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The nonlinear response of a barotropic quasigeostrophic fluid to a 5 forcing by the rotation of the
wind stress is discussed in terms of the symmetry properties related to the multipole structure of the
response's relative vorticity field and the gradient of planetary vorticity. It is shown that by a global
and local renormalization of the P plane, introducing an effective absolute vorticity gradient by
means of the global derivatives of the relative vorticity distribution, the three basic symmetry prop-
erties, as they are known from numerical simulations, can be explained analytically. This is
achieved by means of a renormalized perturbation series which gives the factors that govern the
symmetry properties as a function of the parameter measuring the strength of the nonlinearity.
These properties are (1) the turning of the symmetry axis for increasing nonlinearity in the direction
of the rotation of the wind stress, (2) the concurrent weakening of the symmetry breaking for in-

creasing nonlinearity, and (3) the maximum strength of symmetry breaking around the vorticity di-

pole axis for intermediate nonlinearity. The first two properties are related to the vorticity
distribution s dipole character and the third one to its quadrupole character. The shape of the in-

duced circulation is shown to vary from an oval-shaped pattern with an east-west symmetry axis for
weak nonlinearity over a completely asymmetrical swirl for intermediate nonlinearity to a butterfly
pattern for the almost-free, strongly nonlinear, inertial mode that is again asymptotically symmetric
around the north-south axis.

I. INTRQDUCTIGN

This paper addresses the symmetry properties of a vor-
ticity equation that stands for the simplest nonlinear
model of wind-driven mid-ocean gyres. These gyres are
characterized by an intense "western intensification" in
that current velocities in a small boundary layer on the
western side are much higher than in most of the interi-
or. ' The first successful linear model explaining this
property, has shown that this is an internal effect of the
dynamics of a fluid forced to circulate horizontally on a
rotating sphere; i.e., even for a meridionally symmetric
forcing, the fluid reacts with an asymmetrical circulation
pattern in a medium in which the horizontal gradient of
the local vertical component of the planetary vorticity
breaks the symmetry, such that the center of the circula-
tion, being located at the line of maximum forcing (i.e.,
maximum rotation of the wind stress), is shifted to the
west relative to the forcing center (i.e., opposite the direc-
tion of the Earth's rotation). Actually observations show
that the circulation center is not positioned at the line of
maximum rotation of the wind stress. In reality the cir-
culation centers are displaced in the downstream direc-
tion, giving rise to a mere "northwestern" intensification.
This is generally thought to be a genuine nonlinear effect
of gyre dynamics. Interestingly, one of the simplest fully
nonlinear models of oceanic circulation, viz. , the free (un-
forced and undamped) mode of a water mass recirculat-
ing horizontally on the surface of a rotating sphere exhib-

its "northern intensification. " Rather than having a sym-
metry axis that runs east-west with strong symmetry
breaking round the north-south axis of the circulation, as
in the linear model, this mode has a symmetry axis that
runs north-south, the symmetry now being broken
around the east-west axis of the circulation.

The basic equation that encompasses both asymptotes
of the circulation regime is the quasigeostrophic vorticity
equation on the P plane

Here g is the quasigeostrophic stream function, P the
Jacobian operator

[~(a,b)=—(t)a /t)x, )(c)b/t)x ) —(t)a /Bx2)(t)b/t)x, )],
P, the, local planetary vorticity gradient in a plane
tangent to the rotating sphere at some arbitrary central
latitude, x = (x „x2 ) the position vector in that plane, k a
damping coefticient to be associated with bottom friction,
T the forcing amplitude, and r(x) a suitably normalized
function representing the shape of the forcing. (Note
that in spite of the notation the forcing actually is the ro-
tation of the wind stress at the surface divided by an
effective depth of the fluid column. ) The minus sign in
the right-hand side of (1.1) gives an anticyclonic rotation
of the wind stress, as is the case for the gyres on the
northern hemisphere.
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The two models discussed before describe different
dominant balances between the various terms in (1.1).
The linear model with its east-west symmetry axis as-
sumes a balance between the forcing in the right-hand
side and the first and third terms of the left-hand side,
thus a balance between input of relative vorticity (b,P) by
the rotation of the wind stress, conservation of planetary
vorticity, and damping of relative vorticity by bottom
friction. The free fully nonlinear mode with its north-
south symmetry axis assumes a balance between the
second and third terms in the right-hand side of (1.1), ex-
pressing the conservation of absolute vorticity
(f3~x~+ b f) in the absence of forcing and damping
[~(f,p, x2+ b g) =0].

In spite of the simplicity of both asymptotic solutions
to Eq. (1) there is no analytical solution known to the full
equation, if only in an approximate sense, such that it
would unify the linear and "almost free" fully nonlinear
regimes and that it would cover the important intermedi-
ate regime of "moderate" nonlinearity. There are, how-
ever, numerical solutions known, subject to the bound-
ary condition /=0 at the perimeter of oceanic basins of
simple geometry. These solutions show interesting be-
havior of the symmetry properties of mid-ocean gyres
with respect to the degree of nonlinearity of the circula-
tion. These properties are the following.

(a) In a closed basin the broken symmetry manifests it-
self by the occurrence of a boundary layer with high ve-
locities relative to the interior. In the linear regime this
boundary layer occurs on the west side of the basin. For
increasing nonlinearity —loosely speaking increasing
wind forcing —the boundary layer gradually turns north-
ward; thus the symmetry axis turns in the direction of the
rotation of the wind stress, from east-west for very weak
forcing to eventually north-south for infinitely large forc-
ing.

(b) Concurrently with the turning of the symmetry axis
for increasing nonlinearity, the boundary layer increases
in thickness; thus the symmetry breaking decreases in
strength.

(c) In the regime of intermediate nonlinearity, when the
symmetry axis runs more or less northwest-southeast, the
symmetry around the axis actually is also broken. This
effect decreases both towards the linear asymptote, when
the symmetry axis runs east-west, as towards the fully
nonlinear asymptote, when the symmetry axis runs
north-south.

In the absence of any analytical theory explaining at
least all the mentioned symmetry properties, it seems
worthwhile to look for the simplest possible setting that
gives an approximate solution to Eq. (1.1) for any degree
of nonlinearity. Here we present such a solution, guided
by the following statements.

(i) The symmetry properties are more fundamental
than the boundary-layer character of the circulation.
The latter is just a manifestation of the actual strength of
the symmetry breaking which shows up whenever an
internal dynamical length scale in the problem —the ratio
k/P„ in the linear regime —is much smaller than the
external length scale, being the basin width or the length
scale of the forcing function. The introduction of an

external length scale, however, is not fundamental to the
dynamics of forced circulation on the f3 plane.

(ii) The later is clearly demonstrated by looking at the
Green's function for forced circulation on the P plane, as
it contains actually all symmetry properties of the full
nonlinear vorticity equation (1.1). This has already been
demonstrated for the linear regime, where the response
of the stream function to a 5 forcing by the rotation of
the wind stress on an unbounded P plane is strikingly
asymmetric around the north-south axis and symmetric
around the east-west axis. The introduction of a
reAecting wall far to the west of the forcing center then
produces a boundary layer near the wall, but this bound-
ary layer is just a consequence of the properties of the
Green's function for the unbounded plane.

