x) (}c)
s s
( -— x,, _l - )\ y' = O (2.21)

S

This is an eigenvalue problem: the A's are called the eigenvalues, and

1]
(§v) the eigenvectors. (2.21) has nontrival solutions if the determinant
of the coefficient matrix is equal to zero. Fron this condition we find

the quadratic equation in A.

2 2
A +(2—%ys)}\+»}xs—%ys+l=0

which has solutions

Mg = Hog - 4 1V - 8l (2.22)

The steady states of the two component system were already found in

(2.17). Substituting them in (2.22) we obtain for X, = 0, Yo = Vg the
eigenvalues

)\1=-2—"1.
A2 =g - &) + 47 y% > (2.23)

It can be seen that if yg < 2 both A} and A, are nonpositive. From
(2.20) it then follows that the perturbations are bounded and thus the

steady state is stable. If yp is greater than two one eigenvalue is
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positive and we have an unstable steady state. In mathematics this type
of a steady state is called a saddle point.For the steady
states xg = %+ ¥ 2(yE - 2), Yg = 2 we have from (2.22) the eigenvalues

/ 9
- 1 1 -
1,2 I Vg T % (2.24)

The real part is always negative for ¥g > 2, which means that these

A

steady states are stable. The imaginary part causes on oscillatory
behaviour of the solutions (2.20) near the steady states. Such a steady
state is called a stable spiral point.

We can now show a rough sketch of the solutions in the x-y plane. In
figure 9 this is done for the case YE » 2. Again it may be seen that the
behaviour of the solutions depends on the initial conditions,
Furthermore the y-axis acts as a dividing ridge separating the (x,y)
plane in two regions, All trajectories in the left half plane will

reach (- /—§(§E:§7, 2) as an asymptotic state, while the trajectories in
the right hand half plane will reach (m, 2).

To look at another type of bifurcation which also often appears in
non-linear dynamics we will now extend our equations to a three
component system. We retain the forcing in the y—-component, now the
niddle scale component, and include a dissipative term in all

components. This can be developed in the same way as (2.14). We find

X =1 xy+ % yz - X

L 2

V==-4%x" +xz + yg TV (2.25)
. 3 _

z = =5 xy z

As has been shown in the exercises the nonlinear interactions keep the
energy in the system; only forcing and dissipation can change the total

energy. The steady states of (2.25) can be found algebraically.

From z = 0 it follows that z = - %—x Yo Subsituting this in x = 0 we

obtain

3 2 3 1,2 11
oW mx=-gxlly - 451 =0

o
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S0 X must be zero, and thus z = 0.
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Fig. 9. Phase plane portrait of the characteristie trajectories

in case of two components with amplitudes x and y.

Considering finally y = 0 we find Y = ¥g. There is then a balance

between forcing and dissipation. The only possible steady state is thus

ke
]
o
<
[]
<

s s - ; Zs = ( (2.26)

This is quite different from the two component system, since in this

case no change of the number of steady states can occur. However, there
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is a bifurcation, because the stability of the steady state strongly
depends on the forcing. To show this we linearize (2.25) around

(O) yE’ O)-

X = §x
y = yE + Sy (2.27)
z = 8z

and inserting this into (2.25) we find (neglecting second order terms in

the perturbation quantities)

§x 4 Vg ~ 1 0 3 YE 8x

8§y | = 0 -1 0 Sy (2.28)
. 3

8z -5 Vg 0 -1 §z

Determining the eigenvalues we obtain the cubic equation

S DI F DTy e 3y =0

with solutions

VT

A o= -1 A2,3 = %(yE - 4) £ 1i A Vg (2.29)

It is clear that X, and X5 have positive real parts if the forcing yg is

greater than four. All eigenvalues have negative real parts as long as

yE is less than four. So although there is only one steady state it can

change its stability.

When the single steady state becomes unstable we have a new type of
situation which has not been treated in the previous examples. When an
unstable steady state appeared in the two component system, we had two
other stable steady states emerging at the same time and a trajectory
starting close to the unstable steady state would reach one of the

stable steady states as an asymptotic state. In this case there is no
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stable steady state and therefore a solution starting close to the
unstable steady state has to continue its trajectory in the three
dimensional phase space forever. There is the possibility that the
trajectory will approach infinity for large times, but we can of course
also have some type of limiting behaviour within a certain region of the
phase space.

As we have included dissipation terms in the governing equations
(2.25) it is not very likely that the trajectory will go to infinity. To
prove this, we will do a global stability analysis.

Define

*
1

* — * %
seesey uN) and r = (uE’l,...., uE,N) (2.30)

T = (u

it then follows from (2.13) that we can write an energy equation

= |

[t LI e (2.31)
This shows a balance between the forcing and the dissipation; nonlinear
interactions do not contribute to a change in the total amount of
energy. It can be seen that if {?Iis large the energy will always
decrease because the quadratic term will dominate the first term on the
right side of (2.31). It means that the solutions will always be
bounded, a property which often occurs in physical systems.

After this global analysis we return to the loecal analysis. The
eigenvalues in (2.29) can now be used to determine the eigenvectors.

For Xl = -1 we get by using (2.28).

by, 0 g X
0 0 0 y'| = o
- %—yE 0 0 z'!

From which it follows that x' = z' = 0 and y' is arbitrary. Thus the
eigenvector is (0, 1, 0). Along this direction the solution is always
stable. It is much more complicated to calculate the two other

eigenvectors along which the solution is unstable. However, it is known
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from linear algebra that the eigenvectors are linearly independent. So
these other two eigenvectors span a plane which only cuts the y-axis at

Yy = Yg. In the case of yp greater than four the solution thus spirals
out in this plane if we look sufficiently close to the steady state. See
figure 10.

q
r
v

Fig. 10. Trajectory of the solution for yg > 4 in a plane normal to

the direction of the stable eigenvector.

The first one to discuss this type of behaviour was the German
mathematician Hopf (193). The appearance of a period solution in

connection with a change in stability of a steady state is thus called a

Hopf bifurcation.

The trajectories spiralling out from the unstable steady state in
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this example will approach a closed orbit asymptotically (periodic
solution). Hopf showed that a necessary condition for the appearance of

a periodic orbit is that the imaginary parts of the eigenvalues are

nonzero when the real part changes sign. One may distinguish between two

cases, namely a supercritical and a subcritical Hopf bifurcation. In the
supercritical case a stable periodic orbit develops around an unstable

steady state, while in the sub-critical case an unstable periodic orbit,

which exists around the stable steady state, collapses around the

steady state as it becomes unstable (see fig. 11). In the example

treated here we have a supercritical Hopf bifurcation.

Ay supercritical

stable

stable .
parameter
' Y
y
,"\‘\\ subcritical
I’ \ \\\\
II \\ \I>\\\ X
h \ | A ~~. unstable
| \ .‘\\
v 4 Actoble
! Y 4stable unstable
1 ] >
‘f A 1 T //
[ : v o . parameter
\ ] g
“ l' \\ /‘ -7
] -
1 \ -
\ /-
l N
‘\ / ’,/
\ / -
\ pre
~ L -

Fig. ll. Super- and Suberitical Hopfbifurcation showing appearance

appearance (disappearance) of a stable (unstable) limit

cycle for parametervalues greater than a critical value.

The Hopf bifurcation theory is only valid when the forcing

parameter is close to its critical value. When increasing ygp beyond the

value of 4, numerical experiments reveal that the stable periodic orbit

will increase its amplitude up to a certain, second limiting value in
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Yg+ For ygp above this value we will have a new periodic orbit with twice
the period of the first one. According to some recent literature (see
Hofstadter, 1981) this period doubling will continue until, at some
finite value of the forcing parameter Yg» the solutions will lose their
periodicity. The solution then enters a chaotic regime, but because of
the global stability it will stay within a confined region of the phase
space. As this region still contains infinitely many points the solution
may continue to go around forever without returning to a point where it

has been before, i.e. to be non-periodic (for an example of such a

system see Lorenz, 1963).
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Excercises

1. Give the equation for the time dependence of the slope, %%, in the

case of a nondimensionalized, forced and dissipative advection

equation
du du
‘3—E+UX—UE—U.

Are there any stationary solutions to the slope equation?
Assuming an initial slope of -} at a point where u = 0, give
explicitly the time evolution of the slope. (Use the standard

solution of a Riccati equation, which is as follows:

Given §§-+ r(x) v2 + s(x) = 0, the solution is

1 u'(x) + C t"(x)
r(x) u(x) + C t (x)

vix) =

where u and t are linearly independent solutions of

d__[]. dz

50 E;j + s(x) z = 0.

2. Show, that the contribution to a component n in a spectral expansion
of the advective term [u-%%) may be written
n-1 n—-1

§~(% z u u - 2 u
2=1 =1

3. Show by induction that energy is conserved for any truncated system

where components up to a certain wavenumber, N, are included.

4. Find the steady-state solutions to the two component system

He
It
woj

Xy — X + xE

e
I
|

2
3 X "Y+YE

Sketch the solution surface in (x, s ¥..) space.
*e* VR
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3. Nonlinear and dispersive effects in one-dimensional models

In this chapter we will derive some simplified models originating
from the equations of motion which govern the dynamics of fluid flow.
Following the main theme of this lecture series we will examine the
nonlinear advective process, but here in an oceanographic relevant
model,

The nonlinear advection term as treated in the simple one-
dimensional case will be further investigated and we will show how terms
related to wave dispersion will affect the wave breaking phenomenon,
which is mainly due to advection. The Korteweg—de Vries equation will be
derived as an approximation to the equation governing the dynamics of
surface waves and its solution will be examined and related to the

breaking and peaking of surface waterwaves.

3.1 Dispersion

In linear problems, dispersive waves are characterized by

sinusoidal wavetrains

o(x,t) = A exp [1(K.x - w)] (3.1)
where ¢ measures some quantity related to the wave, as its height, or
its velocity etc. A is an amplitude, k the wavenumbervector, i.e. the
number of waves per unit of time (at a certain position).
The quantity

8 = Kox - wt (3.2)
is called the phase of the wave and therefore

X = ve, w=-28 (3.3)
if k and w are slowly varying functions in space and time.

The rate of progression of a surface of constant phase, 6 = constant, is

found by noting that
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do

]
-]

or

30 — _ (80 dx, . _
Fedt + 78 L dx = [57+ ve . SXlde = 0 (3.4)

With the previous expression (3.3) we find
~-u+k.c=0

where we have adopted the expression ¢ = %%—. Since this is the speed
with which surfaces of constant phase move, this may appropriately be

— o - k
termed the phase speed: ¢ =-% « k with k = \k] and k = % @ unitvector in

the k-direction.

Substituting a linear wave expression (3.1) into a linear advection

equation

3¢ 3% _

T + o 3% 0 (3.5)
we find

- iw + c, ik = 0 » ¢ =-% = c (3.6)

Adding to this equation a higher order derivative,

B, . 3. 3
5t + B + v 3= 0 (3.7)
ax
we find a relation between w and k
- iw + c, ik + vy i3k3 =0 -
(3.8)

The relation between w and k is termed the dispersion-relation.

In general it is possible for linear polynomial equations of the

form
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3
*;i- 3 Yy) =0 (3.9)

3
P37 5 3

(where Yy, are parameters of the system) to derive a dispersion relation
i

by substituting the linear wavesolution (3.1) which yields a polynomial

dispersion relation
P(- 1w, 1k; v,) =0 : (3.10)

More general dispersion relations, beyond the polynomial types arise

i) when wave motion takes place in a limited number of space-
coordinates, while showing a more complicated behaviour in the other(s).
An example will arise in the linear potential theory of waterwaves.

ii) If we construct a "wave" equation in the following way
5T 0060 + [ K(x - 03%e,0) dg = 0 (3.11)

with ¢(x,t) = A exp[i(kx - wt)] this yields

o

- iw A exp[i(kx - wt)] + ik A [ R(x - g)eikg dg oTlwt _ 0

or
e =2 [ kex- e KE T ge o or()e R g (3.12)

after a transformation g = x - £.
This is the Fourier transform for a given function K(g), or conversely

oo

R(x) = ;—“ _o{ c(l)e ¥ g (3.13)
The Kernel function may be chosen as the Fourier-transform of any
desired phase-speed c(k), extending beyond the polynomial types.

Now that we have established the existence of a relation
between w and k: w(k) in the dispersion relation, we may now want to
investigate its effect on the propagation of waves. Over a fixed
interval (Ax), we consider the local change in time of the number of
waves (k.Ax). This can only change, in the absence of sources and sinks

of wavenumbers (like that produced by a stone thrown into a water
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basin), if there is a difference in the frequencies at the boundaries.
By calculating the limit when Ax + 0, we find

ok | dw _
st T o = O (3.14)

This may also be inferred from the definitions (3.3) of k = V8

and @ = - %%u This is often called the conservation of crest equation.

Since w = w(k) this can be rewritten as

ok . dw 3k _

5t T dk " ax = ©

or, interpreting this as the material derivative
dk . _ dw
E— 0 if = (3.15)

we can say that the wavenumber is a conserved quantity when we move in a

frame of reference with speed-%% = %%, the group velocity: c,. This is

the velocity with which the energy moves. Therefore if Cg isga function
of wavenumber k a disturbance &(x,t), which may be thought of as being
built up of a large number of wavenumber conponents, will disperse since
each wavenumber moves with a different group velocity thereby spreading
or dispersing the energy in the physical domain (fig. 12). Note that in
general the group velocity differs from the phase velocity. The phase
velocity is the speed with which individual waves move, while a wave
group may be identified with the envelope of a set of waves with

different wavelengths.

®x,t,) —* ®(x.t)

Fig. 12. Illustration of the effect of dispersion: flattening of a

disturbance.
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3.2 Linear Potential theorZ

We will now consider the dynamics of small amplitude waterwaves.
Because of the high frequencies involved as compared with the rate of
rotation of the earth we neglect Coriolis forces. We also assume the
fluid to have a constant density and viscous effects to be absent. We

take the Euler equations as a starting point.

Du 1 -
Bc = __’S.VP_ gk (3.16)
V.u =0 (3.17)

PN

where the vertical unit vector k points upward and %E-is the total
derivative,
Taking the curl of (3.16) we eliminate the pressuregradient, since

VxV() = 0 and gk since it is a constant. The material derivative leaves

us with

5% _ -

=T + Vx (wxu) = 0 (w = Vxu) (3.18)
or

Dw _ ,~ \— _

e (weV)u = 0 (3.19)

If w=0 initially 2@ = 0, so w will remain zero. Therefore we may
Y Dt

assume the motion to be irrotational throughout. This implies that

u = V4 (3.20)

From the continuity equation (3.17) we find that ¢ has to obey a Laplace

equation

Ve =0 (3.21)

The boundary conditions are as follows:

The free upper surface can be described by a functional relationship

f(x,y,2,t) = 0, from which we assume that we can derive an explicit



35

description

z = g(x,y,t) (3.22)

A physically reasonable boundary condition is that the rate of change of

this surface is equal to the vertical component of the velocity of the

moving fluid w ='%%.
We thus demand
- De_ 3¢ 3¢ 3¢ -
w=pf=agtu stV ay Nz =¢ (3.23)

However, since g itself is unknown a priori, we have introduced an
unknown quantity which must be related to the flowfield which we are

determining. Therefore we also pose a second boundary condition on the

free surface which is that

Pocean = Patmosphere 2t 2z = . (3.24)

To use this relation we must determine Pocean from a Bernouilli
equation. We can form a Bernouilli-equation by considering

that u = V¢ and gk = V(gz). Therefore from (3.16)

p-p
VC%%'+ HV4.V9) + — >+ g2) = 0 (3.25)
[e]
or
P‘Po
op + 1(V9.V9) + + gz = B(t) (3.26)
(o]

Absorbing the "constant" B(t), from the integration, in

b = ; - f B(t)dt we get as boundary condition on z = z (dropping ™),
where p = Po

¢+ 7(V$.V¢) + gz = 0 y 2= ¢

Note that this is the place where the time variations of the flow enter

explicitly.
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As a bottom boundary condition we assume that there is no normal flow at

the bottom, or
D = -
BE-(Z + H) =0 , z = -H

This is equivalent to

w:—ﬁg= —u.VhH , 2z = =-H (3.27)

If we now assume a flat bottom (VhH = 0) and only one horizontal wave-

cirection (x), the resulting system of equations describing irrotational

waterwaves is

v2¢ = 0

Ce + ¢xc;< = ¢; } z = g(x,t) (3.28)
op + $(¢% + 95) + gz =0

4, = 0 z = -H,

Due to the upper boundary condition this system is highly nonlinear.

Linearizing around z = 0 by forming Taylor expansions of ¢(z) around
z = 0:

2 2
2(2) = 9(0) + ¢ 2¢O 4 & T KO |

5 > reee (3.29)
9z

we get for small ¢ (retaining only first order terms in z):

VZg = 0
Ct = ¢z
z =0
o + g2 = 0 (3.30)
¢Z=0 z =-H

The two surface boundary conditions may be combined as

¢tt + 8Y, = 0 » 2=20 (3.31)
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Assuming sinusoidal wave solutions for ¢ = A exp[i(kx - wt] and ¢ (in

the horizontal direction)
¢ = Z(z) exp[i(kx - wt)] (3.32)

then the Laplace equation in ¢ yields

210 - K2z = 0 (3.33)

with fundamental solutions ekz, e~kz,

From the lower boundary condition (3.301V) ye find that
Z ~ cosh k(z + HO)

From the 2nd upper boundary condition (3.30111) we find that
- iw Z(0o) = -gA

and therefore

cosh k(z + HO)
cosh kH (3.34)
o

Z(z) = - %& A

We thus have

¢ = R{Z exp[i(kx - wt)]} =
A cosh k(z + Ho)
= ﬁ— v sin (kx - wt) (3.35)
and °
z = A cos(kx -wt)

From the combined upper boundary condition (3.31)

¢t g =0

tt z i

we then find a dispersion relation:

1
—w2 + gk tanh kHO =0+ w=+% {gk tanh kHO}2 (3.36)



38

We will now examine some asymptotic limits of this relation.
First the deepwater limit: Ho >> A, or kHo >> 1. We can reach this limit
either by taking the limit HO * @ or by making the waves very short. We

then find the dispersion relation

The phase velocity is thus
c=+\Vg/k (3.37)

which clearly shows wave dispersion since ¢ = c(k). Taking kHO K1 we

have the so-called shallow water limit:

The dispersion relation becomes

w' = gH k (3.38)
or

c =%y g,

These are non-dispersive waves because the phase-velocity equals the

group velocity.

Although it would be natural at this point to progress by considering
the effects of nonlinearities in potential theory, we will delay this
step and pause to study a wellknown system of equations namely the
shallow water equations. In doing this we concentrate on the qualitative
features as offered by the linear potential theory i.e. dispersive
effects (in the deep-water limit), versus those of the shallow water

equations, i.e. nonlinear breaking.