(iii) All the symmetry properties are reflected in the
multipole character of the Green's function's relative vor-
ticity field, in which the dynamics of the dipole governs
(a) the turning of the symmetry axis for increasing forc-
ing and (b) the weakening of the symmetry breaking for
increasing forcing, whereas the dynamics of the quadru-
pole governs (c) the symmetry breaking around the dipole
axis, being strongest for intermediate nonlinearity.

(iv) These properties can be explained by (a) a global
renormalization of the P plane, i.e., the introduction of a
uniform "effective absolute vorticity gradient" using the
circulation's dipole character and (b) a local renormaliza-
tion of the f3 plane, by introducing an "e(fective absolute
vorticity field" with hyperbolic contours, associated with
the circulation's quadrupole character.

We shall substantiate these statements in the following
sections. In Sec. II we define the Green's function in the
present nonlinear context, after nondimensionalizing the
vorticity equation, laying bare the basic parameter
measuring the strength of the nonlinearity; and we intro-
duce a near-field expansion for the induced relative vorti-
city field. In Sec. III we reconsider the results for weak
nonlinearity, which we extend one order deeper in a
primitive perturbation series. From these results some
inferences are drawn for setting up a renormalized per-
turbation series which is the subject of Sec. IV. A solu-
tion in dipole approximation for the Green's function on
an unbounded f3 plane for an eff'ectively infinitely extend-
ed forcing field, to zeroth order in the renormalized per-
turbation series, is given in Sec. V, which is expanded to a
quadrupole approximation in Sec. VI. It is shown that
the symmetry properties of the solution behave in the
same sense as those of the numerical simulations men-
tioned before. These results are further discussed in Sec.
VII, where it is also shown that the global renormaliza-
tion of the f3 plane by means of the relative vorticity di-
pole in fact leads to a rescaling of the internal dynamical
length scale in the problem, such that after rescaling of
Eq. (1.1) the familiar form of the vorticity equation for an
"almost free" inertial mode is recovered.

II. THE EQUATION FOR THE GREEN'S FUNCTION

Before defining the Green's function in the present
nonlinear context, we first nondimensionalize Eq. (1.1).
To that end we scale the coordinates with 2k /f3„and the
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stream function with 4TklP, . The basic equation then
reads

hP+ 2e~~(f, hf)+ 2 = —r(x), e=, (2.1)
a = = T

2k

We now make a near-field expansion around the forcing
position z of the relative vorticity field as it occurs in
(2.5):

g(x;e, r}=A(z;g, r)+(x —z) B(z;g, r)

where the parameter e, sometimes called the Reynolds
number, measures the strength of the nonlinear interac-
tions. Note that this parameter is independent of the
planetary vorticity gradient P„a crucial fact to which we
return in the discussion.

Next we define the Green's function for forced circula-
tion on the unbounded P plane as the kernel of the convo-
lution

where

+ —,'(x; —z;)(x —z, ):C; (z;g, r}+

&(z;g, r)= f fg(z, y;e, r)r(y)dy

=-r(z) f fg(z, y; e, r)dy,

(2 6)

(2.7)

P(x;e, r)= f fG( xy;e, r(y)) r(y)dy . (2.2) B(z;g,r)= f fVg(x, y;e, r)r(y)dy
X=Z

Due to the nonlinear character of (2.1), G depends
parametrically on the Reynolds number e, and function-
ally on the shape of the forcing function ~. In the same
sense we define the Green's function g, for the relative
vorticity field by

-=r(z) f fVg(x, y;e, r)dy

a2
C;.(z;g, r)= f g(x, y;E, r)r(y)dy

Bx;Bx~.

(2.8)

X=Z

Af=g(x;e, r) = f fg( xy;e, r(y) }r(y)dy, (2.3) a2=—r(z} f f g(x, y e, r)dy

Hence the Green's function should obey

bG+2eg G, f fg( xy;e, r) (ry)dy +2 aG
ax )

= —5(x—z) . (2.5)

where g
—= b, G. Substituting (2.3) in (2.1), we get

&/+2~3 g, f fg(x, y;e, r)r(y)dy +2 = —r(x} .a
Bx )

(2.4)

.X=Z

(2.9)

» (2.7)—(2.9) the —= sign applies whenever the external
length scale over which the rotation of the wind stress
varies is much larger than the internal length scale with
which the vorticity distribution and its derivatives drop
to zero at infinity. Inserting now expansion (2.6) and
(2.5), noticing that the derivatives in the Jacobian opera-
tor are taken with respect to x so that A(z;g, r) drops
out, the final equation for the Green's function becomes

6G+2E)(G, (x—z) B(z;g,r)+ —,'(x, —z, )(x —z ):C; (z;g, r)+ . )+2 G= —5(x —z) .
a
X)

(2.10)

As the coefficients B(z;g, r) and C; (z;g, r) depend func-
tionally on g, and thus on G, Eq. (2.10) is as yet a fully
nonlinear equation. Approximate solutions can be ob-
tained for e«1 by means of a primitive perturbation
series. For more general e we shall present an iterative
solution by means of a renormalized perturbation series.
Depending on whether the expansion (2.6) is truncated
after the term linear or quadratic in (x —z), we shall refer
to "dipole" or "quadrupole" approximations for reasons
that will become apparent in Sec. III.

primitive perturbation series in the Reynolds number.
We shall use Eq. (2.10) in dipole approximation, i.e., we
truncate the series (2.6) after the second term. Moreover
we shall assume that we are dealing with a forcing field
varying over a length scale that is much larger than any
internal dynamical length scale of the Green's function it-
self. Then locally we may set ~=1. In view of transla-
tional invariance, we just choose z=0 as the only forcing
position to be considered. The relevant equation then
reads

III. SOME INFERENCES FROM THE WEAKLY
NONLINEAR LIMIT

b, G+2e~~(G, x B(g;e, 1))+2 = —5(x) .aG
ax )

(3.1)

The Green's function corresponding to the linearized
version of the quasigeostrophic vorticity equation (1.1) is
evidently independent of the shape of the forcing and, of
course, translational invariant, i.e., only depending on the
difference vector x —z. Here we extend the linear solu-
tion with a first-order nonlinear correction by means of a

G =G' '+gG'"+ -, B=B' '+pB"'+ (3.2)

Substitution of (3.2) in (3.1) yields to zeroth order

For e«1 we now expand both G and the vector B,
which depends functionally on G, in a perturbation series
1n E':
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gG(0)
b, G' '+2 = —5(x), (3.3)

the solution of which reads

G '=(2') 'exp( —r cos8)EO(r), (3.4)

X2

fwhere E0 is the zeroth-order modified Bessel function o
the second kind. [From hereon we shall switch at will be-
t en the orthogonal coordinate system (x&,xz) and po-ween
lar coordinates (r, 8).] The corresponding relative vor i-
city distribution is given by

KG[0]
(0)—gG(0)— a,

= vr 'exp( —r cos8) [Ko(r) + (cos8)K i (r) ] .

(3.5)

Both G' ' and g' ' are shown by means of contour plots
in Figs. 1(a) and 1(b). Note the striking asymmetry of the

=(1,0), (3.6)

~here n is the unit vector in the radial direction
(cos8, sin8) and ds the arclength of the integration con-
tour. As could be expected from the symmetry of G' ',
8' ' has a component in the east-west direction only.

Although Eq. (3.1) treats the nonlinear interactions in
dipole approximation, such does not mean that the rela-
tive vorticity distribution g' ' does not have a quadrupole
character as well, which is also revealed by closer inspec-
tion of Fig. 1(b). For the subsequent discussion it is
worthwhile to look at the effective second derivatives
connected with the quadrupole structure of the relative
vorticity distribution in zeroth order, as represented by
the tensor C;J., defined in (2.9):

stream function with the symmetry axis running east-
west (x, direction) and in consequence the outstanding
dipole character of the relative vorticity distribution.
The latter induces an effective global relative vorticity
gradient around the forcing position, z=0, which is
represented by B' '. The latter is calculated by means of
Green's theorem (see the beginning of Appendix B), using
definition (2.8), as

8' '= f f V'g' '(x)dx=lim tt)ng' '(r, 8)ds
r~0

I

4

—3
2

0

=lim f n, g' '(r, 8)ds
r ~0 BX~

0
(3.7)

' (c)

Now any vorticity quadrupole around the forcing posi-
tion can always be thought of as the sum of two contribu-
tions, one with its symmetry axes in the east-west (x,
and north-south (x2) directions and one with its symme-
try axes rotated over an angle of 45' with respect to the
former. Both are related to the eA'ective global deriva-
tives C; . That is, if we define

C(0) —i (C(0)+C(0) ) ()X

C{0)—] (C(o)+C(0))—0 2

(3.8)

-0.8- i

-10

(e)
I I I I-0.8 -0.6 -0.4 -0.2 0 0.2 0.4

I I-0.8 -0.6 -0.4 -0.2 b O.2 O.4

Xq

FIG. 1. Contour plots of the Green's function for the stream
function (to the left) and for the relative vorticity (to the rig t .ri ht).
From top o o om:F t t bottom: (a) and (b) the zeroth-order solution, c

urn of zeroth-and (d) the first-order solution, and (e) and (fj the sum of zerot-
and first-order solutions for a=0.5. All axes have dimensionless
units, the distances being scaled by 2k/P+.

C'+' is related to the quadrupole component with one of
its symmetry axes in line with the symmetry axis of the
dipole. Evidently this component does not vanish in
zeroth order. On the other hand, the quadrupole com-

onent that has its symmetry axes rotated with respect to
the x, , x2 axes, is related to C'~'. It is this component
that would break the remaining symmetry of the dipo e,
but in accordance with the symmetric character of the
zeroth-order solution around the east-west axis, this com-
ponent vanishes at this order in the expansion. Finally,
C(0) is connected with the global second derivatives of
the vorticity monopole, which we shall not consider any
further.

We now proceed with the first-order equation. From
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(3.1) and (3.2) we get to first order in e,

aG")
b, G' '+2 = —2$(G' ', x.B' ')

Bx )

'(sin8)exp( —r cos8)K&(r),

the solution of which reads

G(1)—~ G(0)
2

=(2m) 'r(sin8)exp( rcos8—)ED(r),

(3.9)

(3.10)

which can easily be verified by substitution of the rniddle
expression in (3.10) into (3.9), using (3.3). The corre-
sponding first-order vorticity distribution is then given by

aG")
g( & ) /G( & ) / g(0)

Bx2
(3.11)

whence

C'" =0, C"'=0, C'" =1 . (3.14)

This result is in accordance with the antisymmetric char-
acter of the first-order solution around the x, axis, by
which only the quadrupole component with symmetry
axes rotated over 45' with respect to the coordinate axes
does not vanish.

Finally we may now sum the zeroth- and first-order
contributions to the stream function and the relative vor-
ticity field for specific values of e. This is shown by the
contour plots in Figs. 1(e) and 1(f). Evidently the whole
pattern has now lost all symmetry due to the antisym-
metric character of the first-order correction, reAected in
B'" and C'x". This is in accordance with analytical re-
sults for circulation in closed basins, using a primitive
perturbation series for weak nonlinearity. This ap-
proach thus explains, for small but increasing e, both the
initial turning of the symmetry axis, rejected here in the
turning of the vector sum B' '+eB'", as well as the ini-
tial breaking of symmetry around that axis by the sum of
the zeroth- and first-order quadrupole. However, there is
at this stage, for increasing e, no indication of a weaken-

where g' ' and G' ' are given by (3.5) and (3.4), respec-
tively. The stream function and vorticity distributions
G'" and g'" are shown by contour plots in Figs. 1(c) and
1(d). Evidently both the stream function and the vortici-
ty distribution are antisymmetric around the symmetry
axis (x, ) of the zeroth-order solution. Hence there is no
contribution to the vorticity monopole at this order,
whereas the vorticity dipole axis now runs in the north-
south direction (xz ). The latter is of course again
rejected in the global vorticity gradient at first order:

B"'=lim fng'"ds =(0, —1) . (3.12)
r~0

In the same way the vorticity distribution's quadrupole
structure is reflected in the components of C' '.

0 1

CI,"=limfn, g"'ds= (3.13)
o 'ax,

ing of the symmetry breaking around the axis perpendic-
ular to the total dipole axis, as the numerical results
show. If this were the case, an increase of the internal
length scale of the Green's function should have to be the
result, but this length scale is not altered by higher-order
terms in a primitive perturbation series. It remains at its
zeroth-order value of 1 (nondimensionally) once and for
all. Also there is no indication of an ultimate decrease of
the symmetry breaking around the dipole axis by the
quadrupole structure. Obviously the results for weak
nonlinearity are not valid for the regime e ~ 0(1). More-
over, by using a primitive perturbation series together
with a dipole approximation, the result (3.10) shows that
in fact the first-order correction is only valid in the near
field. For, regarding the ratio 6 "IG' '=x2e, it appears
that only for ~x2~ &&e ' do we have eG"'&&6' ', as it
should be for this type of perturbation series. All these
deficiencies of the primitive series ask for a renormalized
expansion, the scheme of which shall be discussed in Sec.
IV.