In shallow water theory, the waves under consideration are assumed to be
long compared to the water depth iceey, A DD HO. Therefore the associated
vertical motions are much smaller than the horizontal motions and we may

assume a hydrostatic balance in the vertical
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_B_P;_= - g (3.39)

After a vertical integration we get

p=rp_ . teelc-2) (3.40)
where p,t, is the atmospheric pressure at the mean height of the

surface; it is assumed to be constant in time and space.

Assuning only one horizontal dimension the equation of motion reads:
Fet U+ w s = —g 22 (x,t) (3.41)
ot 9x 9z 9x ?

When the velocity field is independent of height at some instant

u(x,z,t = 0) = u(x) then B; = 0 for all t since the right-hand side is

z-independent. So (3.41) reduces to

au du 3% _
5t T Uk T8 =0 (3.42)

The continuity equation (3.17)

may now be integrated vertically as all horizontal variations are

independent of height

? Bu 2w
i 9X 9z
[o]

ldz = 0

Applying Leibniz' rule for interchanging integration and differentiation

we arrive at

5 z o 3(-H )
el _}fl u dzl-u(e) 53 + u(-H) —57— + w(g) - w(-H) = 0 (3.43)
(o]

and since

d 3 3
w(zg) Ed_f:=a_€+ U(c)a—i
d(—Ho) o(-H )

W(H) = g = u(Hy)
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we get
otu + 1+ 8- (3.44)
9x o at

From (3.42) and (3.44) we can now write the shallow water equations

(with the total depth H = HO + z) (see figure 13).

Potm

uyv

Fig. 13. Definition sketch.

=0

u + uu + gH
t X X

(3.45)

1]
o

H,_ + Hu + uH
t X X

Note that for small amplitude waves the same long wave limit as in

linear potential theory is obtained:

+ =
ut gcx 0
(3.46)
Ct + HouX =0
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yielding Sep T cz txx = 0 or for sinusoidal waves the dispersionless
relation

w=c_ k (3.47)

where we introduced the symbol ¢, = v ghH,, for the phase speed of long
waves in shallow water.

If we assume no surface height variations we obtain the nonlinear

advection equation

u +uu =20
t X

As shown in chapter 2 we can solve this equation with the method of

characteristics, In general we have the material derivative

du _ du dx du
Tt -5t qr o (3.48)

Equation (3.48) can be interpreted as the material derivative along

curves C, where g%-= u. See the situation sketch in figure 14.

Fig. 1l4. The characteristic plane with one of the characteristic

curves C defined by g%‘= u.
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Supplemented with some initial conditions u = f(x) for t = 0 over het
whole interval - o < x < o

we get a system of equations:

Eou, w0 -
(3.49)
=0, w0) = £(e)

From the second equation (3.49ii) u(t) = const. on C, therefore u(t)

= f(g) and from the first (3.491)
X = u.t + x(0) or x = £ + £f(&).t. (3.50)

Changing the emphasis we may regard £ as a function of x and
t: £ = £&(x,t) and extract it from this last relation. Inserting it again
inu = £f(£) we then get the solution over the whole domain.

Example f(x) = x would give the following solutions

X
1+t

and u = f(g)

£ = Tjé—; solves the equation.

Other examples will be dealt with in the exercises.,

The occurrence of breaking in the solution depends on the functional
form of f(g). If £f'(§) is less than zero for some x, then breaking will
occur. Assume for example an f(£) of the form shown in figure 15.
Breaking can be seen as the intersecting point of two characteristics
emanating from different values of %, for a certain value of t. For x =
X, there is an intersection at t = 0. For a continuous function f(x) the
time of first breaking will be finite if for some region f'(x) < 0.

The nethod of characteristics can be extended to more general equations
than the one-dimensional advection equation,

If we have an equation of the form
ut + a(u,x,t)u = blu,x,t) (3.51)
X

w2 may interpret it as having an observer moving with the speed

%%—= a(u,x,t) and he will "see" u changing as g%-= b(u,x,t). The second
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ﬁf(x)

§Z i

Fig. 15. Intersecting characteristics, indicating breaking, are

shown in b) for the initial velocity profile in a).

extension may be applied to the problem of solving the shallow water

equations:
+ + = .
u, Foou ng 0 (3.52)
H + Hi +ul =0 (3.53)
(o X X

with the new variable c defined as c2 = gH this system can be rewritten

as

[=4
+
=1
=
+
()
0
0
]
-

(3.54)

[e]
+
o=
@]
[+
+
[=1
(e
]
()

Multiplying the second equation by a constant A and adding it to the

first we obtain

(u + Ac)t + (u + % c)uX + (2 ¢ + Au)cx =0
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Noting that we have complete freedom in the choice of X this can be

rewritten as

(u + )\c)t + (u +'% c)(u + )\c)X =0 (3.55)
if

c) (3.56)

o>

2 c¢c+ xu = A(u+

Fron this condition we find ) = % 2. This may then alternatively be

written as

d - en 4% A
EE—(u + Ac) = 0 on curves with e - ut 5 C (3.57)

Or with A = £ 2, u+ 2 ¢ is invariant, the so called Riemann-invariants

on curves that move with a speed

the so called characteristic velocities.

On all C curves, defined by-%% = u - ¢ we have u-2c = constant.
When we assume u = 0 at t = ) this constant may be resolved as -2 Cos
proportional to the phase speed in undisturbed water. So u — 2¢ = -2c,
over the whole plane, since C (as the C+—curves) span the whole plane,
We can therefore use this relation between u and c also on C+—curves

defined as

After an integration and substitution u = 2 (c - co) we are left with
x =&+ (3¢ - 2co)t =& + (3Y gH(g) - 2v gHo).t (3.58)
Note that the solution is again in the implicit form
x(t) = £ + F(&).t (3.59)

as derived for the one-dimensional advection equation. The same

conclusion therefore holds: if F'(£) < 0 somewhere over the interval the
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wave will ultimately break in a finite time interval, Since for a wave
(F'(E) < 0 «>» H'(E) < 0 > %é-( 0) by definition has some part where its
derivative is negative, we are led to the conclusion that in this
description all waves will tend to break.

So we see that the non-linearities in the shallow water equations give
rise to breaking phenomena, or from another point of view, form a
concentration mechanism for energy in the physical plane since potential
energy is accumulating in the top of the wave and at the breaking slope,
RHowever, we saw that the associated linear system (3.46) was
dispersionless. The neglect of dispersive effects is therefore mainly
responsible for the fact that in the shallow water equations all waves

will ultimately evolve into breaking, which is in contradiction with the

observed state of a sea.

3.4 Combined effects of disper§ion and non-linearity

In the potential and shallcw water theories either pure dispersive
— or pure nonlinear effects were present. It is obvious that we want to
combine the dispersivity and the nonlinearity in one set of equatioas,
There are several possible approaches. Using non-linear potential theory
we can expand the velocity potential as a series in powers of a small
parameter. Each truncation of the expansion enables one to investigate
the physical meaning of the constructed system. Another approach is to
add a dispersive term to the shallow water equations by expanding the
dispersion relation (3.36) for linear water waves one step further.,
Restricting the waves to propagate in one direction we will end up with
one differential equation which can be solved exactly. Finally we can
follow the Seliger-Whitham approach which extends the shallow water

equations with full dispersive effects,

I) Tke nonlinear potential theory starts from the general water wave

problem (3.28) for an irrotational flow. Assuming that the waves only
travel in the x-direction and that the bottom is flat we

nondimensionalize the equations as follows:

x=Ax',z=Hz',t=—Lt',;=Ac' ¢=§—>‘A¢' (3.60)
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where ¢ = ¢ gHO and A is the amplitude of the linear waves, we find
o

B ¢}'{va + ¢'sz| =0 - 1<z < ag
¢Z" =0 z' = -1
s 2 T (3.61)
AR EITES: a¢'i,+ P g eyt =0
where
H 2
A
o

which can be seen as a small amplitude parameter and a long wave
parameter, respectively,
To eliminate the nonlinearity, which is due to the freely varying upper

boundary condition to be applied at z' = az's We approximate as before
in (3.29),

o (ac’) = 41(0) + a2 (o) + ...

where the index 0 means that the functions are evaluated at z' = Q,
This is useful since we know the velocity potential at z' = 0 from the
linear potential theory. Assuming that B is of order 1 and o is much
smaller than 1 we have o as the small parameter and we may expand the

velocity potential and the surface elevation in powers of a:

(5,0) = B oP(e™, () (3.63)

n=0

To zeroth order in a the linear equations are (in a nondimensional

form):
6¢i2) + ¢iz) =0 “1<z<0
¢§°) =0 z = -1
(3.64)
(o) 1 (o)
& ~ge, =0

SOIRON
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The solution of this problem has already been determined (see eq.

(3.35). In a nondimensional form we have

C(O)

cos 9 s 6 = kx - pt

(o) _ coshlk VB(z + 1)]

¢ w cosh (kv/B) - sin 6

and (3.65)
2

k
w =75 tanh (kvg)

To order a we have the following linear system of equations

v2e(D _ -1<z<0
¢;1) =0 z = -1
(3.66)
1 1 (o) )
D O -
1 1
o0+ (5040 0 6L 35 676 L

1
Substituting (3.65) and eliminating c< ) we obtain a condition for the

velocity potential at z = 0, namely

1,1 (1 -3 wky ,
¢f(1t) +E 4); ) _ PTE I ‘E’sts) . sin 26 z =0 (3.67)

where sin 26 is due to product terms of sin 6 and cos 6. From this it
1
can be seen that ¢( ) must be proportional to sin 28 whereas from (3.66)

(1)

it follows that ¢ is proportional to cos 26. So the expansion for the

surface elevation to first order in o is:
2
£ = cos 8 + a.a(k,w)cos 26 + 0(a”)

where a(k,w) is a known function of the wavenumber k and frequency w. In
figure 16 the result is sketched. Note that the correction to the zeroth
order linear wave solution is small, since o is a small parameter. Tt

shows that the throughs of the original sinusoidal wave flatten while
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the crests become steeper. In a higher order approximation this tendency

—— zerothorder solution ~cos®
--=-- first order solution ~cos 26
— — resulting solution ~cos® + a a cos 20

Fig. 16. The peaking of crests and flattening of troughs demonstrated

by adding to the linear solution the first nonlinear correction

term: its first higher harmonic.

is accentuated and the final result is peaked crests, a phenomenon
frequently observed in water waves. The physical interpretation is that
dispersion and nonlinearity balance in such a way that peaked waves are
formed.

Stokes has given a method for calculating the angle that will ultimately
be reached. This so-called Stokes angle is 120°. However, no breaking
will occur and the reason for this is that the nonlinearities are weak
due to the small value of the parameter a.

Note that in the second order approximations we will derive
contributions proportional to sin 36 and cos 36, since there will be
interaction between the zerot and first order solution. But these
interactions also give rise to terms proportional to sin 8

and cos 36. They appear to be secular, that is the solution becomes
unbounded due to these terms. Since this is not physically realistic we
also have to expand the dispersion relation in powers of o and choose

the coefficients such that secular terms are avoided. This will involve
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the amplitude of the wave in the dispersion relation.

The method of expansion for weakly nonlinear waves (the so-called Stokes
expansion) is also illustrated in the third exercise and applied to the
Korteweg-de Vries equation. We will see that to keep this expansion
bounded we have to conclude that the dispersion relation is also

affected by the presence of nonlinearities.

II) The next method is the extension of the shallow water equations

(3.45) with a dispersive term. As has been shown previously this model
describes wave breaking. This is due to the lack of an energy spreading

mechanism. The linearised shallow water equations

+Hu =0
Ct u

0 X
(3.68)
u, + 8o, = 0
on the other hand, lead to a simple wave equation
g - C2 g =0 (3.69)
tet 0 “XX
with the dispersion relation
w2 = cik2 (3.70)

for sinusoidal wave solutions. In general the solution consists of
L

disturbances ¢ (x+cot) and ;R(x - cot), travelling

to the left and right respectively, associated with the simple wave

equations
L R R
e = ¢ty =0 and g, * et =0 (3.71)

From potential theory we saw that for general linear water waves the

2
dispersion relation is given by w = gk tanh kHD. We expect that we must

extend the shallow water equations in such a way that the linearised
version has the same dispersion relation.

An expansion of the dispersion relation (3.36) beyond the dispersionless
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case leads to
2 2.2 1 224 6
w = cok - §'coHok + 0(k ) (3.72)

As we have seen in the introduction this polynomial dispersion relation
can be associated with a linear equation, which has periodic solutions

with a corresponding wave number relation. In this case the equation

corresponding to (3.72) reads

Cxxx 0 (3.73)

Comparing with (3.69) we can now reconstruct (3.68) with an extra term

coming from the fourth order derivative in the equation above.

g +H1u =0
t 0 X

(3.74)

1
ug + o8ty t3 Colly Cxxx ~ O

Finally adding the nonlinear terms we end up with the extended shallow

water equations

H + (uH) =0
t X

(3.75)
+ +H+L2HH =0
Yp T Uy T Bl 3 e HH o =
We see that the continuity equation is unmodified but the momentum
equation has one extra term which physically may be interpreted as the
curvature correction of the water level due to fluid motion.

When we.restrict ourselves again to waves moving to the right we

separate (3.72) into

1
w= + {cf)k2 - % ciﬂik“ + o(k6)}2 = c k(1 - % Hikz) + O(ks)
or (3.76)
3 . 1 2
w = cok - Yk with y = g‘cOHo

We want to add a nonlinear term to this. Therefore we look at the
shallow water equations for waves moving to the right. It has been shown

in (3.3) that they satisfy the Riemann invariant u = 2VgH - Z/gHO.
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Substituting this in the continuity equation and again using H=HO + 7 we
obtain (see also (3.58))

: /—Ty_,/_—" = .
t, t 3 Ve(H_+1 2V gH)g =0 (3.78)
Combining with (3.77) we find
¢t OVe(H +1¢) - 2vgH )¢+ yg =0
t (o} o X XXX
and for g much smaller than the depth H, this may be approximated as

3¢
+ = 2= Z =
op * Co(1 2 H )cx T Yoyux = 0
0
which is the famous Korteweg-de Vries equation.
The derivation is rather intuitive. However, it may also be done in a
formal way by starting from the nonlinear potential theory and expanding

the velocity potential in the following way

©
]
e 8

fn (x,t). 2

n=o

In its normalized form this will be an expansion in the assumed small
parameter B. Retaining terms proportional to g and B and neglecting
higher order contributions we obtain the Korteweg—de Vries equation from
the free surface boundary condition. We will however, continue with our
investigation of the KdV equation. For the moment it is enough to
realise that it is the first expansion of the full nonlinear set of
equations describing water waves and combines both dispersion and non-
linearity. We will now proceed by investigating the similarity solutions

of the KdV-equation.
z = ¢(x - Ut) = (X) (3.80)

which have a steady shape for an observing moving with velocity U along
the x-axis. Introducing this dependence in the Korteweg~de Vries
equation we find (2 = ;/HO)

1 2"

U_. A! 3‘\*' — ey _
(CO D' +Zce' +-H ¢ =0
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Integrating once gives

~lw

U _ 4y, 2 12, -
-3 Dz + ¢+ H "'+ B=0

0
Multiplying by ¢' and integrating once more yields

U ;2 ~3 1 2,% 2 -
- (— - ' =
(CO 1) 3 + 47+ 3 HO(; ) +Br+A=0 (3.81)

where A and B are integration constants.,

A special solution may be obtained when A = B = 0 and ¢ and its

derivatives tend to zero at + «, Then

2
1 .2," ~2 - . U
§'H0(c') =z (a -1z) with o = 2(27'— 1) (3.82)
0

A real solution is found when a is positive, that is U larger then Cye
Coming from -, (q - z) will be positive and 7' > 0. When ¢ = o (at X =
O for instance) ¢! changes sign and the curve symmetrically decreases to

zero for X » =, The corresponding water level is drawn in figure 17.

| )

5
HO
I X~—'+/

Fig. 17. Soliton,

This identifies a as ¢ . Actually the solution of (3.82) reads
)

2

%
3a
[( ) X
AHZ ]
o

Z = a cosh
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or

1
C = A cosh‘z[(i_,;) (x = Ut)] (3.83)

4 H

This is a so-called solitary wave. Its propagation velocity turns out to
be

Usc (1+ i3 (3.84)
o}

It is clear that (3.83) is a nonlinear wave due to the fact that its
phase speed is a function of the amplitude: the higher the waves are the
faster they move. The name solitary wave is due to the fact that it
consists of only one single hump. They can be observed in watertanks but
also in canals as was first done by Scott Russell in 1844,
In fact (3.83) is the limiting wave form of the special similarity
solutions of the Korteweg-de Vries equation. Without restricting
ourselves to the case A = B = 0 the general solution may be calculated
in terms of elliptic functions, but the derivation goes beyond the scope
of these lectures. The result is a train of cnoidal waves, which are

plotted in figure 18.

Fig., 18. Cnoidal waves.

They have steep crests and flat troughs, resembling the Stokes wave
somewhat. However, no peaking nor breaking occurs for these waves, The
reason is that the dispersion relation (3.76) is only valid for small

values of kH,. This means that the introduced dispersion is much too
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strong for the short waves, and this prevents breaking and peaking. The
parameter that controls the behaviour of the solution is
o = (@ o al (3.85)
B g3

o

which measures the relative importance of nonlinearity versus
dispersion. If s reaches zero we have linear dispersive waves and in the
limit s + 1 we have solitary waves: there is then an exact balance
between nonlinearity and dispersion. A very important feature of these
solitary waves is that they preserve their identity when interacting
with other solitary waves (apart from a phase shift). This means that
they behave like linear waves. This particle-like behaviour is the main

reason for the introduction of the name soliton.

III) Seliger—Whitham approach

The Korteweg-De Vries equation, having both nonlinearity and dispersion,
yields steady state waves that become solitary waves when s in (3.85) is
close to 1. However, from a physical point of view, the dispersion is
too severe as there is no wave breaking anymore.