IV. THE RENORMALIZATION SCHEME

The formal equivalence of planetary and relative vorti-
city in the quasigeostrophic vorticity equation (1.1) sug-
gests that they may be combined in a single "effective ab-
solute vorticity field. " In its most simple form the
effective field is just a uniform gradient of effective abso-
lute vorticity, being the vector sum of the planetary vorti-
city gradient and an effective gradient of relative vortici-
ty, yet to be defined. The mean value of absolute vortici-
ty on which this uniform gradient is superimposed is evi-
dently unimportant, as the Jacobian operator in Eq. (1.1)
is invariant to a change of the vorticity gauge. Such an
effective field, consisting of a uniform gradient of absolute
vorticity, is in fact the familiar P plane, albeit with arbi-
trary magnitude and direction of the gradient. The intro-
duction of this field, which changes the P term in the
equation in the same way for all positions in the field, is
here called a globa/ renormalization of the P plane. Of
course, the exact distribution of absolute vorticity creates
an absolute vorticity gradient that is dependent on posi-
tion. Any introduction of an effective absolute vorticity
gradient that accounts for spatial dependence of the abso-
lute vorticity gradient is called here a local renorma1iza-
tion of the P plane. One of our aims is to show that glo-
bal renormalization of the P plane can be achieved by the
dipole character of the relative vorticity distribution and
the most simple local renormalization by its quadrupole
character.

The results of Sec. III suggest that the planetary vorti-
city gradient and the self-induced relative vorticity gra-
dients should be treated on an equal footing if any
relevant results for moderate to strong nonlinear interac-
tions are to be expected. To that end we introduce an
effective absolute vorticity field g*, again in the form of a
near-field expansion

(*=1+(x—z) P+ —,'(x; —z, )(x.—z ):y; . (4.1)

Here P is a vector with as yet undetermined components.
The components of the tensor y," are undetermined as
we11, but constrained by the condition that the integral of
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'V+ r x
rij = (4.2)

the third term over all space is zero; i.e., there are no con-
tributions to the vorticity monopole in the expansion
(4.1), except for the dynamically unimportant first term.
This yields

whence b.g* =0.
Next we set up a renormalized perturbation series for

the Green's function and the undetermined components
of P and y in (4.1). To that end we introduce a formal ex-
pansion parameter X, and we use expression (4.1) as coun-
terterms to the nonlinear term in Eq. (2.10), which we re-
cast as follows:

b G+24g(G, (x—z) B(z;g,r)+ —,'(x, —z;)(xi —z, ):C,i(z;g, r) }

+2~(G, (x—z).P+yx(x) —z, )(xz —zz)+ —,'y+[(x, —z, ) —(x2 —z2) ]}=—5(x —z), (4.3)

where

p(0) p(1)
1 1

p(0) p(1)
2 2

(p) +A,
rx rx

(p) (1)

+g 0 ~ ~2

0

(4.4)

we expand them too:

B(z;g, r)= f fV[g' )(x, y)+kg" (x, y)

+
=B' '(z;g, r)+KB'"(z;g, r)+A. (4.6)

and

G =G(P)+XG("+X2- . . (4.5)

a2
C; (z;g, r)= f f [g' )(x,y)+kg" (x, y)a~, a

It can easily be seen, by equality (4.4), that setting A, =O
reduces (4.3) to the linear equation (3.3), whereas sum-
ming over all powers of A, , for A, reset to 1, reduces (4.3)
to (2.10).

As B(z;g, r) and C; (z;g, r) depend functionally on G,
I

+}(. ]r(y)dy

=C'„"(z;g,r)+ XC,(,"(z;g,r)+X' (4.7)

Inserting (4.4)—(4.7) in (4.3) gives to zeroth order in k,

bG' '+2$[G( ', (x—z) P( '+y(~)(xi —z, )(x2 —z~)+ —,'y'+'[(x, —z, ) —(x2 —z2) ]I = —5(x—z),
the solution of which gives G' '(x, z;P' ', y'x', y'+') in terms of the undetermined components of P and y. Next, to first
order in A, we have

b 6"'+2~I G'", (x —z) P( '+y'x'(x, —z, )(x2 —z2)+y'+'[(x, —z, )
—(x~ —z~) ] I

= —2e~[G ', (x —z).B' '+ —,'(x; —z;)(x, —z, ) C' ']

—2~I G' ', (x—z) P"'+y'&&'(x) —z, )(x~ —z2)+ —,'y'+"[(x, —z, ) —(x~ —z2) ] I . (4.9)

If we now truncate the series in A. after the first-order terms and regard the remaining terms as an iterative series for G,
then, resetting A. = 1, we get from (4.4)

13() )
2

(1)'Vx

p(0 )

p(0)

r(p)

—r'+'

(4.10)

Moreover, we require the vanishing of the dipole and quadrupole contributions in the right-hand side of (4.9) in order
that the dipole and quadrupole structure of the first iteration G' ' is already a good approximation to the exact solution.
Substituting (4.10) in (4.9), this gives the renormalization conditions

P(0)B(0)e f fVg(0)(xyP(0)y(0)y(0))r(y)dy

=~ f ( z;P(0), y(0), y(0) ) (4.11)
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a2
(0) C(o) —~ g

) xy. y y gy y
()X ) X2

( z P(0) y(0) y(0) )

a2
(0) C(0)+ +

(}Xl

(z.p(0) y(o) y(0))

a2
g' '(x y;P' ', y'„', y'+')r(y)dy

BX2 X =Z

(4.12)

(4.13)

The four equations (4.11)—(4.13) permit in principle the
determination of the four unknown coefticients
(PI ', Pz ', y'„', y'+') as functions of e For. a general shape
of the forcing function these coeScients still depend on z,
but if we again restrict ourselves to the case of an
effectively infinitely far extended forcing field, then ~= 1,
and G' ' will depend on (x —z) only, whereas the com-
ponents of P and y become constants. This is the case we
shall deal with in the following sections.

V. THE RENORMALIZED SOLUTION
IN DIPOLE APPROXIMATION

Before discussing the solution to the renormalized
Green's function in quadrupole approximation we shall
first briefly discuss the much more simple problem in di-
pole approximation which only leads to global renormal-
ization of the P plane. In that case the zeroth-order equa-
tion for the Green's function, (4.8), reduces to

SG(0)+2~(G(",x P"))= —5(x), (5.1)

0
P(0) pB(0) g Pg(0)(x P(0) )dx

1

where again an effectively infinitely far extended forcing
field is assumed. The effective uniform gradient of abso-
lute vorticity, P ', is defined by

The solution of (5.6) reads

PI '= =P cosl3, P(2 '= =P sinP,1+5 1+6'

in which

(5.7)

1
P=arctane

( I+ 2))/2 ' (5.8)

bG' '+2/(G' '
y (I+6 )

' )= —5(y),
which reads

G' '=(2n. ) 'exp( y, P)K0(Pr ), —

(5.9)

(5.10)

where the (y),y2) system is related to the original east-
west —north-south system (x „x2)by

r

X)
=Rp(e) (5.1 1)

For a~0, these results are in accordance with those of
the primitive perturbation series discussed in Sec. III.
There we found, (3.6) and (3.12), up to order
e, B=(1,—e).

Due to the invariance of both the Laplacian and Jaco-
bian operators in (5.1) to a rotation of the coordinate sys-
tem, the solution (5.3), (5.7), and (5.8) is equivalent to the
solution of

=lim efng' '(r, 8;P' ')ds,
r~o

(5.2) the rotation matrix being given by

as follows from (4.11). The solution to (5.1) is, analogous-
ly to that of (3.3}, Rp(e) =P

0) ~(0) '

2

p(0) p(0)
1 2

G' )=(2n. ) 'exp( 13'2 'r cos8+pI —'r sin0)K0(pr),

(5.3)
1 —e=(I+a ) e 1

(5.12}

(0) (0)= —2P, BG +2P
BX ) BX2

(5.4)

Inserting (5.3) and (5.4) in the right-hand side of (5.2)
gives

~(0) —~(0) g(0) — g(0)
2 1 (5.5)

whence, from the left-hand equality of (5.2),

'p(0) '

P2
(0) (5.6)

where P= ~P( )
~. The corresponding relative vorticity dis-

tribution is given by
The structure of the renormalized solution in dipole ap-
proximation as given by (5.9) and (5.12) immediately re-
veals its basic properties. Equation (5.9) is equivalent to
the linearized equation of the Green's function, (3.3), pro-
vided one introduces an effective uniform absolute vorti-
city gradient that is turned in the direction of the applied
rotation of the wind stress, with an angle dependent on
the degree of nonlinearity as given by arctane '. At the
same time, the magnitude of the effective gradient is
weakened by a factor (1+@ )

'~ . Both properties are a
direct consequence of having an effective absolute vortici-
ty gradient P, that is the vector sum of the planetary vor-
ticity gradient P~ and the self-induced global relative vor-
ticity gradient due to the dipole Pd, as defined by (5.2).
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or

p ( 1+~2)—1/2 p ~( 1+e2)—1/2

(5.13)

Global renormalization of the p plane thus already ex-
plains two of the three symmetry properties of forced
nonlinear circulation: the turning of the symmetry axis
with increasing Reynolds number, which is equivalent to
the turning of the dipole axis as represented by the rota-
tion matrix R&(e), defined by (5.12); and secondly the
concurrent weakening of the symmetry breaking as
represented by the absolute value of the effective vorticity
gradient P, given by (5.8). This weakening with increas-
ing e is due to a gradual turning of the self-induced rela-
tive vorticity gradient together with an increase in
strength, such that ultimately it becomes equal in magni-
tude but opposite to the planetary vorticity gradient,
whence the effective absolute vorticity gradient vanishes
asymptotically in the fully nonlinear regime. However,
for the final property yet to be explained, the breaking of
symmetry around the dipole axis for intermediate non-
linearity, we need the mathematically much more intri-
cate local renormalization of the p plane by means of the
vorticity's quadrupole structure. This is the subject of
Sec. VI.

VI. THE RENORMALIZED SOLUTION
IN QUADRUPOLE APPROXIMATION

For an effectively infinitely far extended forcing field,
the zeroth-order equation for the renormalized Green's
function in quadrupole approximation reads

SG("+2&(G"),x P("+y'„"x)+2+-,'y'+'(x'( —x', ))

= —5(x) . (6.1)

The as yet undetermined constants (pI ', p2 ', y'&&', y'+') are
defined by (5.2) and

&(o) &&(o)'Yx & x
a2 g"' - "'r'"y"'d-

BX i BX2

In the y coordinate system the latter coincides with pI ',

whereas p, coincides with p2 '. The direction of pd is in
the positive y, direction, which coincides with the sym-
metry axis to which the effective absolute vorticity gra-
dient p, is constrained to be perpendicular. Thus we
have in the y coordinate system

p(0) p p(0) —p p2 +p2 p2 —
1

Equation (6.1) is formally analogous to an advection-
diffusion equation of the concentration field 6' ' in the
presence of a point source at x, the "p term" in the Jaco-
bian standing for a uniform advective velocity field and
the "y terms" for a stretching and straining field. The
full details of the solution are given elsewhere. Solving
(6.1) involves three steps: (i) a coordinate transformation,
(ii) reduction to a Bessel equation and expression of the
solution in terms of a Fourier-Bessel series, and (iii) sum-
ming of the series to an integral representation of an in-
complete modified Bessel function of the second kind. A
brief outline of the second step is given in Appendix A.
The first step runs as follows. We define

p' '=p(cosp, sinp),

p= p"'I,
arctanp=p( '/p', ',
(r+' y'~") =y(cosy»nr»

[( (0))2+(y(0))2]1/2

(O)Xx
arctan =

(O)r+

(6.4)

(6.5)

Next we apply a translation and rotation of the (x„x2)
coordinate system to a (z „z2 ) system by

z=R~-x+a,
where

(6.6)

cosf —sing

sing cosP

1 cosa—=a, , a =P/y, a=a. /2 —P—P . (6.8)
a2

(6.7)

hG' '+2~(G' ', yz, z2)= —5(z —a), (6.9)

which is formally analogous to an advection-diffusion
equation in a pure straining field with a point source posi-
tioned at a from the center of the hyperbolic streamlines.
The solution of Eq. (6.9) reads (see Appendix A)

G' '(z;y)=(4~) 'exp ~(zz —a2 —z, +a,
2

In view of the translational and rotational invariance of
both the Laplacian and Jacobian operators, Eq. (6.1) in
the (z „z2 ) coordinate system reads

=lim Efn 1
g' (r, 8);P y((x), y'+))ds,

r~O BX2
(6.2)

XJY0 R (z);rI(z)
2

(6.10)

(O) —pg(O)+

a2 a2
1~ g"'( P'" y'" y"')dx

BX2 aX2

where the zeroth-order incomplete modified Bessel func-
tion of the second kind, %'0, is defined in Appendix A as
well, and where

a a= lim —,'ey n, n2—
r~O Bx i BX2

X (0)( g.p(0) y(0) y(0))d (6.3)

R(z)=/z —a/ /z+a/,

2)(z)=ln
)

(6.11)

(6.12)
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p(0) (6.13)

which is equivalent to (5.6) and thus has the same solu-
tion, (5.7) and (5.8). So, the global renormalization of the
p plane appears to be independent of whether one works
with a dipole or quadrupole approximation, a fact of
practical important, as one may limit oneself to the much
simpler dipole approximation whenever the details that
are added by local renormalization in quadrupole approx-
imation are not needed. Nonetheless, these details are of
course of interest in itself, particularly for the symmetry
of the solution around the dipole axis. This is shown by
solving for the undetermined factors y'+' and y'x'. Using
the result (B18) and (B19), together with (6.2) and (6.3),
reminding that y'+' and y'x' are composed of components
of the tensor C;, so that tensor transformation rules have
to be applied when transforming back from the rotated
coordinate system z to the original system x, we get

y' '
—,
' P cos2(P+ P ) +y

~R
—1

—,'P sin2(P+P)
(6.14)

where

The global derivatives of (6.10), necessary for the evalua-
tion of the components of the renormalized P plane, as
given by (5.2), (6.2), and (6.3), are derived in Appendix B,
in the rotated coordinate system z. Transforming back to
the original x system (west-east —south-north) we get first
for the components of p' ', using (5.2) and (B13),

=eB' '=e R
0 „sin(P+P)
1 P—& —cos(P+P)

p(0)
2

RP=e', Ry= —P

R =Re'i', R =( I+a )'/, p=arctane .
(6.19)