Returning to our goal of constructing an equation which combines non-
linear and dipersive effects we may combine the two results arrived at
previously. The breaking of waves in shallow water is effectively
described by (3.78), where we may introduce the approximation that the

sealevel variations ¢ are much smaller than the water depth H,. We then

have

3 -
toteo 30z =0 (3.86)

where we have scaled all quantities with a length scale H, and a
velocity scale cye On the other hand the most general way of describing

dipsersive waves in a linear system can be written in the form (see eq.
3.11)

te* | K(x =) g dg=0 - (3.87)

where the kernel K is the Fouriertransform of the phase velocity:
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K(x) =-%f _Z c(k)eikX dk

and c(k) is taken from dispersion relation (3.36) for linear water waves
and reads in nondimensional form

1
2

c(k) = {famh k (3.88)

Combining (3.87) and (3.13) intuitively, in the same way as has been
done by deriving the Korteweg-de-Vries equation the result is

(e ]

3
Loty og + _e{ R(x=8)g, dg = 0

Note that the linear term Cx is now incorporated in the kernel-term.
This equation may also be derived from nonlinear potential theory by
taking into account all orders of B and the nonlinear term proportional
to a, disregarding cross-products terms as well as higher order terms in
a. However, the calculation of all these terms is rather tedious and the
result cannot be put in an integral representation. But it is clear that
(3.89) describes a very realistic situation in which the nonlinearity is
combined with full dispersive effects. Equation (3.89) looks as a

straightforward extension of the non-linear advection equation, here in

terms of ¢
+ =
L, tee, =0

(apart from the constant 3/2, which can be absorbed via a simple trans-
formation). However, solving it with the method of characteristics is
difficult. Witham (1974, 1979) and Seliger (1968) show however, that
equation (3.89) may exhibit both peaking and breaking depending on the
initial steepness of the wave. Or in other words the original criterium
that the solution at t = 0, should have a negative slope somewhere, in
order to evolve into breaking, is now relaxed into a limit, much like in

the solution of the model equation treated in chapter one.
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Exercises on water waves

5. Find the dispersion relation for the following equations:

n, + €y Ny = Nyy (linearized Burgers eq.)

n +c.n +n =0 (linearized Korteweg-de Vries eq.)
0 x XXX

Discuss the difference in the resulting behaviour of the solutions.
What would the Kernel-function K(x) be when these equations are

written in general waveequation form
n_+ [ R(x - &)n_(g,6)dg = 0
t 3
—c0
(Note that one of the definitions
1 L
of §(x~-a) = lim o f exp i(x-a)t dt)

Lo -L

6. Solve with the method of characteristics:

i) ¢t + exp(—t)¢X =0 t >0, =< x < w
¢=1/(1+X2) t.—.O

11) x2¢t+¢x+t¢=0 x>0, @<t < m
¢ = &(t) x =0

iii) ¢t + ¢¢X + ap =0 t>0, —o <x<® q>0
¢ = F(x) t=20

(treated as example in first lecture).

Discuss the occurrence of breaking.
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7. Solve the Korteweg-de Vries equation

3¢ - = =
Ze t Co(1 +'7'E_)Cx + Yoyxx = 0 Y=%¢ h

1 2

[o3Ne]
(o]

with a perturbation expansion technique and look for periodic

solutions i.e. write

i)

ii)

iii)

= ag,(0) + (,2;2(6) + “3c3(8) +oeee 8= kx - wt,o = 2 << 1

Insert this expansion into the KdV-eqn. What do the resulting
equations in the first three orders in o look like?

Find a solution for the first two equations (taking only one of
the two fundamental solutions of the first equation).

The nonlinear contribution in the third order equation has a
sinf-term. This (secular) term resonates with a cos 6 solution,
which means that 6cos6 would be part of the solution

of ;3. Since this is unbounded in 6 it is argued that this
cannot be physically realistic, since we are looking for
periodic solutions.

Therefore also expand w(k) = mo(k) + awl(k) + azwz(k) F oeess
and find the value of wl and w2 in order to avoid the
occurrence of a secular term in the equation for a3. (Note that

we now allow w = w(k,a)).
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4. Two-dimensional, nondivergent flow on a sphere

To investigate the nonlinear dynamics of large scale atmopheric
flow we will now turn our attention to two dimensional models on a
rotating spherical geometry. We will only concern ourselves with
nondivergent flow, thus working with the barotropic vorticity equation.
The motion is of a Rossby wave type where the characteristic time scale
1s the inverse of the rotation rate. The procedure for investigating the
nonlinearity will be the same as the one used earlier in chapter one. We
will expand the space dependent part in terms of a set of orthogonal
functions and we will truncate the expansion at a very low order. Due to
the spherical geometry, the expansion functions will be more complex
than in the one-dimensional case and the nonlinear interactions between
the components will also be more involved. In principle, however, the
procedure is similar and we hope that the one dimensional example will
serve as an analogue to the more mathematically involved two dimensional
case. Through the assumption of non-divergence we will describe a two—
dimensional velocity field with one scalar quantity, namely the
vorticity. For atmospheric flow conditions this is a very good
approximation. The nonlinearity appearing in the governing equation is
of the advective type, albeit somewhat different from the advection term
in the one-dimensional equation. In the one-dimensional case the
velocity field is advecting itself, For non-divergent, two dimensional
flow the vorticity, which is a function of the velocity field, is being
advected and this gives the nonlinearity some particular properties
which we will examine in detail. The rotation of the sphere is another
important factor which will make the two-dimensional flow quite
different from the one-dimensional one.

We will examine the nonlinear structure of truncated systems in
detail and by considering energy and enstrophy conservation principles a
very important restriction on any truncated system is established. The
principle states that we must have at least three different components
in a truncated system to have non-trival nonlinear energy exchanges
within the system. This principle has important implications for the
atmospheric energy spectrum and it also limits the type of interactions

allowed in a given low order system,
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4.1 Spectral expansion

For a two-dimensional velocity Vv the equation of motion reads

-2%+7.V7+ff€x7=-v¢ (4.1)
where f = 2 Q sin ¢ is the coriolisparameter (Q is the angular speed of
rotation of the sphere), k is the unity vector along the radius of the
sphere (pointing outwards) and ¢ the geopotential. Furthermore we

suppose the flow to be incompressible, so the continuity equation is
Vv = 0 (4.2)

in other words the flow is non-divergent. This means that a stream-

function § can be introduced, and the velocity field may be written
V=k xV ¥ (4.3)

Now defining the relative vorticity

z = k.(Vxv) = Vz\p (4.4)

we can derive a vorticity equation by operating on (4.1) with (k.Vx).

The result is

2 4T+ £) = 0 (4.5)
ot
which is independent of the forcing by the geopotential. This is the

barotropic vorticity equation. From this equation it is clear that the

velocity field is advecting the vorticity field.

Rewriting eq. (4.5) in terms of a total derivative
4 c+8) =0 (4.6)
dt

we see that the equation just expresses the conservation of total
vorticity which consists of the local component, g, and the component

arising from the rotation vector of the sphere projected on the radial
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vector, f. Through the definition of the vorticity (4.4) we can
associate it with a local rotation and a local shear of the velocity
field. If a fluid particle is advected in the latitudinal direction eq.
(4.5) states that the local vorticity must change due to the change of
f. Integrating eq. (4.5) over the surface of the sphere we can see that
the integrated, total vorticity must remain unchanged.

The vorticity equation may als be written as

L N _
e+ I, ¢+ £) =0 (4.7)

with the jacobian

- %adb _9a3b _ 3(a,b)
J(a,b) = 9x dy 9y 3ax  3(x,y) (4.8)
To arrive at a final equation in a non-dimensional form we define a time

scale Q_l and the radius of the earth as a length scale. Thus
1
t' = Qt =5t (4.9)

where the primed variables denote nondimensional quantities.

As we will be working on a spherical geometry we wish to express the
velocity vector v = (u,v) in terms of the radius of the earth (a), the
longitude (A) and u = sin ¢, where ¢ is latitude. See figure 19. Now
introducing a local cartesian coordinate system (x,y) at point P on the

surface of the sphere we have from figure 19

a
dx = a cos ¢ d A dy = cos & du (4.10)
and thus we obtain
- dx dar 4y _ __a du
U4 T 2cos ¢y V=43t T cos ¢ dt (4.11)

Applying these relations to the Jacobian we have

Ja,b) = 1 3(a,b)

7 50 (4.12)

V)

and the nondimensional vorticity equation reads
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Fig. 19 Geometrical configuration for the two dimensional flow on a

rotating sphere.

%+ J(\p',c')+2~g§—'= 0 (4.13)
This states that the total vorticity n = ¢+ f is conserved for a
particle following the fluid motion. The treatment of (4.13) is made
difficult by the second term: it is a nonlinear contribution due to the
advection of the vorticity field. In this section we will discuss a
method for analysing this nonlinearity. For convenience we will
hereafter drop the primes from (4.13).

Using the same method as for the non—-dimensional advection equation, we

will separate the time and space dependent parts of the solution to
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(4.13) and we will expand the space dependent part in a series of
orthogonal functions. As we are working on a spherical geometry and the
governing equation is expressed in terms of a stream function and a
vorticity, it is natural to use Legendre polynomials, or spherical
harmonics, as our expansion functions. The relation between the stream-
function and the vorticity will now be particularly simple as the
spherical harmonics are eigenfunctions of the Laplacian operator in the
sphere.
For the vorticity we thus write

g =110 £,(0 Pfl(u)ei“ (4.14)

n £

The functions Pﬁ(u) have different definitions in mathematical

textbooks. Here we will follow the definition given by Platzmann (1962),

which is
3 2.4/2 n+4
- 1,2 -
Pr(w = TCm) 7 G20 (™ (2nn (4.15)

with 2 > 0 and n > 1. If 2 is negative we define
-2 L
P (u) = PG (4.16)

Some more information about Legendre polynomials and their properties
can be found in appendix A.
Now n determines the order of the polynomial, and % corresponds to the

longitudinal wave number. By defining a complex wave number
Y=n+ if (4.17)

the double summation in (4.14) can be reduced to a single one:

@=L pime™ = ] oy () (4.18)
Y y 'Y

In this summation % can also have negative values, since there are sine-

and cosine parts. Thus we sum over all complex values of v.
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From the definition of YY in (4.18) we see that

Y— =Y, 4,19
Y Y ( )

where the bar denotes complex conjugation.

The polynomials are normalized in the following way

¥ i [Pfl(u)]2 du = 1 (4.20)

and from (4.,18) it may be seen that
1 £ — —
e é Y, ¥gdS =1 if a =38 (4.21)

with S the surface of the sphere,

From (4.4) we find that there is a simple relation between the
amplitudes of the relative vorticity and the stream function. To obtain

this we expand

= Y 4,22
¥ g wY(t) y ( )

and calculate

2 2 -

Viy =) ¢Y(t) v YY =-) n(n+1)wY(t)YY =) » Y (4.23)
Y Y Y Y

Here a basic property of the Legendre functions is used (see appendix

A). Thus,

1
= - —_— = - 4,24
vy a(ar D) Sy ey Ty (4.24)

This relation makes it easy to alternate between the vorticity and the
stream function. Now inserting the expansion (4.14) in the barotropic

vorticity equation (4.13) we have

oY
2 " 4,25
o g oy Y+ J(g v, Yoo E tg Yg) + 2 g vyor = 0 (4.25)

where o and B are complex wave numbers. The first and third ternm are
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linear and can therefore be written as follows:

" dg

eln oy - Ly (4.26)
Y

2 ; Yy IxE = -2 i ; Ty Sy Ty Yy (4.27)

Now we turn to the nonlinear term, and using some of the properties

derived above we find

J(g v, Yoo g gy Yg) = - J(E c e¥ g tg Y =
) z . ¢ (SYG oY _ aYa BYB) ) (4.28)
ap o e “'3n 9 X op .
. i(2a+28)x dPa dp
=a§ecacslcae ”sps?u_‘zaPadu)

As the expansion functions are orthogonal we want to project te

resulting vorticity equation on a specific wavenumber, vy, which is the
same thing as multiplying the equation by Y; and integrating over the

surface S of the sphere. For the first term (4.26) this results in:
dg dg
(] O - —X
/ YY{E dt Y Jds = 4m 3¢
V]

because of the orthogonality of YY and Y if y#q. Operating in the same
a

Wway on the other two terms the spectral form of the vorticity equation

becomes,
9y
4n[dt - 21 ZY cY ;Y] + z {i g, CB c,’
@8 (4.29)
dPa dp i(2d+26—£Y)A *
/ P (2, Podr ~ %o By EEE) e ds} = 0
-2 -ig_A L -ig_A -if_A

because Y7{u,x) = PnYY(u)e L Pnz(u)e Y= PYe Y .

1f £a + 28 - QY # 0 then the integral in (4.29) is zero because the
exponent is the only longitude-dependent term. Integrated over longitude
(around a latitude circle) this term gives zero.

If Ra + QB - ZY = 0 we may have the integral nonzero, but to determine
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this we have to examine the latitudinally dependent part of the

integral. We can now rewrite the integral, which is only dependent on

latitude.
As

1
JC yas = | () dx dy
-1

O—= N

equation (4.29) becomes,

az, ar_ ar,
T 212YCY;Y+1 ) {z o8 (c g C )% f P (18 8 dn L P )du}

aad

a,B H

where the summation in the second term on the right is non-redundant;
that is, it only includes all distinct combinations (without
permutation) of the pair of vectors o and 8. The above can also be

written in the following form:

dg
—Y=2i ¢ ¢ + i I (4.30)
dt v 5y 5y O‘ZB Y,o,8 “a °p
b
where IY are interaction coefficients, determined as follows:
» &y
dPa dPB
= - - —)d 4.31
IY,OL,B %(CB o { F (28 g dn ~ *ofq du Ydu (4.3
We can also define so called coupling integrals
1 dp dPB
_a
K = P - 2P —=)d 4,32
Y,B8,a _f (28 8 du ol du )du ( )
It is clear that I is symmetric and K is antisymmetric:
I =1 K = =-K o
Y,a, B YsB,a Y;B,a Y,a,B (4.33)

We will now set up some selection rules so that large classes of inter-
action coefficients can be excluded from consideration., Due to various

properties of the Legendre functions, I B must vanish even when
’
L+ 2 - 2 = 0 unless the following scalar selection rules are
a

B

satisfied:

gi +2% %0 (4.34)
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[ns - nal < nY < nB + n, (4.35)
nY + nB + na is odd (4.36)
nB + n, (4.37)

The last rule (4.37) comes from the factor (CB - ca) and therefore does

not hold for the coupling integrals, all the others are true for both

types of integrals. Rule (4.34) is merely a reflection of the vanishing

of K when both £ and £ are zero; in other words the interaction
YsB,a a 8

of two zonal components is nugatory. The "triangle" rule (4.35) and the

"parity" rule (4.36) are consequences of properties of the associated

Legendre functions. Another way of stating these two rules is that the

three n's must form the sides of a triangle of odd perimeter. An

elementary proof of (4.36) is easily given from the fact that a 1,

polynomial is an even function of y if 1 + n is even and an odd function

of yif 1 + n is odd (see the definition (4.15)). From reference to

(4.32), the integrand of K 8 must be either an even or an odd

bl b
function of y and, in the latter case, K must vanish. To make the

dp dp
integrand of K( = PY(QBPB-HEQ - zaPa-aﬁﬁ)) even we can have the

following combinations of Pa’ PB and PY (note: if P, is even,-g%i is odd

and vice versa):

Combination

number 1 2 3 4
PB: odd even odd even

P even odd odd even
a

Py: even even odd odd

Combination (1) means that
L +n is odd
8 B

£ +n is even
o o
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£ + 0 is even
Y Y
which leads to

L +4 +2 +n +n +n being odd.
8 a Y B a Y

This relation in fact holds for all 4 combinations of P s, P_and P ,
a
If use is made of the fact that § + ZB = ZY, then we find that
a
n +n_+ n must be odd.
a B Y
The proof of the "triangle" rule (4.35) is not so straight forward. It
is given by Silberman (1954), I must also vanish when

Y,Q,B
L+ 28 = 4 =0 unless the following vector selection rules are
a Y

satisfied:
B # a (4.38)
B#yand a # 7y (4.39)

Selection rule (4.38) is a consequence of the antisymmetry of K and
selection rule (4.39) is a consequence of the redundancy relations,
= K

(4.40)

K - K = K —
Y,B,a a,B,Y Y,B,0 BsYsa

(see exercise).

Corresponding to each expansion coefficient there is a wave vector
Y = (2,n). The infinite set of all wave vectors (for spherical
harmonics) can be presented geometrically in the %£,n plane by the
integral lattice points which lie within the semi infinite
triangle 121 < n, or on the boundary of this region (see fig. 20).
From this set, we select a finite subset S which is symmetric with

respect to the axis & = 0,
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Arn
. . . . . . .
. . . . . .
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. . . .
. . .
. .
.

Fig. 20. Representation in the (1,n) wavenumber plane of the nonzero

Legendre functions and a certain subset, S.

In other words for each vector (£,n) in S we include the image

(~%,n). This is necessary if the truncated spectrum is to represent a
real function. All equations in the system (4.30) for which ;
corresponds to a wave vector outside of S will be ignored, so we are
left with a finite number of equations. We further ignore all nonlinear
interactions which involve expansion coefficients corresponding to wave
vectors outside of S. This means, then, that all three vectors a,B,Y in
(4.30) must be members of S. The set of equations thus obtained
evidently involves only the expansion coefficients corresponding to the
wave vectors in S and is a closed system with a solution z (t)
determined uniquely by the initial conditions c (0).

1f we look at the wave vector corresponding to n =0and ¢=0( 2=20
corresponds to zornal flow) we find that due to the fact that P is
constant § must also be constant so that there is no flow.

The amplitude of this wave vector can thus arbitrarily be set to zero.
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The next zonal wave component (n = 1, £ = 0) corresponds to a solid body
rotation of the whole atmosphere, because P? = V3.

We can include this in the Coriolis force. Take a = 1 in the spectral
vorticity equation (4.30). Due to selection rule (4.35) and the fact
that la + 28 - ZY = 0 and Ra = 0, B must be equal to y. Substituting
a=1and B = vy in equation (4.,30) gives for each vy # 1

dg
Cns . _1y1
Hfl'_ 212.Y cY CY + i 4] I;Y(CY 1)%

This can be written as

dg

Y .
—— =14 u (4.41)
dt v % 5y

where

w =2c¢c +V3zg.(c -1 (4.42)
Y Y 1y

For y = 1 we find that

dgl
F'—' 0 (4.43)

All nonlinear contributions to this equation must vanish due to
selection rules (4.35) and (4.37).

Let us first consider a one component system i.e. eq. (4.41), In this
equation there is no nonlinear term. CY (QY > 0) is an element which,
together with its conjugate C;, forms a one-component system. The

solution of this linear system is

it w t
Ly = 5y (0) e V¥ (4.44)

This is a "simple" planetary (Rossby-Haurwitz) wave with constant
amplitude [;Y!and phase speed wY. If wY = 0 the wave is stationary. From
(4.42) and remembering that ¢ = 1/n(n + 1) it follows that, for a

stationary wave, we must have
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4
1 T B (a +D)=2) (4.45)
Y Y

In other words the higher the total wavenumber, n , the smaller the
solid body rotation (cl) needed to keep the wave gtationary. Given a
wave component with nY # 1 we can thus always find an amplitude of the
zonal flow which will make this wave stationary. This result is
analogous to Rossby's equation for the phase speed of a wave on a
B-plane. Due to the finiteness of the spherical geometry we can only
have integer values of the total wavenumber nY and the vorticity of the
solid body rotation required to keep the wave stationary thus has an

upper limit which in nondimensional units is 1/\fB.
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Exercises
8. Show that for the coupling integrals defined as
aP JP
— a —
Ky,8,0 = _i Py(2gPg 3% = %q Pq 3rt)du
the following redundancy relations are satisfied.