This set can now be used to prove finally that local renor-
malization of the P plane in quadrupole approximation
indeed explains the behavior of symmetry breaking
around the dipole axis. To that end we reintroduce the
coordinate system y, which is the x system rotated such
that the y2 direction coincides with the direction of the
effective absolute vorticity gradient and the y, axis with
the direction of the self-induced relative vorticity gra-
dient of the dipole [see (5.11) and (5.12)]. In that system
the complex effective absolute vorticity gradient p, as
defined by (6.18), reads

p —p i vr/2 (6.20)

Substituting this in the equation for y, (6.19), we get for
the components of y in the y coordinate system

y=y++iy„= ( —I+is) .6

2(1+a )
(6.21)

Here the y x component is indicative for the symmetry
breaking around the dipole axis, whereas y+ reinforces
the breaking of symmetry by the vorticity dipole around
the axis in the direction of the effective absolute vorticity
gradient. It is therefore more illuminating to consider
the y components relative to the strength of the gradient
of relative vorticity induced by the dipole, as given by
(5.13). Then we have

renormalization of the p plane in quadrupole approxima-
tion can conveniently be summarized in the following set
of equations:

cos2$ —sin2(t.

sin2(t, cos2$R
sing cosy
cosy siny

(6.15)
+

pd

—1 PX

2(1+/ ) Pd 2( I+e. )
/ (6.22)

This appears to be equivalent to

(0)7+
(0)

VX

( [(p(0) )2 (p(0) )2]
E'

( 1+ 2)i/2 —p p(0)p(0)

whence

r

E 3e —1

2(1+@ )
(6.16)

E' e(3 —e )
y =arctan

2(1+a )
/ 3e —1

(6.17)

p —=p(cosp+i sinp), y
—=y(cosy+ isiny ), (6.18)

it appears that the whole procedure of global and local

such that for e=O, y =m. For e~O we recover again the
result (3.8) for C+ =y(+)/e. In the same limit we get
from (6.16) CX =y(„)le=—', e, whereas (3.14) gives e. The

sign is correct, but the difference in magnitude is due to
the difference in quadrupole and dipole approximation.

Introducing now the complex constants

This clearly demonstrates that for increasing e the pri-
mary symmetry breaking around the axis in the direction
of the effective absolute vorticity gradient continuously
weakens, in accordance with the results of dipole approx-
imation in Sec. V, whereas the secondary symmetry
breaking around the dipole axis obviously has a max-
imum for maximum y x, i.e. , for E=0(1).

The shape of the Green's function, for increasing
values of e, is finally shown in Fig. 2. One recognizes im-
mediately all the symmetry properties discussed hitherto.
For small values of e, in the weakly nonlinear regime, we
recover the S mode with its strong symmetry breaking
around the axis in the direction of the planetary vorticity
gradient and its, asymptotically, perfect symmetry
around the dipole axis. For intermediate nonlinearity,
the symmetry is also broken around the dipole axis, re-
sulting in a completely asymmetrical swirl, the rudiment
of the primary symmetry axis being rotated in the direc-
tion of the applied rotation of the wind stress. Ultimately
the fully nonlinear regime is characterized by weakening
of both symmetry-breaking phenomena; i.e., the symme-
try around the dipole axis returns, with the primary sym-
metry axis now being north-south, whereas concurrently
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X2
2.0-

-1.0-

-2.0

1.0 2Q

equation to an advection-diffusion equation for the
Green's function in a strained velocity field. This makes
it possible to interpret the ultimate results for the symme-
try properties of the solution, as shown in Fig. 2, in terms
o a trajectory a(e) in the effective absolute vorticity field
g*, which has hyperbolic contour lines. Here, in terms of
the advection-diffusion equation, a(e), as given by (6.8, is
the distance of the source position from the origin of the

yperbolic streamline pattern, represented b
(6 9'. W

e y yz]z~ in
We shall now discuss this trajectory in two, physi-

ca y different, ways. First we discuss the trajectory for
increasing wind-forcing amplitude T h', everyt ing else be-
ing constant. Secondly, we discuss the trajectory for de-
creasing wind forcing, such that the ratio of forcing and
damping is constant.

In reality, for a specific area, we deal with the situation
t at the planetary vorticity gradient P„ is a well-known
constant, that the damping coefficient k is rather uncer-
tain, but, as a guess, probably not too dependent on the
state of the circulation and thus a constant t d han oo, an t at

e win - orcing amplitude is the only parameter that
may vary over some range. At least, this is the parameter

4
merica simu a-

which we want to explain. Thus we start our discussion
with the internal length scale 2klP, =const and for the
forcing amplitude with 0 & T ( ~. Then, 0 (e
= T/2k ~. Table I shows all the relevant dimension-
less parameters that have been introduced in former

1.0
1

-4.0 2.0
I

40
Xq

Z2
20

FIG. 2.G. 2. Contour plots of the solution (6.10) for different
values of e, being (a) —', (b) 1/&3, (c) 1, (d) &3, and (e) 9, respec-

tively. In (a) —(e) the coordinate axes are dimensionless, bein

y &~, the positive x2 direction being the "north"
n ess, eing

e ipo e axis givenirection. Also shown is the direction of th d' 1

by P as defined in (5.8), being (a) 83, (b) 59, (c) 45' (d) 29
e . n (P& the picture (e) has coordinate axes scaled by an arbi-

trary external length scale L, such that the dimensionless inter-
nal length scale 5=5 [see Eq. (7.9) and the discussion thereafter]
for e~ ~.

15—

~ ~

the remaining primary symmetry breaking, asymptotical-
y around the east-west axis, weakens as well. The result

t at becom
is, in coordinates scaled by 2klP„a circulation pattern

near field [see Fig. 2(e)]. However, rescaling in this limit,
the coordinates with an arbitrary external length scale,
shows that in the far field the pattern is still asymmetric
around the east-west axis and asymptotically symmetric
around the dipole axis. But in contrast to the oval
shaped linear regime, the fully nonlinear regime has a
butterfly pattern with a broadening to the north of the
forcing position [see Fig. 2(f)]. We shall discuss these
properties further in Sec. VII.

VII. DISCUSSION AND CONCLUSIONS

Renormalization of the P plane in d lqua rupo e approxi-
mation has reduced the basic quasigeostrophic vorticity

0 V

0 10 15

J. .::.. .
20
Zi

FIG. 3. The trajectory of a(t ) ( } thin e z &,z2 coordinate
system. The coordinates are scaled by 2k /P~. Contour lines of
effective absolute vorticity are shown by dotted lines. At the
positions of e= —' 19, and 9 are depicted the direction of the

planetary vorticity gradient (P~ ), which coincides with the local
north direction in the z&, z& coordinate system for the local
value of e, as well as the direction of th ffe e ective uni orm gra-
dient of absolute velocity (P, ) and the self-induced global rela-
tive vorticity gradient due to the dipole (Pd ). The local shape of

ue o e is rawn sc ematical-t e circulation pattern for each value of '
d

ly.
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a(e) =2 E+—1
E

sin(P+ P )

cos(P+(t )
(7.1)

where

P=arctane

and

e(3 —e )
y =arctan

4 2' 3e —1

as follows from (6.8), (5.8), and (6.17). The asymptotes of
a(e) read

chapters, for three different values of e and for the two
asymptotes e~O and e~ ~. Figure 3 then shows in a
concise way a11 the symmetry properties of the solution
by depicting the trajectory a(e) of the "source position"
in the translated and rotated coordinate system (z„zz)
for the whole range of e. Also shown are the hyperbolic
contours of the effective absolute varticity distribution
(or the streamlines in terms of an advection-diffusion
equation) and, for specific values of e, the local "north"
direction (P„) and the directions of the effective uniform
absolute vorticity gradient (P, ) and of the self-induced
global relative vorticity gradient of the dipole (Pd ), which
coincides with the direction of the dipole axis. The tra-
jectory a(e) is parametrically given by

1 1 — 1 1e~O, a&~V2 —+—,a2~v 2 ——+—
2 E 2 E

(7.2)

whence asymptotically for e~O,

a =a —&22 1

and

(7.3)

E' —+ Oo, Q ) ~2E~ (x), Q2 1 (7.4)

Thus the trajectory first runs parallel to the bisectrix of
the first quadrant of the (z, ,z2) system, at a distance 1,
and then turns and runs parallel to the z, axis, at a dis-
tance l. As e~O we see that a(e) is infinitely far from
the origin in an area where the contour lines of effective
absolute vorticity are nearly parallel and in the east-west
direction, coinciding with those of the planetary vortici-
ty. The asymptote e~O is of course the linear S mode,
with strong symmetry breaking around the north-south
axis and perfect symmetry around the east-west axis, in
accordance with the contour lines of a concentration field
due to a continuous source in a uniform velocity field
directed east-west. For increasing e the trajectory ap-
proaches the origin along the bisectrix. Then the contour
lines become more and more bended, which results in a
breaking of symmetry around the dipole axis of the circu-
lation pattern. Concurrently the north direction turns

TABLE I. Values of basic parameters for various values of e. Quantities marked with an asterisk are
evaluated in the y coordinate system with the y1 axis in the direction of the dipole axis and the y2 axis
in the direction of the effective absolute vorticity gradient P, .

Eq. E = 1/v'3 E=l E= v'3

P=P, *

(5.8)

(5.13)

m/2

—,
' v'3

a/3

—,
' v'2

m/4

—,
' v'2

m/6

—,
' v'3

r+&pd'

)'x ~pd*

(6.22)

(6.22)

(6.17)

(6.17)

1

2

1

2

3
16

3
16

3 v'3
16

1+2
8

—,
' v'2

m. /4

1

16 2E

1
—2—E2

1 —3—E
2

—-'m+3E '
2

al

(6.7)

(6.8)

—vr/4

1 1&2 —+—
2

=3.7

m/4

=4.5

1 3 —1—7T —E
2 2

2E

(6.8)
1 1v'2 ——+—
2 E

4 Q3 =1.5 =1.2

& =P/y (6.8) 2E Sv3 8+3 2E

(6.8) —7T
1

4 2
m/6 m/8 1

2
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anticlockwise in the z system. When ultimately e reaches
a value of O(l) the secondary symmetry breaking is
strongest. The trajectory then reaches its apex in the
corner of the first octant of the z system and the resulting
circulation pattern is a completely asymmetrical swirl.
Increasing e further, the trajectory becomes more and
more parallel to the z, axis and the secondary symmetry
breaking becomes gradually weaker. When finally e~ ao,
all effective vorticity gradients weaken as the amplitude y
of the effective absolute vorticity field decreases. Ulti-
mately the circulation pattern becomes more and more
circularly symmetric for increasing e. All these symme-
try properties are in accordance with the behavior of nu-
merical simulations in closed basins. We stress here that
the symmetry properties of the circulation, as they evolve
along the trajectory a(e), are independent of the actual
value of the planetary vorticity gradient P~. Indeed, the
components of vector a are scaled by 2k/13„, but so are
z, and z2, so that in the scaled coordinate system the
shape of the trajectory is the same for all values of p„.
Thus the planetary vorticity gradient is a real catalyst for
the broken symmetry of the circulation pattern. In its
absence, for circularly symmetric forcing, the circulation
pattern is circularly symmetric for all values of e. Once
P, is present, no matter how small, the symmetry is bro-
ken; although, in dimensional coordinates, this manifests
itself only at very large distances from the forcing center
for very small f3, . However, the behavior of the symme-
try properties as a function of e, as represented by /3, P,
y, and y remains independent of P„.

Clearly, in the limit T~O, for which e~O if k is con-
stant, we recover the linear "S mode. " However, in the
other limit, T~ ~, and thus e~ ~ for k is constant, the
resulting circulation pattern is not the sought-after "al-
most free" fully nonlinear inertial "F mode. " For, this
mode is characterized by forcing and damping going to
zero together, such that at the same time the circulation
becomes strongly inertial. Evidently this happens when
T~0 and k ~0, such that T/k is constant, whence
e= T/2k ~~. The physical interpretation of this limit
is as follows. The ratio k/T is the rotation time scale of
the vortex. For, if L =k/P, is the vortex length scale
and Tk/P~ the scale of the stream function, then the
relevant velocity scale U =g/L = T/13„, whence the ro-
tation time scale L/U =k/T. Thus the Reynolds num-
ber in this context, e = T/k, is the ratio of the damping
time scale and the rotation time scale. In consequence, in
the present limit the damping time scale goes to infinity
for a given constant rotation time scale, so that the circu-
lation becomes strongly inertial. This then is our
definition of the F mode, which should be perfectly sym-
metric around the north-south axis and strongly asyrn-
metric around the east-west axis, asymptotically. In or-
der now to discuss the trajectory a(e) so that we may lo-
cate the F mode on it, we have to rescale our coordinates,
as in their present dimensionless form they contain the
now varying damping coefficient k. Besides, this gives us
an opportunity to discuss what happens to the circulation
pattern as seen by an observer located at thePxed dimen-
sional distance L from the forcing center. The introduc-
tion of L gives another dimensionless number (Ekman

number)

2k
L (7.5)

Now assume T and k to vary over the interval 0—~,
such that T/k is constant. Rescaling our trajectory a(e)
by L, it becomes

1a(e) =2E e+—
E'

sin(P+P)
cos(P+P) (7.6)

the asymptotes of which read

E&Ze~O, ai ~ +-,'Ev'2, a2~ E&Z
E

(7.7)

e~ ~, a ~2', a2~E . (7.8)

Figure 4 shows the trajectory of a( E) in the rescaled coor-
dinate system. Obviously now, for e~O and
T/k =const, such that k ~ ~ and therefore also E~ oo,
the linear S mode in the z coordinate system is located
infinitely far away from the origin where the effective ab-
solute vorticty contours are nearly parallel. However,
the F mode, asymptotically, is located at a fixed and Pnite
distance from the origin, exactly at the z& axis. This dis-
tance is given by

5=2EE = 2T
k,L (7.9)

To an observer at a fixed distance L from the source posi-
tion the rescaled trajectory of a(e) now means that, for
T~O and k ~0, such that T/k is constant, he sees an in-
crease of the primary symmetry breaking around the
direction of the effective absolute vorticity gradient, to-

Z2

r

r
~ .

r

10-

zP ~
0 5

F mode
10 15 20

Z[

FIG. 4. As Fig. 3, but now with the coordinate axes scaled by
an arbitrary external length scale L. The drawn contour plot of
the inertial pattern coincides with Fig. 2(f).