K = K —
Y,B8,a a,8,Y Y,8,a BsY,a

9. What is the (dimensional) zonal windspeed required at 45° latitude to

make a Rossby-Haurwitz wave with total wavenumber n = 3 stationary?



72

4.2 Energy and enstrophy conservation
In this section we will prove that kinetic energy and enstrophy are
conserved in general for the barotropic vorticity equation and also in

any truncated system.

Since V.V = (Vw)z, we have

V.V = VoY) - Yz (4.46)

The mean square velocity may therefore be expressed as

2 1 - 1
Ve o= [ vev ds = - v [ g ds (4.47)
. . 1 = i}
Since vy = e, oy and 7~ / Y, Yg dS Ga,B’ we have
2 _ 2
Ve = ; vy 'CY{ (4.48)

where ICYIZ =z E&. The sum in (4.48) is over all y(y and Y). So
components with £ # 0 will contribute twice to the summation,

Since absolute vorticity gz + 2 p is conserved, the mean-square integral
of absolute vorticity over the sphere must be invariant; but it is also

true that the mean-square integral of relative vorticity is invariant,

To show this, we note that

7% [(c + 2w)%ds = 22 + 4 +% (4.49)
where

2 =gy [ s (4.50)
and

M = %; [ zuds (4.51)

M is proportional to the projection of the vorticity on the solid body
rotation component. In other words M represents the total angular

momentum, which must be conserved. Considering the integral on the left
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of (4.49) as invariant, Z must be invariant too. The spectral form of

the mean square vorticity 72 is

22 = ] |g |2 (4.52)
Y

which we obtain in the same way as (4.48).

A general proof that kinetic energy (or mean square velocity) and
enstrophy for any expansion in orthogonal functions are conserved is
given in appendix B.

We will here show that kinetic energy and enstrophy are conserved in any
truncated system where the expansion functions are Legendre functions

(finite Yy). First consider enstrophy. We start with the idendity

d dg
d 2 _ XY, 7 X
HE'!CYI = Styq t by dt (4.53)

dg dz
On the righthand side we introduce the expression for 3?1 and-a-fl
from (4.30); this yields
|2

= ) i(cce, I -zt I ) (4.54)

dt IZ;Y ag Y OB Y48 "Y"a’B Ty,q,8

where the linear Coriolis terms have canceled out. In the righthandside

of (4.54) we can substitute the coupling integrals K for the interaction
coefficients I which leaves us with

ar ley17 =1 ty L (-c COLCBKY,B,G)+icY ] cz X (4.55)
?

o g a o B a’a’B y,B,a

where now the summation is over all combinations (with permutation)

of a and B. Equation (4.55) can also be written as

d 2 = -
-— = i) (~c K - i -c K (4.56)
dt IC\(I CYECB z( ofo) Y;B,a CYEEB z( ata) YsBsa
We define a coupling matrix M as follows
My, = 11 cq oKy g (4.57)
MY 8 is antisymmetric in a Hermitian sense because using (4.40) we have
)
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= 3 - K —-) = 1i T K — = —E— 4-58
M= i g( afa Kgy, @ = 1 g ‘a %a “8,v,a By Y (4.58)
So we can rewrite (4.56) as
d 2 Vo= =35
_— = M + M
ac %] é( Yely,s oy,
Summing over all components y we get
LS o2 = ] L Dy,8 (4.59)
Y Y ’
where
D =z ¢ M +¢g ¢ M =-¢r £ M -
Y,8 Y B Y,8 Y B Y,B B Y B,Y
(4.60)
T oy Mg,y =~ Dgy
So D is antisymmetric. Therefore from (4.59) it follows
) 2 _ ' (4.61
£ leyl? =0 61)
¥
because in the double sum of D each pair of wave vectors must occur

Y,B
twice, the second pair being a permutation of the first. We therefore

have the result that (4.52) is invariant. Clearly, the foregoing proof
does not depend upon the nature of the set S of which the wave vectors
Y and B are members; this set may be quite arbitrary in configuration,
and it may have a finite or an infinite number of elements,

The corresponding proof for conservation of kinetic energy in a

truncated system is analogous. Equation (4.55) can also be written as

d 2 _ = , -~
— = crg i)t X - cz i) K (4.62)
dt ICYI I;Yg aca ECB Ysa,B8 CYE aca EB:EB Ysa,B
where we have used the fact that the coupling integrals are
antisymmetric. Introducing the coupling matrix M we get
e =Tt +cccH )=Yc D (4.63)
dt Y o @ Y'a y,a a’Yy’a Y,a o & Ysa

Multiplication by ¢ and summation yields
Y
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o

\ 2 - )
L 5= c |z =) )c_ c D (4.64)
~ dt YI YI e Y e Ty

and the double summation vanishes again because of the antisymmetry
of D.

4.3 Truncated systems: systems with one or two components

At the end of the section (4.1) we investigated a one component system.
We found that it described a so called Rossby-Haurwitz wave with an
invariant amplitude and a phase-speed dependent on the total wavenumber.
There was no nonlinearity in the equation as one component cannot
interact with itself, to itself.

To consider a two component system, let o and B denote the relevant wave

vectors, ordered such that 0< Ea-s ZB and O < R, < nB
This involves no loss of generality. It is helpful to think of the

interaction coefficients IY 8, arranged in the form of an interaction
b b
matrix I_. The numerical values of its elements are fixed by (4.31), and
Y
its structure is governed largely by the locations of nonzero elements.
=1 ).
Y>B8,a Y50, B

First we construct the interaction matrixes I and IB. For this purpose
V1

it is convenient to classify the possible #-configurations of o and B

It is symmetric (I

in three groups as in table I (see also figure 21)

n n n
/ 7 /
// // ,/
4 ,, 7
B /,/ OB /, oﬁ /’,
7 // ,
a ’/ a Ve o /’
4 .7 a d
’
Ve
Nn= e y; ’
l l [

Fig. 21. Rank classification of two-component system. The half plane

(1< 0 is omitted because the configuration is symmetric).
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Table 1. The rank classification of a two—component system.

Class £a ZB
L1 =0 =
1.2 =0 >0
L3 >0 < %
- a

In class L1, both interaction matrices must be zero because the flow is
purely zonal., Formally this is imposed by selection rule (4.43).
Similarly, both Ia and IB are zero in class L3 because the condition

Ra + 28 = ZY cannot be satisfied.,

In class L2 the matrices showing the possible values of the interaction
coefficients are displayed below (Fig. 22). Since the interaction matrix
is symmetric in general, only one side of the diagonal need be
considered. Each is a 3 x 3 (rather than a 4 X 4) matrix in this case
because la = 0,

Note first that the diagonal elements of all interaction matrices are

zero owing to rule (4.37) or (4.38)

la| a B Ig| a B B
a o o @l o - o
B o o B o o
B o B o

Fig. 22, Interaction matrices for a two component system,

The former rule also excludes the interaction of any element with its
conjugate, such as B, B. This leaves only o, B and @, B in the two
matrices of Fig., 22. In Ia these interactions are zero because the
condition ia + lB = £ cannot be satisfied in class L2; hence I = 0.

_ a
In IB’ rule (4.39) excludes the interaction @, B so that only a, B8
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remains to be considered.

One finds, indeed, that the interaction coefficient I (=1 )
B)als B,B’a

is the only one in IB of class L2 which is not excluded by any of the

selection rules. Therefore, in class L2 the dynamical equations reduce

to
dg
a _
T - 0 (4.65)
ch
Fraae 1[28 wB CS + ga CB IB,a,B] (4.66)

where la = 0. Hence the wavecomponent does not interact back to the
zonal component. This is why a linearization around the basic state
zonal flow is permissible., It is clear that there are no interesting
nonlinearities in the above system, not for that matter in any two
component system. This can also be seen as a consequence of the
conservation of energy and enstrophy. Energy conservation requires the
solution to move on the circumference of an ellipse in the

|ca]2 - ]cslz plane (see Fig. 23), while enstrophy conservation requires
the solution to stay on the circumference of a circle. Both the ellipse
and the circle have their centre in the origin. Because of these two
constraints and the fact that the amplitudes can of course only be
positive the solution is restricted to the intersection of the ellips
and the circle in the first quadrant. In other words the solution is
"locked" to a point in the amplitude plane. 1t can only change its
phase. In three dimensions (three component system) the solution can
move on the intersectionline of a sphere and an ellipsoid in the first
quadrant. This makes the behaviour of a three component system much more

interesting. We will therefore consider a three component system in the

following section.
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Fig. 23. The solution of a two component system is restricted to a

point in the amplitude-plane because of energy and enstrophy

conservation.

4.4 A three component system

The simplest three component system having active non-linear
interactions is one in which one component is purely zonal, i.e. & = 0,
and the two other components have the same non-zero wavenumber
(Platzman, 1962). This is illustrated in Fig. 24,

The wave components do not interact directly with each other. If they
did interact, we could drop the zonal component and we would be left
with a two component systems with active nonlinear interactions. In the
preceding section we showed that this is not possible. Thus the wave-
components can only interact via the zonal component. This is
illustrated in Fig. 24, by the arrows.

Let us first of all look at energy and enstrophy transfer within this
system. In any three component system the invariance of enstrophy and

kinetic energy may be stated as

d 2 2 2, _
Ez-(xl + X, + x3) = 0 (4.67a)

d 2 2 2
EE-(cl X + Cy X, + Cq x3) =0 (4.67b)

-, 2
where x; = tity for a wave component (g # 0) and Xy = 3 ¢ for a zonal
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component (£ = 0). From these it is a simple matter to establish the

following symmetric relations:

rd
m
—~
0
—
1
[g]
N
~
~
(e}
|
[e]

g
i

g ¥ (e megdley = ep)

=J
1

(eg = epley - ey

(4.68)

It is clear from (4.68) that the signs of the p's are decisive in

determining directions of energy exchange between three components.,

Fig. 24. Representation in wavenumber plane of the components of the

simplest three component system having active nonlinear

interactions. Arrows indicate direct interactions.
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Now if one adopts the ordering in Fig. 24, the numbers ¢ = ﬁ(%?TT must
be in the sequence ¢ > c2 > c3. Therefore Pl > 0, P2 < 0 and P3 > OThis
means that concurrent enstrophy changes in the components of smallest
and largest degree are of the same sign, and are opposite in sign to
enstrophy changes of the component of intermediate degree. In other
words, three components of unequal scales interact in such a way that
the component of intermediate scale blocks the transfer of enstrophy
from large to small scales (or, indeed, from small to large scales). The
existence of such a spectral "blocking" is a direct consequence of the
existence of two quadratic invariants, and is a crucial aspect of the
exchange processes. It is also evident from(4.68) that in a two-
component system energy or enstrophy flow between the components is
impossible. We will now use a three component system to discuss the

barotropic instability of large scale waves in the atmosphere,

4.5 Stability of the Rossby-Haurwitz wave

In this section we shall consider one kind of barotropic instability, of
which there are three types. The first two types are concerned with the
transformation of zonal kinetic energy (Kz) to eddy kinetic energy (Rg)
or, in other words, the conditions which have to be fulfilled for the
amplification of wave disturbances on a given zonal flow. The first of

these is inertial instability. The condition for inertial instability

is,

du
f - dy <0

where u is the zonal windspeed and the y-axis is directed in south-north
direction. Since f - g%-is the absolute vorticity of the basic flow, the
inertial stability condition is simply that the absolute vorticity be
positive.

Observations indicate that on the synoptic scale the absolute vorticity
is nearly always positive. The occurrence of a negative absolute
vorticity over any large area would be expected to trigger immediately

inertially unstable motions which would mix the fluid laterally and

reduce the shear until the absolute vorticity was again positive.
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The other type of instability is the so called "Kuo" instability which
can be stated as follows:
2
p-42-9

dy
somewhere in the fluid is a necessary but not sufficient condition for
instability.,.
Since the positive northward gradient of the earth's vorticity dominates
mostly, the condition is that there must exist negative meridional
gradients in zonal absolute vorticity. Because they occur with such
small time and space scales these two types of instability are not very
important for the total energetics of the atmosphere. It is thought that
the Kuo type of instability is important for the initiation of tropical
disturbances. Once a tropical disturbance has been formed, it is
maintained mainly by latent heat release.
The third kind of barotropic instability is concerned with the reverse
energy transformation, KE > KZ’ which is actually observed in the mid
latitude atmosphere. This problem was first investigated by Lorenz
(1972). He studied the barotropic stability of Rossby waves of infinite
meridional extent om a B-plane and found that if the waves are short
enough and of sufficient amplitude, then they are unstable, in other
words, they are destroyed., This indicated one reason why the classic
Rossby waves are not regularly observed in the atmosphere and a
mechanism which may be responsible for the breakdown of baroclinic
disturbances when they have obtained a large amplitude. We shall now
investigate in more detail the stability of the Rossby-Haurwitz wave
(Rossby wave on the sphere) of finite amplitude, following closely an
article by Hoskins (1973).
We shall examine what happens in a three component system with one zonal
component and two wave components with the same zonal wavenumber, We
will initially insert all the energy in one wavecomponent and we will
determine under which circumstances it becomes unstable such that energy
is transferred to the other components. In fig. 24 the rank
classification of the three component system we will consider is shown.
The dynamical equations (see 4.30) for this system are: For the zonal

component
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and for the wave compounents:

]

dg
(o] .
—— 2 +
dt 0y Ly T i[cs cY IG,B,Y ®a CY Ia,a,Y]
dgs
— = i + i I + I
dt im wB CB [Ca CY B,a,y CB ;Y BsB,Y

(4.69)

(4.70)

(4.71)

We will rewrite these equations in terms of amplitudes and phases of the

waves, such that:
Ty =+ A oo
tg = + B eies
ty =C

Here C, A and B are real numbers. The factor % has been introduced to

make things simpler later. If we substitute these expressions in (4.69),

(4.70) and (4.71) we find that

C=3%1 — ABsin(s -8

: Y50, 8 S ( a B)
A=1 CBsin(8 -906)

a,B,Y o B
B=-~-1 C A sin(f - 0)

ByY,a a B
8 =mw +1I C+1 CB_ cos(6 - 8
a 6 Xy AyY Q’B,Y A a
. CA
= + 1 + 1 — -

g = mugtIg g C+Ip o5 cos(e, -8

where the dot stands for a time derivative.

B

)

)

(4.72)
(4.73)
(4.74)
(4.75)

(4.76)

We will now consider the B and ¥y components as perturbations to the o
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wave, and by linearizing about this wave determine its stability to the

perturbation. Hence we are testing the barotropic stability of a wave

governed by the equation

T = imw ¢ (4.77)

with the solution

imw t
Z =Ae & (4.78)

to a perturbation composed of a wave of the same zonal wavelength, but
shorter scale in the meridional direction, and a zonal flow. From (4.78)

it is clear that

Because B and C are assumed small initially, the perturbation equation

for the phase difference becomes,

* . ° AC
- = AL .
8 =29 BB = m(w wB) B IS, , cos B (4.79)

The other two perturbation equations for the amplitudes become,

@]
]
ol

AB I —  sin § 4.80)
Y’a)B (

B=-ACTI sin 6 4,81
Bya,y ( )

Equations (4.80) and (4.81) can also be written in the form

02 ~ _ )

c” = IY,G,B ABC sin 6 (4.82)

B2 = -2 1 ABC sin 6 (4.83)
Bya,y ‘

Therefore it follows that

C"=a8B (4.84)
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Iy'a 8 Ca - CB

= 2 = ———e

where a 7—f——L—— % c = ¢
Bya,y Y a

The solution of (4.84) is,

C=+ Ya B (4.85)
If there is to be growth of the zonal flow and the wave, then clearly we
must have a > 0. Since nY < n, < nB, a is actually positive.

If we would have chosen the other wave component as the energy
containing component, a would have been negative, and the perturbation
components would never have grown. This is again just a reflection of
the fact that energy can flow only from the intermediate wavelength to
the longer and shorter wavelengths or vice versa.

We note that the phase speed equation (4.79) contains two terms. The
first one gives a constant growth of 6 because the two waves are Rossby
waves with different total wavenumbers. The second term, which may be of
either sign, is an interaction effect proportional to the amplitude of
the main wave. This suggests the possibility of the interaction effect
cancelling the Rossby effect to give a solution with constant phase

difference. Substitution of (4.85) into (4.79) gives

0 =m(w - w)+vaAIl
* g

8, q, Y cos 6.

For exponentially growing solutions of (4.80) and (4.81) we must
rtequire, 8 = 0. The perturbation on the basic state wave must have the

same phase to pick up energy from the basic state wave with maximum

efficiency. Hence,

or

(4.86)

This, together with the condition that a > 0, is the instability
criterium for the Rossby-Haurwitz wave for this severely truncated
system. Another way of obtaining the same result is by transforming the
equations (4.69), (4.70) and (4.71) to the real domain through a

suitable transformation and subsequently finding the eigenvalues of .the
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equations (4.69), (4.70) and (4.71) to the real domain through a
suitable transformation and subsequently finding the eigenvalues of the

system of equations in matrixform (see exercise).

The system of equation (4.72)-(4.74) and (4.79) was solved exactly by
Platzman (1962). He obtained a periodic solution, but the instability

criterium could not easily be deduced from it.

It is possible to include more zonal components, but there will not be

any qualitative change of behavior. The problem becomes intractable when
we include more wave components. We can then resort to a numerical

model.

Hoskins computed theoretically e~folding times for the growth of pertur—
bations to Rossby-Haurwitz waves with a wave vector a = (my, m + 1),

The result is shown in Fig. 25. The r.m.s. vorticity divided by the
earth's angular velocity is used as a measure of the amplitude of the
main wave. Waves with wavenumber less than 6 are stable to

perturbations, while shorter waves with sufficient amplitude are

unstable.
3rms/Q
.8t
.6t
®

A
L STABLE

oF 2

)
1 i 1 1 1 1 ] m

0 2 4 6 8 10 12 14

Fig. 25. Amplitude of wave given by its r.m.s. vorticity as a function
of the wavenumber. Numbers on curves refer to e-folding times, to the

left of the curve marked « all waves are stable (From Hoskins, 1973).
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@@m D@'s
R

Fig. 26. Example of flow configurations from a numerical experiment
on Rossby-Haurwitz wave instability. One quadrant of a
hemisphere is shown on a polar stereographic projection, full
lines are isolines for the streamfunction. The initial state
is to the far left the other flows are taken from days 3, &4
and 5 respectively. The breakdown of the initial wave into
zonally sheared flow agrees well with the theory. (From

Hoskins, 1973),

Hoskins also carried out a series of numerical experiments using the
barotropic vorticity eqaution on the sphere. One of these integrations
is shown in Fig. 26. All the energy is initially inserted in wave (8,9).
It can be seen that by day 5 this wave has lost a great deal of its
energy to the zonal flow and smaller latitudinal scale waves, When wave
(4,5) was chosen as main wave, the energy content of this wave only
decreased by 33% in 5 days. We can conclude this section by saying

that eddy kinetic energy, which is created from eddy potential energy by
baroclinic instability, is destroyed again and converted to zonal
kinetic energy by barotropic instability.

According to the above theory long waves are stable. In the next section

we will investigate a possible source of instability for long waves due

to boundary forcings.
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4.6 Orographic effects on barotropic flow

In the previous section we have studied two-dimensional, nonviscous flow
on a rotating sphere. This is a reasonably good approximation for the
flow in the "free" atmosphere, but to study boundary effects such as
horizontal variations of the surface elevation (orography) and
dissipation we have to take a third, vertical dimension into
consideration. This may be done parametrically, i.e. we can still work
with a two-dimensional model which takes the vertical variations into
account in a vertically integrated sense.
Variations in the surface elevation (orography) may influence the flow
in essentially two different ways. The first is just an "obstacle"
effect which means that the flow tries to avoid the obstacle by flowing
around it. The second effect arises through the conservation of
potential vorticity. When a fluid parcel is advected across an
orographic rdige its vertical dimension shrinks and to conserve its
potential vorticity the fluid parcel has to gain anticyclonic vorticity
in the horizontal plane, The trajectory of the parcel will thus be
deflected and from fundamental dynamic meteorology it is well known that
together with the B-effect this may set up a standing wave pattern
downwind of an orographic ridge. For large scale atmospheric flow the
second type of effect is dominating while the "obstacle" effect is more
relevant for small scale mountains. We will therefore disregard the
"obstacle" effect in this section while the vorticity effect will be
introduced through a forced vertical velocity at the lower boundary. The
forced vertical velocity is assumed to be dependent on the mountain
slope and the intensity of flow. The effect of orography is thus flow
dependent ant it is this feature in combination with the advective
nonlinearity which will lead to long wave instability and a bifurcation.
We first consider a three dimensional model where only the vertical
component of the flow vorticity is taken into account., By taking a
vertical average and making a few assumptions about the vertical
variation of the flow we will reduce this to a two dimensional model
(equivalent barotropic assumption, see Haltiner, 1971).
Figure 27 gives a vertical cross section where the upper and lower
boundaries are indicated. The upper boundary is taken as the "top" of

the atmosphere, where p = 0, and the vertical motions must be zero at
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this level. The orographic height is denoted by h, which is a function

of the spherical coordinates A and y.

p=0 v 2 =0

hik n)

Fig. 27. Vertical cross—section of the equivalent barotropic

atmosphere.

A sloping bottom boundary will give rise to vertical motions with a

vertical velocity given by

W=E=V.Vh (4.87)

Using pressure as a vertical coordinate we wish to express w in terms of
the individual pressure changes at the lower boundary,

dpO

w ) = a5 (4.88)
(o]

Using the hydrostatic equation this may be approximated by
wpo T TP, BW = - p g V@.Vh (4.89)

Since the vertical velocities in the atmosphere are an order of
magnitude smaller than the horizontal velocities we may consider the
flow as being quasi-two dimensional. The next step is to find a

vorticity equation for the flow. The equation for the vertical component
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of the flow vorticity reads
%E'(C +£) = ~(g + f)V.v (4.90)

Eliminating the divergence from the continuity equation

v;=-§% (4.91)
we obtain

3 . = - O

et veV(z + ) = £, 5p (4.92)

On the right hand side we have set ¢ = 0 and the Coriolisparameter equal
to a constant value f . This is necessary for energy consistency. A full
discussion of this derivation can be found in Holton (1979), The final
result (4,.,92) is valid in midlatitudes, but it fails near the equator
since the Coriolisparameter becomes zero in this case. To apply (4.98)
to a strictly two dimensional flow we will now average it vertically. We
assume that the relative vorticity and the horizontal velocities, which
are functions of pressure, can be written as

v

£ = A(p) 7 and v = A(p)v (4.93)

where

T =4 ] Tap (4.94)
o p

o “—u

A(p) is a weighting function; its shape for average atmospheric

conditions is drawn in figure 28. We furthermore define the equivalent
barotropic level to be the pressure, Ppp at which

A(pgp) = AZ(p) = A* (4.95)

From figure 28 it is clear that Pgp is close to 500 mb.
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AZ(p)

Fig. 28. An example of the function governing the vertical
variation of the variables in an equivalent barotropic

model. Also indicated is the equivalent barotropic level.

We first average the vorticity equation (4.92) using (4.93) and (4.94)

and we obtain

%%+ A* J(w’z_'_i_*_) =9 (¢ - wo) (4.96)

where we have introduced a stream function for the vertically averaged
flow; the vorticity 7 can be expressed as ¢ = Vzw
Using the boundary conditions (4. 89) for up and wy; = 0 and introducing

a stream function ¢ for the lower boundary, we find
T * == f o
‘5% + A J(,T +‘K¥) ='-'§g g P, J(¢O,h) (4.97)

We next express all quantities in the terms of the values at the

equivalent barotropic level by means of the relations

* * A
- z - - =
I T RO A (49
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and finally we obtain the vorticity equation applied at the equivalent

barotropic level

* gp *
T fvo~5§- Iy, h) (4.99)

This result can be used for our purposes; it describes the vorticity
balance of a two dimensional flow at the equivalent barotropic level,
where the orographic effects are taken into account parametrically. To

simplify the algebra we introduce nondimensional quantities. They read

g = ,» T =4t (4.100)
af
and h' = 2 sin A h
¢o o H
where
P RT
H=—2=-2 (4.101)
Dog g

is a scale height. The rewriting is possible by using the ideal gaslaw.
Note that due to the approximations inherent in eq. (4.89) the orography
is assumed to be much smaller than the actual scale height (h' < 1), The
most important restrictive assumption in (4.89) is that we assume a
windspeed, representative of the surface layer, to blow across the oro-
graphy. Introducing these expressions in (4.99) we find

%—E—+ J(\p,g+h')+2%=o (4.102)
From this it can be seen that the orographic effects enter in the
Jacobian. It can be shown that if there exists a westerly flow over an
orographic ridge a wave train will be formed on the leeward side.
Again we develop the relative vorticity and the streamfunction in a

series of Legendre functions. Writing the nonlinear Jacobian term in
(4.102) as

J(‘P,C + h') = J(\U,C) + J(W)h')

we see that J(¢,h') is the only new term when comparing with the
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standard barotropic vorticity equation. This term gives rise to

"interactions" between the flow and the orographic field and it can be

written

J(y,h") = J(E v, Yo é hy YB) =

—J(gca;aYQ,ZhBY)=

8 B
dY, 3y Y _ 3y
= GZB Ca Ca hB[Eﬁﬁ'gxg “sﬁg‘sxﬁ] =
1
dpP dp i(e + QB)A
- _B _ - @
= azB e,z hB[la P an g Py i le

Projecting this sum on a certain component Y we obtain

L i c h K
2 a%B a Ca B Y,a,B

Restricting the forcing to one component (q) we have

i 2 Co LalKy,a,q Nq * Ky, 4,7 bl (4.103)
and from this it can be seen that we end up with the selection rules

L =2 + 2 or £ =48 - 2§ (4.104)
Y a q Y a q
Due to the orography a wave can interact with the solid body rotation,
since ZY can be zero while la and lq are nonzero. This is just an
expression of the fact that a zonal flow over orography will generate
wave energy.
The orography thus acts to transfer energy between components of
different scales. The generation of wave energy is taken out of the
zonal flow and this is why we will have terms involving the orography in
the equation for the amplitude of the solid body rotation. Because of
this energy transfer, we can form a low order system only containing two
flow components which has interesting nonlinear properties. One compo-
nent is a solid body rotation zonal flow while the other is a wave-
component. The orographic forcing is introduced in the same component as

the wave. Fig. 29 shows the choice of components in a wavenumberplane.
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Fig. 29. Wavenumber configuration for the low order system used

to investigate the orographic instability.,

For y = 1 (solid body rotation) we have from eq. (4.104)

gy 1
=3 % o talKy g, q by * Ky oq bg) (4.105)

As we have seen earlier the right hand side of (4.105) vanishes unless

the following selection rules are satisfied for aand q: & = - §

q
and In -n | < 1K nq + n from which it follows that n = n .
q o o

q a
We thus have to include orography in the same component as the wave to

obtain a nonzero energy transfer to/from the zonal component. We can

simplify (4.105) somewhat by using the defintion of K and K —:
1,a.q l,0,q

K, — =-K —=2V3 .

l,q,q l,q,q q

We thus have

1 .

The equation for the wave component is

dg

d—tCl-=i»Q,(uC+1

QY %t 7 (4.107)

c. K h
171 "q,l,q q
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where

K =-2/3 8% , 0w =2c¢c +V3c -
q,1,q Q" q q q 1

The w also includes the amplitude of the solid body rotation, and it is

the agvective nonlinearity together with the orographic forcing, which

gives the equations interesting properties.

In order to find the steady states of the system eq. (4.106) and (4.107)

and their stability properties more easily, we convert the system into

three equations in the real domain.

We define
Cl =u
=x + 1
Cq y
h =h-=h
q q

We have fixed the phase of the orography and look at the response of the

other components. Substituting this in the eq. (4.106) and (4.107) we
obtain

(=9
a8

%%-= -(B - a u)y

A

(B-awx -8 hu

with

[ec]
il
N
-~
W
x

o]
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e
I

Y38 (4 -2¢) > 0)
q q

2 4 ¢

jos
]

The system above consists of three nonlinearly coupled differential
equations. The underlined terms are responsible for the exchange of
energy between the zonal flow and the wave component due to the oro-
graphy. The 8 - au terms can be compared with the w in eq. (4.107) and
thus give the phase speed of a free wave. )

The combination of a zonal flow and a wave component gives rise to
a flow which is sketched in figure 30. The orographic forcing is
indicated in terms of "land" areas, where the height above its mean
value, and "ocean" areas where the height is below its mean value, The
system of equations (4.108) do not conserve enstrophy but there is
energy conser-vation. Instead of enstrophy another quantity involving
the orography is conserved.
For the total energy, E, and the other quantity, which will be called F
and is related to the enstrophy, we have

2
dE _d_ ,u_ 2 2y _
dr T dt Gt egxT ) =0

and

————%[(B—au)z—ZQG hu] = 0

1



96

Fig. 30. Schematic picture of the flow described by the low order
model. The structure of the orographic forcing is indicated
with a shading where the orography is above its mean value.
Full lines are isolines for the streamfunction, flow

direction is indicated with arrows.

The steady states of (4.108) can be found by setting the 1l.h.s. equal to

zero. We obtain

§ hu (4.109)

B—au



We here have one degree of freedom in determining a steady state,

and we

will thus have steady state curves instead of points. As y = 0 at a

steady state we only have to look in the x-u plane. Along the full lines

in fig. 31 4 changes sign, and we thus have three regions in the x-
g

u

lane inside which 4Y ig of equal sign. There will be periodic solutions
P

in time, which circle around the curves %¥-= 0 in the x, y, u space. The

periodic solutions have to remain on the intersection between surf

aces

of constant E and F and this constraint together with the initial

conditions completely determines the path of the periodic solutions.

Unless the initial state is on a steady curve, we w

ill always have a

solution which periodically exchanges energy between the zonal flow and

the waves due to the effect of the orography.

4 X

Fig. 31. Diagram to describe the dynamics of

=const

/

//
L7 F=const
/,/
- 'S
S u
a
y< 0
y>0

an orographically

forced low order system. For explanations see text.
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In the atmosphere we know that the orography generates waves which
can easily be identified on long-term average maps of the atmospheric
mean flow. A strictly periodic energy exchange between the zonal flow
and the waves is, however, not observed although we do find periods when
the long waves are particularly intense and the zonal flow is rather
weak and other time periods when the situation is reversed. The
transition from one type of circulation to the other is not periodic, it
rather occurs at irregular intervals and it is short compared to the
characteristic persistence time scale of the circulation types. These
observed features suggest a bifurcation mechanism where we have two
different stable flow types and where the transition occurs due to a
change in the external flow parameters.,

To model this type of behavior we will now go one step further with
the orographically forced barotropic model, by including the effects of
dissipation and a momentum forcing. In the vorticity equation dissipa-
tion can be included linearly due to the effect of Ekman-pumping which
acts directly on the vorticity field. To balance the dissipation we have
to include a vorticity forcing term which will act as a source of
kinetic energy. We will restrict this vorticity forcing to the zonal

flow. Writing the effects of forcing and dissipation in a Newtonian form

¥e thus have

%g(c+f+h) =e(;* - ) (4,110)

The parameter e is the dimensional dissipation rate, which has the
dimensions s~} and is given by the intensity of the Ekman pumping.
Looking at the total energetics of the model we may also interpret e as
a characteristic residence time of the kinetic energy. The energy input
to the model is given by e <—§*¢> where < > denotes an area integrated
value. The energy output, or the total dissipation, is given by e<-zy>.
As a long term time average these two terms must balance, and in
particular if we have a steady state they must balance exactly as the
total kinetic energy Ky then remains constant (see fig. 32). The input
and output of kinetic energy may thus be interpreted as fluxes in and
out of a reservoir containing a certain amount of kinetic energy, Kg.
The characteristic flux rate is thus governed by e and 1/e can be

interpreted as a residence time for the energy. Observations from the
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el-L"y> ec-L y)

Fig. 32. Total energetics of the barotropic model.

atmosphere show that a reasonable value for 1/e is around 5 days. Non
dimensionalizing e with the rotation rate of the earth we find a
nondimensional dissipation rate € = ﬁ-~ 0.03. Returning to the vorticity
equation (4.110) we can now nondimensionalize and insert an orthogonal
expansion for the space dependent variables just as we have done earlier
In this chapter. The forcing and dissipation terms are linear and may

thus just be added on to eq. (4.108) which now will be

du _ *
T Slhy + e(u u)
*
%%—= -(B - au)y + e(x - x) (4.111)
dy

*
dt (B - au)y - Gzhu + e(v - y)

The forcing terms, denoted with a star, have been nondimensionalized
with @, just as the vorticity.

Assuming a forcing only in the zonal flow (x* = y* = 0) we have a
nonlinear system which will give us the desired bifurcations. The steady

states of the system follow from x = 0 and y = 0,

X = .

€2 + (8 - dé;z 4
_ - € 62 hﬁ
y = (4.112b)

€2 + (g - dﬁiz

and from ¢ = 0



32—+ 1lu (4.113)
ou

The last equation gives the forcing as a function of the response. It is
a cubic equation in u, so we may thus have three steady state solutions.
Note that if there is no orography eq. (4.113) is linear in u.

We will now investigate eq. (4.113) graphically to see how the number of
steady states varies with the forcing parameters u* and h. The
dissipation rate, e, will be kept constant and we will choose the
wavenumber dependent parameters to represent a large scale wave where
L=z, n, = 4 and e = 0.03. Fig. 33 gives a plot in the u* - E-plane of
eq. (4.113) for some values of h.

cl

KR
>
"
o .
&~
>
]
—
o

Riwet+
C
b

Fig. 33. Steady states in a g - u* diagram for different values

of the orographic parameter.
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We see from fig. 33 that when the orographic forcing is small, there is
only one value of u for each value of u* and the steady state solution
is thus unique. When h exceeds a certain critical value we have a
bifurcation and we can now find three values of u for each u* within a
certain range of u* values. This means that for a given forcing the
system can have three different steady solutions.

An eigenvalue analysis of eq. (4.111), linearized around each of these
steady states, reveals that one of them is unstable (the middle one)
while the two others are stable. In one of the stable states (the upper
solution branches marked a in fig. 33) the response of the zonal flow
(u) is very close to the forcing (u*) while in the other stable state
(lower solution branches marked b in fig. 33) the response u is much
lower than the forcing u*.

Returning to the energetics, we may divide the total kinetic energy

into a zonally averaged part, Ky = % u? and a wave part, Ky =

cq(;2 +'§2). In a diagram of the energetics (fig. 34) we can now
interpret the effect of the orography. We know that the orographic term

is the only one which can transfer energy between K, and Ky. The size of

this term is determined by the steady state values of u and Ve

U™y / 2
r

-28-0

N

o )V
© )

Fig. 34. Energetics for the low order model separated into
contributions from the zonal component (Kz) and the

wave components (Ky) .
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From (4.108) it follows from the underlined terms that the energy

transfer is given by - /3 - Zq cq huy and using (4.113) this may be
written

= u(u” - )

which is just the difference between the generation and dissipation of
zonal kinetic energy. When (u* - u) is large we have a strong energy
transfer from the zonal flow to the waves and thus high dissipation in
the waves which implies a large wave amplitude.

If u and u* are close together we have a strong zonal flow but the oro-
graphic energy transfer is weak and we thus expect low wave amplitudes.
The solution branches denoted a in fig. 33 correspond to this latter
situation while those marked b are characterized by a large amplitude
wave flow and a weak zonal flow.

The nonlinearity in the system giving rise to the bifurcation is
the advection of the wave by the zonal flow given by the terms (B-ou)x
and (B-au)y (see eq. 4.,111). If B = au we have a cancellation of the
B-effect and the zonal advection which gives us a type of resonance in
this model. From the steady state equations for the waves (eq. 4.112) it
can be seen that the wave amplitude is near a maximum when B= au = 0.
The large amplitude wave branches (b in fig. 33) are thus situated at a
value of u which is close to resonance,

A simple wave-zonal mean flow interaction through the effect of the
orography may thus give rise to a bifurcation and the stable steady
states qualitatively agree well with observed quasi-stationary
circulation types in the atmosphere. The model property that a fairly
strong zonal forcing is needed for the existence of multiple steady-
states agrees well with the observed fact that quasi-stationary flow
patterns such as "blocking" occur most frequently during winter or early
spring and in the Northern hemisphere. Whether the interesting nonlinear
behaviour found in simple models like the one treated here also exists
in more complicated and realistic models of the atmosphere is a sub ject
which presently is under intense research. If this is indeed a general
property which can be identified in a general circulation model this

opens up new prospects for long range weather forecasting,
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Exercises

10. Consider the equations for the perturbation components in the

Rossby-Haurwitz wave instability problem,

dcY ‘
R R U

deg

ge TP Gugegte (e T T eg g e )

Convert these equations to the real domain through the trans-

formation

5, =2z, ¢,=x+1y, ¢ =A (z,x,y,A) € IR
Y B a

a. Determine the linearized local stability of the steady~-state

b. What happens with the stability properties if we add a dis-~
persion term -¢ g( 8) to the right hanc sides of the above
b

equations?

11. Given the orographically forced two—-component system with momentum

forcing and dissipation

dcl . *
T = 1 V3 Eaca(ha Ca—ha Ca) + € (Cl - Cl)

dg V3
ata =1 [la Wo S =7 %4 0 ha] T E Ly
(w =2c¢c +V3 (¢ ~¥z)

a a a 1

Show how the transformation below converts it to a system in the

real domain

Z. = u  =x+1iy h =nh (u,x,y,h) € IR
a a
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a. Determine the eigenvalue equation for the system when linearized

around a certain steady-state,

b. What is the condition for a Hopf-bifurcation in this case?
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5. Localized solutions to the barotropic vorticity equation-modons

When looking for solutions to the barotropic vorticity equation we
have up to now concerned ourselves with functions having a global
character. The wavelike structure of the solutions implies that motions
take place over the whole domain, but as the wave solutions are eigen-
functions of the Laplace operator we found it a convenient method. To
represent a solution which is more localized in space we can superimpose
waves of many different scales, but as we have seen earlier this will
give us a rather complicated and lengthy set of nonlinear equations,
Another way of representing a localized solution is to choose another
set of basis functions which are localized in space and preferably also
eigenfunctions of the Laplace operator. We may here draw an analogy with
the KdV equation (chapter 3) where we also had an advective nonlinearity
but where we managed to find a localized solution, a so called soliton.
Here we have a two-dimensional flow but in principle we are looking for
the same type of solution, i.e. a localized structure where nonlinear
and dispersive effects balance. To distinguish these from the one-
dimensional solitons, they will be called modons.

Our strategy here will be to construct a modon type of solution
step by step and we will closely follow the approach given by Leith
(1981). Because of our interest in a localized solution we will work
with the barotropic equation on a B-plane and thus the geometry will be
slightly simpler than the spherical one used in chapter 4. We will have
a Cartesian coordinate system and the dispersive effects will be
retained by allowing the Coriolis parameter to be a linear function of
the north-south coordinate. We first seek solutions which satisfy
Vzw = uzw, thus having squared eigenvalues of opposite sign as compared
with the normal Rossby-wave type of solutions on the B-plane. Assuning a
cylindrical symmetry we find such solutions to be modified Bessel
functions of the second kind. These functions have a localized character
in that they monotonically approach zero as the distance from the origin
goes to infinity, but they also have a singularity at the origin. To
avoid this singularity we introduce a second solution inside a certain
region which encloses the singularity. The second, or "inner", solution
has a dipole structure and by matching the inner and outer solutions at

the boundary we can determine some constants of integration,
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Additionally we also demand that the propagation velocities of the inner
and outer solutions must be the same.

We can thus construct a localized dipole type of solution and in an
exercise it will be shown that a monopole of arbitrary amplitude may be
added on to the dipole., With this procedure we can construct a localized
solution with a shape and structure that looks rather similar to some
characteristic atmospheric flow patterns, i.e. blocking highs. To
determine whether these type of solutions are likely to be found in the
Atmosphere an investigation of their stability has to be made., In the
literature only numerical investigations of the stability of dipole
modons have been reported, and these modons appear to be remarkably
stable to various types of perturbations. We must of course remember
that the modon solutions as described here are essentially linear
phenomena, the advective nonlinearity only contributes to give the
advective phase speed necessary to "hold" the modon together. A
perturbation analysis, through which the nonlinear stability of the

modon could be investi-gated, is still lacking in the theory of modons.

5.1 Modon structure
We shall describe a localized modon solution for the equivalent

barotropic vorticity equation
3 2 2 3 2
35 (V- aDy + 824 50y, Py = 0 (5.1)

which determines the evolution of the stream function Yy for the
equivalent barotropic flow of mean depth H on a B-plane with Coriolis

coefficient f = fo+ By. Here a is the deformation wavenumber with
2
fo
= -0 2
a o (5.2)

and g is an equivalent gravitational acceleration such that (gH)% is the
speed of gravity waves.

The deformation wavenumber o is mainly introduced to give a lower bound
on the phase velocities of free Rosshy waves (see below). Through the

equivalent barotropic assumption this term may be associated with a
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large scale divergence which is added to slow down the long waves.

The Jacobian here is defined in the usual way as

I, ¢) = ¢x¢y - ¢y¢x (5.3)

There exists in this case a potential vorticity

Z=f + vzw - azw (5.4)
in terms of which Eq. (5.1) may be rewritten

zt + J(y,2) =0 (5.5)
displaying Z as conserved following the flow,

The linear Rossby wave solutions of Eq. (5.1) are given by eigen-

functions of Vz such that

vzw = —xzw (5.6)

For these the Jacobian term vanishes and Eq. (5.1) reduces to the linear

equation
~(a® + 2%y + =0 (5.7
a Vo + By, = .
describing waves propagating in the x—direction with velocity
c=- 5 (5.8)
. 2 . . 2
Since § < A" < », ¢ is bounded with -8/a < ¢ < 0. Rossby waves are

oscillatory in space like sin Ax and are not therefore localized

solutions,

A localized solution must drop off rapidly away from some central

region. As an outer solution with this property we take another eigen-

function of V2 but one such that

Viy = uTy (5.9)
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In particular we choose
Y= A Kl(ur) sind (5.10)

where Ky is the modified Bessel function of the second kind of order 1.
Again in the outer region the Jacobian vanishes and Eq. (5.1) reduces to
2
Eq. (5.7) but with Xz replaced by -y~ . The outer solution (5.10) propa-

gates therefore in the x-direction with velocity

= _ B__
c = 3 5 (5.11)
a -y
Since 0 < u2 < =, the range of possible ¢ values for localized solutions
is =0 < ¢ < - B/az and 9 < ¢ < », disjoint from the possible Rossby wave
velocities of Eg. (5.8). In Eq. (5.10) r and 9 are polar coordinates in
a moving frame with, say,
2
r? = (x-ct)? 4 2 (5.12)

sinb = y/r

To avoid the singularity in y at r = 0 given by Eq. (5.10), we
introduce a smooth inner solution which we let join the outer one at a

circle of radius r = a. We take as the inner solution for r<a
Yy = BJl(Xr) sinG - C r sind (5.13)

where J; is the Bessel function of order 1.

The first term is again an eigenfunction of Vz satisfying Eq. (5.6)
and would by itself propagate in the x-direction with a velocity given
by Eq. (5.8). The second term, however, introduces a constant advecting
velocity C. In order that the inner and outer propagation velocities be

the same we must impose a velocity constraint

2 2
c=28 [t - + 5.14
PR T o

that determines the coefficient C for any choice of inner and outer
wavenumbers, X and u.

We match the inner and outer solutions at r = a by imposing as many
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continuity conditions as possible. From the continuity of y and wr at

r = a we have

A Kl(ua) =B Jl(xa) - Ca , (5.15)
and

A pa Ki(ua) = Bla Ji(ka) - Ca (5.16)
Let Aa = \, pa = p. By subtraction we may eliminate the term Ca and find

A K () = wkEGD] = B3 (X)) = W10 (5.17)

Recursion relations for Bessel functions permit Rq. (5.17) to be written

in simpler form as

A [HKZ(E)] = B[TJZ(K)] (5.18)
whence

A = S[EKZ(H)]‘1 (5.19)

B = S[XJ,)(T)]'1

The coefficient S is determined by Eq. (5.15) to be

[Jlm K, () ]'1
= Ca - (5.20)

X3, (%) WKy (i)
The conditions imposed so far suffice to determine the amplitude
coefficients A, B, and C for any choice of radius a and wavenumbers
A and p. By Eq. (5.11) a choice of p is equivalent to a choice of the
overall propagation velocity c. Then the choice of A determines C by Eq.
(5.14). If we next choose a radius a then A and | are defined, S is
determined by Eq. (5.20) and finally A and B by eqs. (5.19).

The most important continuity conditions have been satisfied, but

we still have the freedom to choose X\ for a given value of u in such a



way that the vorticity ¢ = Vzw is also continuous at r = a,

The continuity condition for ¢ at r = a is

A 02 K () = -B 32 3,0 (5.21)

which may be combined with Eqs. (5.19) to give

DK
D KD

(5.22)

For any value of § the expression on the right is well defined and
negative. Thus X must be in those intervals of the K.range where Jy and
Jo have opposite sign. We shall consider only the gravest such interval
(j%l) , j&l)) where A is smallest and the inner solution has the
smoothest structure. The solid curve in Fig. 35 shows the mapping u + A

into this interval given by Eq. (5.22).

I | 1 1 1
A(bj(1)

50F 1 h
40F

}

Iz
30F 4
2.0 1 1 1 1 1

01 02 0-4 0 20 40 10-0
i

Fig. 35 Inner wavenumber X vs. outer wavenumber u satisfying

vorticity continuity conditions for a modon. Dots on

A-axis delimit solution interval (From Leith).



The modon so constructed is a localized vorticity dipole with an
amplitude determined by its radius a and its velocity c. The required

form of the second term in Eq. (5.13) imposes the dipole structure on

the first term and on Eq. (5.10).
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Excersises

12. Show how the amplitudes of the inner and outer modon solutions are

determined through the use of recursive relations for the Bessel

functions.

13. Once a modon has been constructed, a so called rider can be added to

it. The stream function of a rider has the following structure

<
I

D Ko (ur) for r > a

bp = E Jo (Ar) + F for r < a

D, E and F are amplitudes to be determined while the wavenumbers

u and X are the same as for the modon.

a. Show that an addition of a rider on top of a modon will not

affect the velocity constraint arrived at for the modon.

b. Determine the coefficients D and E as functions of F through
d
continuity coaditions on Yr and 3;3 at r = a,

c. Sketch the structure of a rider.



6. Rossby and Cravity waves

To model the dynamics of the long waves in the atmosphere we have
st fur derived our results from the barotropic vorticity equation or an
caatvalent barstronic nedel whore we have assumed that the quasi-
geostrophic approximation is valid. In deriving the Barotropic vorticity
equation we assume that the divergence is zero. For midlatitude, large
scale motions this is a very reasonable assumption. The horizontal
divergence is small and the vertical motions are at least an order of
magnitude smaller than the horizontal ones. The small divergence and
vertical wind fields are, however, the essential driving forces which
change the weather pattern from day to day. Therefore a model in which
the divergence is a prognostic rather than a diagnostic variable is a
better model for forecasting the weather than a model which is based on
the barotropic vorticity equation or a model which involves a quasi-
geostrophic balance. Such a model, however, not only permits the
existence of the meteorologically important, slow moving Rossby waves,
but also gravity waves. The latter wave-type is probably not of any
direct importance for large scale numerical weather prediction because
amplitudes are very small, which means that they play an insignificant
role in the energetics of the atmosphere. Nevertheless gravity waves
have an important function in that they adjust imbalances between the
pressure and the velocity fields which then tend to a quasi-geostrophic
state. This process is usually referred to as geostrophic ad justment. In
the following introductory section we will describe Rossby's original
ideas from 1937 and 1938 on this matter. Rossby found the lengthscale
related to the geostrophic adjustment problem by finding an answer to
the question, what is the distance upto which the pressure field (or
mass field or height field) is influenced by an initial perturbation in
the velocity field or vice versa?

Consider a rotating cylinder filled up to a certain height H with a
fluid (see Fig.36). If H is small compared to the radius of the cylinder
(in fact we assume that the radius is infinite) we can use the so-called

shallow water equations to describe the flow of the fluid:



TFr29xv="-Ve (6.1)
de —
E*‘QV.V—O (6-2)

The first equation expresses conservation of momentum and the second
equation expresses conservation of mass or continuity of the upper

surface. V is the horizontal wind vector, @ is the angular velocity of

the cylinder and ¢ is the geopotential.

y

Fig. 36. Geometry of rotating fluid.

Considering the flow of a fluid in a rotating cylinder is analoguous to
considering the fluid flow on the f-plane with f = 2 1Ql. We have thus
neglected the B-effect. We will avoid an explicit treatment of the time
dependent problem by employing a Lagrangian technique. By specifying the
initially perturbed state and applying a geostrophic constraint on the
final, asymptotic state we will be able to deduce the structure of the
height and wind fields. The Lagrangian technique takes the advective
nonlinearity into account, but we avoid the explicit treatment necessary
in an Eulerian formulation.

We define the velocity components as follows:

dx

u = Ez-and v = (6.3)

QK}
t
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Let us initially assume a state of rest where we impose a velocity
perturbation in the x-direction. The mass field will then try to adjust
to the new velocity field such that geostrophic balance is attained.

Initially equation (6.1) becomes

du dé
& -V eEg=0

or (6.4)
d

e (u-fy) =0

which means that (u - fy) is conserved. The final state is assumed to be

in a geostrophic balance, and therefore,

U=_-§E}7 (6‘5)

The Lagrangian technique implies that we consider the flow as a mapping
of the initial position of the fluid particles onto the positions of the
fluid particles in the final state. To simplify the problem we only
consider displacements in the direction of the y—-axis, the flow is
assumed to be homogeneous in the x-direction. We thus define two y-axes,
Yo and y, representing the initial state and the final state
respectively (see fig. 37). All variables with index o refer to the

initial state while unindexed variables refer to the final state.

”
yo—p Y Y Final state
y¢é——+—4¢ { Initial state
° dy, 73

Fig. 37. Displacement of fluid particles.



Conservation of mass implies that

dy =¢ d
<I>o o y

or (6.6)

dy
¢ = o 0

o dy

Combining (6.5) and (6.6) yields

0 (6.7)

From equation (6.4), which expresses the conservation of (u - fy), we

find
u - fy0 =u - fy (6.8)

This expresses vorticity conservation in an integrated form. From (6.7)

and (6.8) it can be deduced that

——z'dz (y = vo) ——~—2-—y— y°=~—2u° (6.9)
dy ° A £
where
2 o H 2
A== = B (m]
£ f

Assume now that we give the fluid a "push" in the x-direction with a
g P

velocity distribution of the form,
* (6.10
uo(yo) =8y, - v,) .10)
We can now solve (6.9) with the boundary conditions that the displace-

ment (y - y,) should vanish as y goes to + «, The homogeneous solution

is, y =y = a' exp(+ y/A). Using the boundary conditions we have
o M

*

- *

y-y,=a expCXerLﬁ for y <y
* . (6.11)

y-y,=a EXP(X_A—X) for y >y



where a and a' are constants. This displacement field has been drawn in
Fig. 38.

a) b)

LAY +an)

- - f —— s ——

r®,(1-9)

y* y"

—>y

Fig. 38. Displacement and geopotential as functions of the space

coordinate in the final state.

The continuity conditions (6.6) can also be written

? =0 (1 —j—y(y- ¥,))

Using (6.11) we find that

*
= @O(l -4% expCZ4%JLﬁ) for y < y*
(6.12)
*_ *
b = @O (1 +-% exp(z—i—z—)) for y >y

This gives us the geopotential of the final state as a function of y

has been drawn in Fig.

. It
38. The discontinuity in ¢ arises because we

assume that the initial velocity perturbation is given by a delta-

function. The parameter A can be interpreted as being the e-folding
distance up to which the geopotential field or pressure field is
influenced by the initial momentum perturbation due to the adjustment
process; A is therefore the lengthscale related to the geostrophic
adjustment problem and is usually called the "Rossby radius of

deformation". For the atmosphere in midlatitudes we have ) ~ 106 Me

In this section we have only considered the structure of a final,



balanced state as a function of the structure of an initial state. We
have not found how this adjustment takes place, although we know from
linear theory that an unbalanced flow will generate gravity waves, How

these gravity waves are formed and how they may be avoided will be the

subject of the next section.

6.2 Initialization techniques

Using a Lagrangian technique, we have determined the height field
corresponding to a certain velocity perturbation in a shallow water
model. We assumed that there exists a geostrophic balance in the
asymptotic state, but we never had to consider the type of motions which
led to the geostrophically balanced state. It is not even certain that
the geostrophically balanced state is the asymptotic one, there may be
instabilities developing which will lead the solution to some other type
of balance or we may have an oscillating solution. (It can in fact be
shown that the asymptotic solution must oscillate, but the time averaged
motion is in a geostrophic balance).

The practical problem which is connected with geostrophic
ad justment theory, is the problem of providing initial data for a
primitive equation model. From atmospheric observations, wind and mass
field data are available. These data are sufficient to define an initial
state, but due to unavoidable measuring errors in the data it appears
that they are not accurate enough. To avoid spurious oscillations in a
primitive equation model, there must exist a balance between the wind
and the mass field and even if the atmosphere is in a balanced state the
accuracy of the data is not sufficient to describe this balance. We must
therefore find a procedure by which the data can be changed so as to
achieve this balance. The data changes must of course be done in such a
way that the meteorological information is not lost.

From linear theory we know that the primitive equations basically
can describe two types of wave motion, Rossby waves and gravity waves.
They also permit sound waves, but these are not relevant in the present
context. The Rossby waves are slowly varying waves, the time scale being
governed by the rate of rotation. The gravity waves have much shorter

time scale essentially determined by the mass of a vertical column and



the vertical stability of the system.
The large-scale, atmospheric flow is dominated by Rossby waves while the
gravity waves from an energetical point of view play an insignificant
role. It would therefore seem logical to filter the data in such a way
that only Rossby wave type of motions are retained. The simplest filter
of this type is a geostrophic balance. Given a certain mass field we can
determine the geostrophic wind field or vice versa. Insertion of a geo-
strophically balanced state in a primitive equation model will, however,
not result in a time evolution which is free from spurious oscillations.
Gravity waves will be generated and they may reach such an amplitude
that they dominate the solution.
Another drawback of a geostrophic initialization is that it does not
make optimal use of the observations. Since either the mass or the
windfield is redundant.

A slizhtly more sophisticated version of the geostrophic balance is
the so-called nonlinear balance equation. It essentially describes a
balance between pressure gradient, Coriolis and local centrifugal
forces. Given a certain mass field it is possible to solve for a wind
field except for those regions in which a gradient wind balance cannot
be found. The existence of such regions is due to the nonlinearity
inherent ia the centrifugal forces. These regions tend to be found in
subtropical areas, particularly in regeions where the curvature and/or
shear of the jetstream is anticyclonic. Insertion of gradient wind
balanced data into a primitive equation model gives better results than
purely geostrophically balanced data, but it is still not satisfactory.
In this chapter we will outline a third method, which has proven to he
very useful in practice. It is the so called nonlinear normal mode
initialization method, first proposed by Machenhauer (1977). The basic
idea of the method is to first separate the data into contributions from
Rossby wave type of motions and gravity wave type of motions. This :s
done by projection onto modes which are found by solving for the eigen-
values and eigenvectors of a linearized primitive equation model.
Secondly, the amplitudes of the gravity wave part of the data are
ad justed so that the time evolution of the gravity models is "smooth".
This may be done by ensuring that the first order time derivative of the
gravity modes is zero initially.

We will describe this method by considering a particularly simple model,
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a rotating shallow water system (following Tribbia, 1981). The model is
nonlinear, but caution has to be taken in interpreting the effect of the
nonlinearity. The dcminating nonlinearity of the model is the
centrifugal force and this is not a dominating effect in the dynamics of
the atmosphere. The nonlinear properties found in this example may,
however, be used as an instructive prototype to understand the nonlinear
properties of the normal mode initialization technique.

It will be shown how the slow Rossby modes (in this case stationary) and
the fast gravity modes can be separated and how the Machenhauer initia-
lization method may be applied to the model.

We start by writing the model equations in cylindrical coordinates

(r,6), and define the velocity components as follows

U= oae, v =7 (6.13)

We assume all variables to be independent of 6. The shallow water

equations now become

du _

E— fv (6.1461)
dv 9¢ u2

do _ _ (e + ) 3

dt r ar (rv) (6.14c)

The nonlinear centrifugal force appears as the last term on the r.h.s.
of Eq. (6.14b). The local steady states (u,v,9) of system (6.14) are

found by putting the total time derivatives equal to zero. Therefore
v=0 (6.15a)
3¢ — . u
—= = fy + — (6-15b)
r r
Equation (6.15b) is actually the gradient wind equation, (see Holton,

1979, p. 63). 1t is clear from this equation that given-%?, there are

two balanced states possible. We will now investigate the stability of

these steady states to perturbations Su in the u-field. Therefore we set
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u=u+ du
(6.16)
¢ =0
Combining equations (6.l14a) and (6.14b) we obtain
2 2
du_ _ -9 v
L CEE TS (6.17)
dt
Subsituting (6.16) into (6.17) we have
2 —2 — —
LS g S S L S T P
r ar r
dt
Using equation (6.15b) for the steady state we get
d%s 2u
g = - 8u £ (f +';E) (6.18)
dt

We see from this equation that the stability of a locally balanced state
to perturbations Su is determined by the sign of (f + %2).

Therefore the balanced state is stable when

o> Efr (6.19)
CX0)
‘\ 4 ar
\
\
\
\\
Unstable \\ Stable
\\ i
\ 1'2 » U
\
\
-~

Fig. 39. Balance between wind and geopotential field for a

local steady-state.
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In Fig. 39 g%-is drawn as a function of u as given by equation (6.15b).
From condition (6.19) we find that one balanced state (left part of the
curve in Fig. 39 is unstable. It gives "supergeostrophic" winds.
Therefore we conclude that, given observed height data, there is only
one corresponding stable balanced wind field possible.

To determine the eigenmodes an the eigenvalues we will expand the space
dependent parts of the governing equations for the fluid in a rotating
cylinder in orthogonal functions. Before doing this we nondimensionalize
the equations with characteristic length, time, velocity and height

scales defined respectively as,

r' = r/a (a = radius of the cylinder). (6.20a)
t' = tf (6.20b)
(u',v') = (u,v)/U (6.20c)
¢ = (6.20d)

The inertial velocity scale U is the same for the u- and v-component. In
fact we have two velocity scales, namely U and a velocity scale imposed

by the geometry. The ratio of these two velocity scales is defined as

the Rossby number,

R, = [f]—a (6.21)

The Rossby number expresses the relative importance of the nonlinear
terms. If it is small, the advective nonlinearities are also small. The
imposed velocity scale fa is then dominant.

Substituting the new variables (6.20) in the governing equations and

dropping the primes we obtain the following system.

g%-+ v = - RO (v %%—+ %X) (6.22)
2

v _ R I ORI (6.23)

at or o} or r

d 13 13

ﬁu Frar (TV) = = R = (tve) (6.24)
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where the Froude number F is defined as

2
F = _gH _ A (6.25)
2 2 2
f a a

Note that the Rossby number appears in front of all nonlinear advection
terms and that the Froude number appears in front of the divergence term
in equation (6.24). If F is small (a2 > Az) the geostrophic adjustment
can freely take place inside the container. If F is of ther order 1 or
larger the adjustment is forced to take place inside the container, and
the laterel boundaries of the container will influence the ad justment
process. Due to the cylindrical geometry, the most appropriate

orthogonal functions to expand the space dependent parts in are Bessel

functions. Therefore we set

5= 1 G a0, o (6.262)
¢ = nzl 4 Jo O 1) (6.26b)

The Bessel functions Jos and J| are drawn as functions of r in fig. 40.

Jo(k,r)

Fig. 40. Structure of the eigenmodes for the height (J,) and the
wind (Jy) fields.
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The J; function is chosen for the wind field as this satisfies the
boundary conditions for v at r = 0 and r = a. For the height field we
then must choose J, as can be seen through the fact that the height and
wind fields are related via a horizontal deviative (eq. 6.23 and 6.24).
Tha parameter Xn can be seen as a wave number determining the number of
maxima and minima.

Subsituting (6.26a), (6.26b) into (6.22), (6.23) and (6.24) and
restricitng our attention to only the gravest mode A, (see fig. 40) we

obtain the following nonlinear system:

4, + v, =< RO(I1 + I2) u vy . (6.27)
Yo-u = A ¢ - R (L.vE - Iy (6.28)
T T N N y
A (6.29)

The interaction integrals are defined as

I, = 2 A r J2J! dr (6.30a)
L [Ji(xlnzf ool

I, = 2 J3 d (6.30Db)
2 [Ji(xl)IZI toar

= 2 '
I3 = 57—~ ]

o0 Jo &5 (r 3 3 dr (6.30c)

We will now look at the steady state of the above system where-;1 =0
(overbars denote steady-state values). All other steady states are

unstable (see exercise). We then have
u +R I uw+ A P =0 (6.31)

This function is drawn in fig. 41. The dynamics of this system is the

same as for the nontruncated system (compare fig. 39 with fig. 41).
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a4R LD,

-

»2R . I_U

Fig. 41. Steady-states of the truncated system.

There are two possible values of'ﬁ'1 for each'$1. We again investigate
the stability of this steady state to perturbations Gul, le and 6¢1
by substituting

=u + = d = 4 + .
u o= w Gul \A (Sv1 an ¢1 ¢l 6¢1 (6.32)

into equations (6.27), (6.28) and (6.29)

Gul = - [RO(I1 + Iz)u1 + 1]6vl

8%, = (2R I, U} + L)Su, + A, 64 (6.33)
= - (R .+

8%, (R, Iy ¢ + A F)év)

The eigenvalue (w) for this system is,

2 - —
+ A (R I + A F) + (R (I _+ 1)U + 1).
wiw (R I8 BRI+ 1)UL )
(6.34)

(2R I_TU +1}=0
o 1

2
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One of the eigenvalues (wR) is equal to zero. We identify this solution
with the slowly moving Rossby mode. In fact in this case the Rossby mode
is stationary. The other two eigenvalues (& ué) correspond to the

gravity mode frequencies. They are given by

w =1 (1 + AZ

3
. L F+ R (eeeed)) (6.35)

For small values of R, which is mostly the case in the atmosphere, we

may neglect the last term under the square root sign. The fact that g
is imaginary shows that we are dealing with oscillating solutions. The

eigenvectors corresponding to these eigenvalues can also be found. We

will do this for the state of rest i.e. when Gi =0 and?1 = 0.
System (6.33) in matrix form then becomes
1.11 0 -1 0 ul
s |vi| = |1 0 alos vy (6.36)
¢1 0 “>\1F 0 cbl
The eigenvectors are:
1
For w=w =0 : e =]0
R ~R
_)\—1
1
-1 (6.37)
w
g
For w = + Wy e =t 1_1
w " AF
g 1

The eigenvectors corresponding to the gravity modes just oppose each
other and are therefore linearly dependent. This is due to the fact that
the matrix in eq. (6.36) is singular in that the top and bottom rows are
linearly dependent, Physically, this may be interpreted as a constraint

on the system; the uj and ¢; time evolutions are directly coupled and

although we have three dependent variables the model essentially only
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has two degrees of freedom. If we had include a 3-effect in the model,
the gravity wave frequencies and eigenvectors would have differed and
the Rossby mode would not be stationary. We will return to this case
later, but first we want to use the f-plane model to illustrate some
basic concepts in nonlinear normal mode initialization.

In a steady state we have a coupling between G& and El given by eq.
(6.31) while Vi = 0. If we upset this steady-state balance, the system
will generally respond with gravity mode oscillations and the frequency
is given by (6.35). If, however, we perturb the system in such a way
that (6.31) is satisfied and v] = 0 we will not create any gravity wave
motions and the system will just smoothly adjust to a new steady-state
balance. When the large scale wind and pressure fields charge in the
atmosphere, it is this type of ad justment which takes place. The gravity
mode oscillations are insignificant compared to the changes in the
Rossby wodes. In this simple model we identify the slowly evolving
solution with a gradient wind balance, in the norlinear primitive
equations governing the atmosphere it is impossible to find such a
relation, but we may conceptually think of it as a "slow manifold"
(Leith, 1981). The slow manifold is thus a subspace of the space spanned
by the complete statevector of an atmospheric model. A realistic
solution of the model will always keep close to this slow manifold and
the initialization problem may be thought of as a way of adjusting the
data to ensure that the initial state is on the slow manifold. To find
the slow manifold we first have to determine the Rossby and gravity mode
eigenvectors for the model linearized around a given state, usually the
state of rest. Assuming that the data describes a state which is only a
small pertubation from the state of rest, we wish the initial time
evolution of the model state vector to be in the direction of the Rossby
mode. If the nonlinear effects are small, this can be accomplished by
projecting the data onto the respective eigenmodes and subtract that
part of the data which projects onto the gravity-modes. This should only
cause a slight change in the data. In practice it turns out that this is
not a satisfactory method, the nonlinearities are large enough to create
spurious gravity mode oscillations which is due to the fact that the
eigenmodes are determined for a state of rest, which is too far away
from the actual state. It is, however, impossible to linearize around

the actually observed state as this is the one we wish to determine.
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To illustrate the nonlinear features, let us return to the f-plane
model. On the slow manifold we have a relation between ¢1 and ups and
from (6.37) we have the eigenmodes for a state of rest. Due to the
linear dependence of the gravity modes, we can define one gravity mode
amplitude, G, and one Rossby mode amplitude, R. Any combination of

¢1 and u, may now be written in terms of these eigenmodes as

1l _
{:1 = R'ER + G.gG (6.38)

'

This defines a nonsingular linear transformation which may be inverted

to give
Xl
Ty T
1 (6.39)
wg
G = 5 (u1 + Al ¢1)
1+ Al F

Using this transformation we can determine the relation between R
and G for any state which is in a gradient wind balance (note that we
have disregarded the condition vy = 0 in the gradient wind balanced
state; this we are forced to do because of the singularity in the
eigenmode representation).

The steady state gradient wind balance curve in the R-G plane has been
drawn in fig. 42, and this is the "slow manifold" of an model. The
problem of initialization is now how to change the data so as to
rinimize the spurious gravity mode oscillations and find a solution
which evolves smoothly in time on the slow manifold.

A slowly evolving solution may still contain gravity mode contributions,
as the separation into the eigenmodes is only valid close to a state of

rest. Given a data point (see fig. 7) we can now proceed in two

different ways:

1. Linear mode initialization.

here we project the data on the Rossby mode. Therefore G = 0, but this
is not on the gradient wind balance curve. Gravity waves can develop

during the integration and the solution will display large amplitude

oscillations.
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»

Nonlinear normal mode

X e ege . .
“Slow manifold” S TA initialization
» R

Linear normal mode
inttialization

Fig. 42, Gradient wind balance curve in the R-G plane ("slow manifold")
and a sketch to demonstrate different initialization methods

(see text).

2. Nonlinear normal mode initialization (Machenhauer, 1977).

Here we keep the Rossby mode constant and choose the gravity modes in

such a way that ¢ = 0. (see fig. 41).
From eqs. (6.39) and (6.27-6.29) we find

. R
G =-(w + o (I, ¢, + (I, + I )u.))v (6.40)
g 1 + X% F 371 1 2771 1
Setting é = 0 in this model thus implies v, = 0 or a linear relation

1
between u an ¢1. The first condition implies a gradient wind balance,

but as we are considering relations between u;, and ¢1 (disregarding v1)
only the second condition is relevant. Through the transformation (6.39)
we can rewrite the linear relation between uj and ¢; in terms of R and
G. This is a straight line in the R-G diagram of fig. 7 and for the data
point shown in fig. 42 we find the initialized state close to, but not

exactly on, the slow manifold. This is a general property of the Machen-
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hauer initialization scheme, but it gives an initial state which is
sufficiently balanced to give a smoothly evolving solution in a
primitive equation model of the atmosphere.

Leith (1982) showed that in a more general model this method, to first
order, leads to a quasi-geostrophic balance.

By the Machenhauer initialization method we can thus find an
initial state which is almost balanced, and only some small spurious
gravity wave oscillation will occur. If we include a dissipation term in
the model the gravity wave oscillations will damp out after some time.
With a more rigourous analysis it is possible to show that the gravity
mode oscillations can be eliminated to any desired degree of accuracy
(Baer and Tribbia, 1977). Through expanding the solutions in terms of a
small parameter, the Rossby number, and furthermore by defining a slow
and a fast time scale, Baer and Tribbia (1977) demonstrate how the fast
time scale variations can be eliminated to an accuracy given by the
order of the terms included in the series expansion. In practice, it has
however, been found that the Machenhauer method is sufficient to balance
the data in midlatitudes. The Machenhauer method is equivalent to an
expansion of the Baer and Tribbia type, but truncated at the first

order.

Rossby and gravity modes on a B-plane .

On the B-plane, the arithmetic becomes much more complicated and it
becomes difficult to illustrate the slow manifold concept in a simple
way. In principle the same conclusions may be reached concerning the
nonlinear effect but another interesting problem is to see how well the
Rossby mode type of solutions describe quasi-geostrophic motion. This
problem is covered in detail in the ECMWF Lecture Note no. 1 by A. Wiin-
Nielsen (1979)., The final part of this lecture series addresses this
question and as the lectures closely follow the Lecture Note by Wiin-

Nielsen the interested reader is referred to that publication.
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Excercises

14) Determine the steady-states where V1 # 0 for the low order equation

system derived from the shallow water equations

-V, -R I +1 S
1 o ( 1 2) 11

2
1

<
1

U, + X, - R (1I.V
o 1

2
1 1 1 IZU1)

©
]

- AF V. -R I ¢ V
A 1 o 3 1 1

Wat is the stability of this (these) steady-state(s)?
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Appendix A

Conservation of energy and enstrophy in truncated spectral models of the

barotropic vorticity equation.

by Win Verkley

We work in the complex Hilbert space of quadratically integrable

functions ¢ on [D,2n] x [-1,1] into the complex numbers, satisfying the

following periodicity conditions:

Y and all its derivatives are the same at the points (O, u) and

(2m,u) for every u in [-1,1]. Additionally %¥-= 0 on the boundaries
at p=1and p = -1,

In H we define the Hermitian product
2m

1
i—nf ¥odS =i—ﬂ_{ Of YOLW (A, w)dAdy (A.1)

<, >

The overbar denotes complex conjugation.

The barotropic vorticity equation can be written as

Vzw = f(y) where (A.2)
B9 = -3, 70y - 2 2 (.3

The partial derivative with respect to time is denoted by a dot. The

2
expression for the Laplacian V~ reads

-1 .2 2

V- anh) 2na=+ (1= h) 2 (A.4)
A du

and the Jacobian operator is defined by

J(y,9) = 3% 3¢ _ 3y 3¢

A.5
dA dp du oA ( )

Because of J the operator f is nonlinear.
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A particular reduced system can be constructed by decomposing H into two

mutually orthogonal subspaces M and Ml i.e., by writing
_ 1
H=Me®M (A.6)
This implies that every § in H can be written in a unique way as
v=x+n (A7)
where
.. S -
X 1s in M, n is in M~ and < yx,n > = 0.

The projection operator that projects into M will be denoted by P. This

means that, when ¢ is written as in (A.7), we have
Py = (A.8)

From the definition of P we conclude that Py = y as x is in M,

Furthermore, it can be seen that P is self adjeint, i.e.,

<Py, > = < 9,Pp > (A.9)

for y and ¢ in H.

Using partial integration and making use of the periodicity conditions

one can show that for every ¢ and ¢ in H we have

< Vzw,¢ > =< w,vqu > (A.10)

I 0),0 > = = <I(P,0),0 > (A.11)
) _ 3%

x> 0> = =<, 55> (A.12)

2
Equation (A.10) says that ¥~ is also a self adjoint operator. We now
assume that M is chosen in such a way that the projection operator P

. 2
commutes with v, i.e.,
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VP = PV (A.13)

which is equivalent to the assumption that V2 leaves the spaces M and MJ'

invariant.

Furthermore, we will assume that our functions are real. For real

functions ¢ and ¢ in H we have
<oy > =< 9,9 > (A.14)
< I, 0),0 > =0 (A.15)

From equation (A.12) and (A.15) we deduce that for every real function

Y in H we have
<, f(y) > =0 (A.16)
<V (W) > = 0 (A.17)

The truncated form of the barotropic vorticity equation reads

sz = Pf(y) (A.18)

where x is an element of M. The energy and enstrophy associated with

this system are (EM and ZM > 0).
L 2
EM -3 < GVy> (A.19)

Zy = < Ty, Tx > (A.20)

and for the time derivative of Ey and Zy we have

jea}
i

W= 0T (A.21)

N
]

y =2 < TP (A.22)

We can now easily see why the energy and enstrophy are conserved in our

truncated system. Indeed,
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By == <0TX0> = = COPEG) > = = () > =
(A.23)
== <, f(x) > = 0.
and
Z, = 2 <V > = 2 < Vo PE(y > =
2 2 ,
= 2 <PV, f(x) > =2 < VPy,f(x)> = (A.24)

= 2 < V2, E(x) > = 0.



136

Appendix B

Legendre polynomials

There are many different approaches to the derivation of Legendre

polynomials. We shall here introduce them by solving an eigenvalue

problem of the form:

vy = ky (B.1)

on a spherical gecmetry. The Laplacian in spherical coordinates is given
by
1 ] 3 1 82

7 (cos ¢ o) + 5 2]

2 1 d 23
Sy a5+
r2 ar ar cos ¢ 3¢ 9 cos® ¢ an

V- = (B.2)
We solve the problem in two dimensions on a sphere with unit radius.

Consequently the first term on the r.h.s. of eq. (B.2) disappears. In

order to separate the variables we assume a particular solution of the

form
y = G($IH(N)

and obtain

£ d_ (cos ¢ gg) + —&___df_ k GH=0
cos ¢ d¢ do cos ¢ dA

Multiplying by cos2 ¢ and dividing by GH we find

2
dH

dG 2
22%_2_%$ (cos ¢ E&O + %-——E-— k cos™ ¢ =0
da

We have one part of the equation depending on ¢ and one part depending

on A. Therefore the equation may be split up into

d2

dx

Eg§~$-%$ (cos ¢ %%) -k cos2 ¢ = 22 (B4)

o
th
I
i
=

N

(B3)
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where £ is a separation variable. Eq. (B.3) is easily solved

2

-g—% + RZH =0 <« H=A eilxz
da

As H()X) must satisfy the condition H(o) = H(27), £ must be an integer.

Equation (B.4) can be written

2 2 .
cos ¢ dG 4+ 8in ¢ cos ¢ dG c032 6 = 22
G d¢2 G d¢

We introduce p = sin ¢ in the equation and obtain

2 2
(1-u2yds_, T 46 - k - % 16 = 0
2 du 2
du 1-u
or with the eigenvalue k chosen as k = -n(n + 1)
2 2
a-vHd8 58+ -—~ -0 (B.5)
2 duy 2
du 1 -

This is the so called associated Legendre equation. With £ = O the

equation reduces to

2
2, 4G dG
(1 - o — - 2 u-aa + n(n + 1)G = (B.6)

du
This is the Legendre equation. We shall solve this equation first and
later we shall derive a relation between the solution of this equation
and the solutions of the associated Legendre equation. We assume a

solution Pn(u) in the form of a power series

< k

G ="Pr, () = aj M

n kzo k

with

dG ® k-1
q T L kA
4% _ ¥ e a, 172
du =2

Inserting this into equation (B.6) we obtain

kzzk(k—l)aku —k_zzk(k—l)aku - Z ap 1< + n(n+l) _2 =
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or rewritten
e -2
L L) (e Day WP - ke Day w® - 2k a1+ ngerDa W9 = 0
Equating equal powers of k we have
+ + - -1 - 2k + +1 = 0.
(k+2) (k l)ak+2 k(k )ak a, n(n )ak 0

and we can obtain a recursive relation for the ak's

_ k(k+1) -n(n+l1)
+2 T T (k) (kD) 2k

Now you can see why we have chosen n(n+l) as the eigenvalue because the

coefficients ap will be zero for k = n+2 and thus also for k = nt4, etc.
The series is completely determined when we have chosen a, = 0 and a; =

1 (if n is odd) or ap = 1 and a; = 0 (if n is even) and the series will

be polynomials with a finite number of terms.

By using the recursive relation inductively we can write the solution of

the Legendre equation as

- _ 0 (-1)I(2n-21)! -2
G(u) = Py(w) jlo T2 (a-y1 "

Another form for the coefficients may be obtained by developing the

derivative
" .2 .n_d" 3 n! 2n-2j
P S S Ty e Yl
du dp j=o

n
W13

| n! (2n-29)! n-2j
o (-1 J!(n—Ji!(n—%];! Wi

We see then that Pn(u) can be written as

J

n
1 d 2 n
- 7 (u™-1)

P (u) =
n 2 n! dp

If we take the longitudinal dependence of the equations into account we
have to take % # 0,
We shall now show, that a particular solution of this equation is the

polynomial
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L
Z ah
PR() = (1-u?) —fm Pa(i) (B.7)

We introduce the variable transformation
7
y = (1md 2 (B.8)

and arrive at the equation

Z _ 9(+1) %%+ [n(nt+l) - 2(8+1)]z = 0 (B.9)
du

The Legendre equation is

a%p_ d P
(1-u ) —-2—— 2u T+ n(n+1)P

1]
(@]

differentiating this equation £ times with respect to H, we obtain

2. g2 d'p q dbe. atp_
(1-y%) —r (—) - 2(%+1) Tu () + [n(n+l1)-2(2+1)] — L =
du du du dp (B.10)

Comparing (B.9) and (B.10) we see

From (B.8) it follows that

2
7 d'p
Pr(w) = (1-uD) —2
du
or
7
2 2+n
g _ (1-u%)" d
P, = ,8 ) —~I¢— (u —1)n

We will now prove the orthogonality of the associated Legendre
p%lynomlals. If the zonal wavenumbers (%) differ, the functions Yz1 and
Y ; will be orthogonal due to the longitudinally dependent part. We thus
only have to consider the case of associated Legendre polynomials of
equal &'s but different orders n.

Let the Legendre polynomials Y% and Y& be solutions of the associated
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Legendre equations

d v*

G 1w =g + In(e1) - 2D 1YE = 0
y&

& 100D 48+ et - a1k = o

Multiplying the first equation by Y&, the second by Yi and taking the

difference, we obtain

d 20,2 dY8  gdxf )
Al A=uD O =g = ¥y~ = [n(n+1)-k(k+1) 1y Yy (B.11)

Integration of this relation between -1 and +1 yields
n

+1 L .8
[n(nt+1)-k(k+1) ] Il Y, Yy dp = 0,

since the integral on the left hand side of (B.11) vanishes for yu = + 1.

If n # k the integral thus has to be zero and orthogonality is proven.

The normalisation factor N for the associated Legendre polynomials can

be found by solving

+1 9 _
| teRn1? au = w72

Defining l—uz = X the integral can be written

£ +1 2+n 2+%
(-1) £ d nd k
X X X d
2n¥En! I _{ du2+n dul+k H

We integrate (k+2) times by partial integration to obtain

+1 1y R v kFL 1 kR nt+g
[ PRCWPEG)d = %L— [ ‘:ﬁaqz(xl 3 w7 XOX dy
- H H

n! k! -

The integral on the r.h.s. is now expanded by Leibnitz' formula to give

k+4 n+f k+42 k+2-1 n+2+i
k d (ol d n k k+2)! d 2d n
X X X = X *Tép——%*jT“ -7 X = X
duk+f\ dun+£’ J .2 1 (Ck+2-1)1 duk+2, i dun+2,-+1

1=0

Since the sum Xl contains no power of | greater than u22 we must have
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k+a-1i < 28

or the derivative will vanish.
Similarly nt+f+i < 2n.
In the solution of these equation for the index i, the conditions for a

non zero result are

i> k-2 , i < n-g

We obtain

+1 k+228 +1 22 2k
_ - (k+2)! k(d 2y (d 2
(P12 ay = (=1) > p X X*)d
—{ k 27Kk (20) 1 (k=) ! - (dUZI )(dUZE Jdu
Since
2 2 % 22 24-2
X" = (p=1)" =q - Ly + teee
28
'Q‘EE % = (22)1
du
the equation reduces to
k+22 +1
_ 1) (2k) ! (k+2)! k
e 2ap = & X< 4
{ k 27Kk (k=) 1 -{ "

with

{ X< du (DT

the equation above becomes

+1
+2)!
[ PR ?au = o G
The normalized associated Legendre polynomials are

5

(1'1 2) ]2 (1_112)-2- dﬂ+2, ( 2—1)11
(nFL)7 2% o n+g M

PE () = [(2nt1)

and
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o, 2
bl RN an =1
-1

From the normalized associated Legendre polynomials we find
Pha = 12 PRy
n n

L
The factor (-1)" disturbs symmetry and therefore we restrict the above

formula to £ > 0 and define

in
g

Pr) = 7 A
n

The normalization of the longitudinally dependent solution of the eigen~

value problem is given by
m T s
7" Gt yan - Z et oT1RA 4y - og
0

with H = e12A°

The total solution of the eigenvalue problem is

L igx i
YY =P _(we = PY(u)e

with y = n+if and we have %ﬁ- f YY YV ds =1

Some examples of the associated Legendre functions are given below (they

are unnormalized)

)
PLG = (1-4%)
%
Py(1) = 3u(1-p?)
2 2
Py(w) = 3(1-u")

1
2

P = 3(55°-1) (1-u%)
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PS() = 15u(1-y?)

3/2
P3(w) = 15(1-1%)
etc.

They have been plotted in figure 43.

In fig. 44 we also show the two dimensional structure of the spherical

harmonic function
YL O, = exp(itn)PH(p)
¢\ AsH) = exp(l oM

for n =5 and 0 < & ¢ 5.

Fig. 43. Normalized associated Legendre functions of lst kind.
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L=1 [ SSTTve
||

L
LT ]
Josssannn
-

”"' joie-

Fig. 44. Example of different cell configurations all having the same
two~dimensional index, in this case n = 5. The cells are
defined by their nodal lines and are presented on a Mollweide

type projection (From Baer, 1972).
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Solutions to exercises

du,

. Ju E R .
1. Defining S = % and SE = 3% the slope equation is
ds 2
& - "5 TS+ E

Note that this slope equation may only be applied at a point where

both u = 0 and ug = 0.

With the transformation v =6 + 4 and r = Sg + 1 it reduces to

dv 2
E-’-V -r=20

which is the required Riccati equation.

The stationary solutions are v = + Vr or

For the time evolution we distinguish between two cases:

Dr>0
/rt -Vr:
—_ _ 1 e - C e
S=-32+/r oVTE | o o Vrt
2) r< o0

S=-4+1i/r eif::::: — e:if:r%
e + C e
1

For S(0) = - } the integration constant C = 1.

We thus have for case

=

1) S (t) = - % 4+ /r tanh(t)

and 2) S (t) -4+ - V/r tan (t)

In case 1) the solution asymptotically approaches - { + yr as

. . i
t + © while in case 2) S » - © ag t + E—g
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Assuming
N
u = z u  sin kx
k=1
we have
g ) kx ) K
u = v, sin kx Luy cos kx
X k&1 k P 2

Projecting on a component n this may be written

N ¢ I sinn E(sin(k+0)E + sin(k-2)€)de
u U, &
L k "2 2 2
k,2=1 Z sin” ng de
The integral only gives contributions if n = k + L orn = [k—E .

We thus find (see fig. 4)

n-1 N-n N

$ ) 2u u + 3] -+ )] v u =
=1 2 n—-% 9=1 £ n+i g=n+1 £ 2-n
0 n—-1 N-n

= E—(% lzl uy un—l - 221 uy un+2)

Assume energy is conserved up to wavenmber M (< N),

For wavenumber M + 1 we have

d E dE M M

MM y k _ M+l ) -
de mde T L M-k UM Yk 2 T WL UkUMUMEL-k T

= 2 2L UMt1-k M Yk 24 Yk "M YMr1-k’ = O

As we know that energy is conserved for a two component system, it
follows by the induction principle that energy is conserved for all

truncations.
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4. From y = 0 we have

= - 1 2
y—yE 7 X

Insertion into x = O gives

x3 - 2(y, - 2)x - 4x_, = 0.
E E

Rewriting this as

x, = +(x

- 2y, = 2%

We can plot it in (x, X yE) - space, see figure.

5. i a) w ¢ K no dispersion

_r2
b) w cOK - iK2 dissipative waves ~ exp[iK(x—cot)]e K=, damping

c) w= c K - K3 dispersive waves ~ exp[iK(x - (com K2)t)]:

spreading

ii a) R(x) = c_ §(x)

o

b) K(x)=c06(x)+6'(x) where f <S'(X—€)ngd£P5I

- 00

8 ng—_o{ G(X-E)nggdi

T Nex
c) K(x) = co 8(x) + 8"(x)

6. 1 44

dx
dt

0  ¢(0) Iﬁ;g (D)

=0 x(o) (2)

]
['ad

From (1) ¢(t) = (o) =1—i€7=f(£)
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From (2) x(t) = x(o0) + 1 - e_t =g+ 1 - e-t, or inverting

€=X—1+e—tc

Substition in ¢ = £(g) = TLEZ yields
+

1

0 = (x - 1 + e 5)?

11 ¢(x,t) = @(t—l/3x3)exp[—x(t—%x3)] analogous to i).

ii1 98 = - a9 ¢(0) = F(x) = F(¢) (1)
dx _ =
qE = ¢ x(0) = ¢ (2)
From (1) ¢(t) = ¢(o)e™ ot = F(g)e~at

From (2) x(t) = x(o) + [ ¢ dt = £ - L F(g) (e7at -1)

For given profiles F(£) we may find £ = £(x,t) and insert in

6 = F(&)e &

Breaking occurs for slopes ¢X + = (see figure)

x—>

Fig. 45. Onset df breaking.
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b, = e % Fr(D)E,

X

Ex may be found

from x = & —~% F(E) . [e”®F - 1], differentiating

to x yields 1 = gx[l —-% F'(g)(e—O‘t - D]

So ¢, = + o if denominator » @
X F (&) , -at bx .
. =4 o d (e - 1) 1
or if e -1 == sot =—1ln(—)
F Q o
1 +-Fr

For F' > 0, 1 +-%7 > 1 so ln(*~l—g-) < 0.
l+?,-

Therefore there will be no breaking solution for a positive
instant. If F' < O there will also not occur breaking when

1 +-%r < 0 since then the breaking time will be complex.

So no breaking if 1 —-r:%ry < 0, or (-F') < at This means that

breaking will occur if initially at some place
-F' > a

i.e if the slope is strong enough.

7. The equation of order

1 3

. - \ 111
ot (- w+ cOK)z;l + vy K 4 -0 @D)
2 3 3
a s (- w+ coK)Cé + vy K ga" = -3¢, K 2 gi (2)
3 3 3
@ (- wt KLy H Y K gl = - se K(g g (3

From (1) we have g; = Ay cos 6 with w=cK - YK3(E wo(K)) .
The right hand side (RHS) of (2) ~ sin 26 is suggesting
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CZ = A2 cos 26.

in the RHS of (3)

c
This yields A, = %-;—iz A%. Inserting g and Z,

gives
- %—coK AjyAy(cos 36 + cos 9)'

The sin 36 term is balanced by a cos 38 solution, but
the sin 6-term is not balanced by a cos 8 solution, at least not

when we assume w = wo, since this is a fundamental solution of the

first equation. Therefore we have to expand

w=u (K) + w (K)
o) 2

Now assuming C3 A3 cos 36 + cos 0 we obtain:

3 .
A3[3(w0 - cOK) + 27 YK+ 3w2]31n 36 +
+ K + K3] in 6 + in 6 —-2 K A, (3 sin 36 + si
[ Wy <, Y sin wysin 8 =4 ¢ A2 1( sin 36 sin 8)
With the definition of wo we see that the first coefficient in front

of sin 8 on the LHS vanishes. Therefore the RHS is balanced if we

choose

The amplitude for A3 then follows to be

1
A, = ;
3 248 K
L+ - 3 2
3 A7 ¢
1 "o

By partial integration we find

1 1
K = P (LPP' - 4P P )yu-= - P'" 2(PP)' -
Y,B,a _{ Y( BB a o a 8) ¥ f a 8( Y B)

1
- L )P P P' dp = P(-2PP - 4PP)u=K —
(fy = 2P B PG du _{ A -
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We also have

1
K = P(2 - 2)P P —P (PP )dyp-=
YsB,a _{ g Y a Y a B a Y @ H
1
= P P' - (-2 )P P')du = K —
_{ PB(KY Y ( a) o Y) H ByYsa

9. From the definition of the streamfunction (taking nondimensionali-

zation into account) we have
Y .
u=-a cos ¢-§E where u = sin ¢

For stationarity we have from eq. (4.45)

4 1
51 T B D=2 - 73 4.5

We also know that g, = -3 ¥ and P1 = V3.

We thus find u = 24.3 ms_l.

10. The transformation gives

2= -2 AT —
dt Y0y B Y

de = TRwg v =2y I o

A + Az I +ozx 1
de ~ U X T A% fg ey T L gy

Linearized around the steady state z = x = y = 0 we have

0 0 - 28Ty 5 g z
0 0 - I

A IB,G,Y Qws 0

N

o
»
I

<

The eigenvalue equation is (eigenvalue A)
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2, 22 2 ~
MOTH ug + 28T L 2T ) = 0,

For one eigenvalue to have a positive real part we must thus have

2 2 2
+ 2 — .
Pug+ A L S e Tga,y <O

We also know that

(¢ =-c)
I — = - o B 1
YsayB (cY - ca) B,a

a. The instability condition may thus be written

Qlwsl c, - ¢
A> Y ___¢a
FB:aaYl Z(Ca C87

b. The addition of dissipative terms on the right hand sides of the

governing equations implies an eigenvalue transformation

A > A + e. The instability condition is thus

-
(¢ -¢c))
2
—a+/2A“—a—-B—IZ 2> 0 =
(c. - c) "Bya,y B
Y o
// (¢ - c, -t
2 2 2
A | [ 2(c e, (e wg)
Bya,Y
11. The transformed system is given by eq. (4.108).
a. The eigenvalue equation is
3 2 _
AT+ a, AT+ alA + aO =0
where (overbar denotes steady-state)
a2 =3 ¢
2 3 2 2
a, = 362 + (B - aqu) + U (e + B - aB E)

el
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x  —
a = 6(83 + (B - dﬁ)z +-2—f}Ji (e
u

2 2

+ 82 - a .;2)

b. The condition for a Hopf-bifurcation is that the real part of an
eigenvalue, with a nonzero imaginary part, changes sign. We thus
want to find purely imaginary eigenvalues A = %(ish From the

theory of cubic equations we know that

+ + = -
kl Xz A3 a2

Assuming AZ 3= % (is) we thus must have Xl = - a,. Dividing this
b
root out of the cubic eigenvalue equation we obtain

2 -
(x + az)(x + al) + a aa, = 0]

The condition must thus be that

a - a.a
1

=0 and a, > 0,
o 1

2

We then have Al = - a

2, A2’3='l:i\/a1.

Using the expressions for the coefficients a5, a] and ap it may

*
be shown that this condition cannot be fulfilled when u > u. The

latter relation follows from the steady-state equation (4.113).

12. Both the ordinary Bessel functions Jp(x) and the modified Bessel
functions of the second kind Kp(x) satisfy the recursive relation

P
Zp(x) =3 Zp(x) - Zp+1(x)

A simple application of this relation will lead to eq. (5.18).

13. We separate the total solution into a rider (R) and modon (M)

part,

R TR
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a. For the outer region (r > a) we must have the same condition as

b.

for the modon, because Ko is also an eigensolution of the Bessel

equation. For the inner region we may write
Y = ¢M+¢R = AJl(Ar)sinS - Cr sing + EJO(Ar) + F = ¢1+ ¢2+ ¢3+ ¢4

2 2

Vy=-2 (¢1+¢3)
For the Jacobian we thus have

2 2
Iy, V7y) = J((wl+¢3) + (¢2+¢4), - A (¢l+¢3)) =
2 2
- A J((Wz+¢4), - (¢1+W3)) == A J(Wz,(¢1+¢3)) =

- 2 .9 - 2 3y
=" A Cop Qyphyg) = - x ¢

The dispersion relation therefore remains unchanged

The continuity conditions are
K = E + F
D 0(ua) Jo(Aa)
' - '
D uKo(pa) EXx Jo(Aa)

Using the relations Ké = - K, and Jé = -7

1 1

we find

K (pa) J (Aa)
D = F [¢] __o
uKl(ua) [ uKl(ua) AJl(Aa)]

uKl(ua)
XJI(Xa)

E=0D

For r = 0 we have WR = E+ F and for r » «, wR + 0.
The structure is independent of 6 and we thus have a monopole
structure with possibly some maxima and minima for r < a (depends

on the inner wavenumber). For r > a the function declines to

ZeTro.
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14, For Vl # 0 we have

1

Uy =

1 E:o[]l 12]
oy = - AF

1 HoI3

2
1 1 A“F

ot /L Ul

1 RATRFERTAS o=y

at a steady-state. We see that we must require that I; and I3 have
opposite signs to make V; real.
The eigenvalue equation is (w is the eigenvalue)
(R (I + 1)V + 2R 1
(R(L) + V) + 02 R

V. + RI_V
1 mZ)( o

+ = 0.
37t wy) =0

1
If Vi is real it can be written Vi = % A and either I) or I3 must be
positive while the other is negative. This implies that either W, Or
w3 will be positive at the steady-states and they are therefore both

unstable,
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