39 RENORMALIZED GREEN'S FUNCTION FOR NONLINEAR. . . 3587

gether with a turning of the dipole axis from east-west to
north-south, and finally the establishment of a purely
symmetric butterfly pattern around the dipole axis, which
is along the z, axis in this limit, such that the induced rel-
ative vorticity gradient again annihilates the planetary
vorticity gradient [see Figs. 4 and 2(f)]. That the primary
symmetry breaking keeps a finite strength in this limit, as
does the spreading of the contour lines giving rise to the
butterfly pattern, whereas the secondary symmetry
breaking around the dipole axis vanishes, can be made
evident by rescaling the effective absolute vorticity field
in the y coordinate system, which is the system having
axes in the direction of the dipole axis and the effective
linear absolute vorticity gradient; see (5.11). Rescaling yi
and y2 by L we have for the effective absolute vorticity
field

0* =/3, v. +7'x~»2+ ,'r+(Z-i ~2)—

where now

1

E(1+q')»' '

2

2E2( 1+ 2)2 ' + 2E2( 1+~2)2

(7.10)

(7.1 1)

(7.12)

y &&
~ ,'(eE) =25 —=const,

y+~ —,'e E =25 e '~Q .

(7.13)

As P, =25 is the e-folding distance that gives the pri-
mary asymmetry of the circulation pattern, and y&„y+,
as coefficients in the effective absolute vorticity field
(7.10), stand, respectively, for the induction of the sym-
metric spreading, giving the butterfly pattern and the in-
duction of symmetry breaking around the dipole axis, we
see that in the almost free inertial limit the pattern keeps
a finite primary symmetry breaking, a vanishing secon-
dary symmetry breaking, and a finite strength of the
butterfly shape.

The results (7.8) and (7.9) suggest that in the inertial
limit the pertinent internal length scale of the problem is
T//3, k, rather than 2k//3, . Indeed, actually we deal
with a renormalized internal length scale
2k (1+e )' /P~, of which T/P~k is the limit for e~ oo.
The length scale T//3, k is exactly the one inferred form-
erly for an almost free inertial boundary layer in the F-
mode limit of oceanic circulation in a closed basin. This
length scale could be obtained by scaling arguments on
the basis of an integral constraint around a closed stream-
line:

II a).d I = tkut)d 1, (7.14)

which can easily be obtained by integrating (1.1) over an
area enclosed by a streamline and an application of
Stoke's theorem [here o is the wind-stress vector divided
by an effective depth of the tluid and Tr =k ( V X a ),
whereas u is the quasigeostrophic velocity, u=—kX Vi/j].

Asymptotically, for k, T~0, T /k =const, such that
e~ ~ and E~Q, we get

P, ~(eE) '=26 '=const,

Obviously the solution for the Green's function satisfies
(7.14) as well. If we now rescale the basic equation (1.1)
with T//3, k as the length scale for the coordinates and
with T /k /3, as the scale for the stream function i/, we
get

~(i/, bi/j+x2)=e '(r —b, i/) . (7.15)
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APPENDIX A

Here we give a brief summary of the derivation of the
solution to

AG+2y z, —z2 = —6(z —a)aG aG
'a 'a" = (A 1)

on an unbounded plane. Introducing an integrating fac-
tor, we write

This is precisely the canonical form of an "almost free"
inertial mode on the /3 plane, which also serves for other
nearly inertial geophysical flow systems like modons in
the atmosphere. To zeroth order in e ', (7.15) describes
the conservation of absolute vorticity. The zeroth-order
equation is degenerate in the sense that any single valued
function of the absolute vorticity in terms of the stream
function is a solution. The degeneration has either to be
removed in higher orders of e by using integral con-
straint (7.14), which has not led to any closed solutions
up to now, or by using an a priori assumption about the
relationship between i/j and b, P+x2, usually a linear one,
as in the first discussion of the fully inertial F mode. It is
interesting to note that we have circumvented both prob-
lems here by coming the other way round: starting from
the fully nonlinear equation, effectively linearizing it by
P-plane renormalization, and finally taking the limit
e~~, we recover the almost free inertial mode. The
symmetry properties of this mode are exactly those of the
inertial solution to zeroth order in e ', obtained by using
the a priori linear relationship between the stream func-
tion and the absolute vorticity.

In conclusion, then, the three basic symmetry proper-
ties of nonlinear forced circulation on the P plane can be
explained by global and local renormalization of the /3

plane, using the dipole and quadrupole character of the
induced relative vorticity distribution. This once more
supports the notion that the dynamics of mid-ocean gyres
is primarily vorticity dynamics, even in the simple con-
text of barotropic circulation with "bottom frictional"
vorticity damping. In a subsequent paper we hope to ap-
ply the idea of /3-plane renormalization to a closed basin
of simple geometry in order to reproduce the
circulation's boundary-layer character.
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G =exp[ —,
' y(z2 —z2 )]I (z),

which gives an equation for I":

(A2) S((o,8)=Ko(2y(o' +o, —2o cr, cos28)'/2)

=Ko( —,'yR )

b 1 —y p I = ——exp[ —,
' y(a

&

—a2 )]5(p—a )5(8—a),22

(A3)
where

=j exp( —
—,'yR coshu )du,

0
(A12)

where p=~z~. Transforming to o =
—,'p, using the trans-

formation rules for the 5 function, (A3) becomes

+— + —4y' r
Ocr cr ~cr 4o BO

exp[ —,'y(a f —a~ )]5(o rr—, )5(8),4cr3"
(A4)

cr Ocr

m —4y I
4 cr 2

where o., =& /4 and 8=0—a. Expanding now both
5(8) and I in a complex Fourier series in 6', we get the
Bessel equation

R=/z —a//z+a/ . (A13)

The second sum, S2, can be reduced to an analogous ex-
pression

0
S2 = f exp( —

—,'yR coshu )du,
g(o. , 8)

where the integration domain is given by

(A14)

p +8
rt(cr, 8)=a cosh

R [z+ai
(A15)

Defining now the incomplete modified Bessel function of
the second kind of order v by

A, (p;q)= f cosh(vu)exp( —p coshu)du, (A16)
q

the solution of (A 1) reads

exp[ —,'y(a, —a2 )]5(cr —o, ),3/2 (A5) 6 =(4~) 'exp[ —,'y(z2 —a2 —z, +a, )]

where I" (o ) is the mth-order Fourier amplitude. The
solution to the homogeneous part of Eq. (A5) is given in
terms of modified Bessel functions of fractional order by

XAO[ —,'yR(z);r)(z)] .

APPENDIX 8

(A17)

A I /2(2ycT )+Bm Km/2(2ycT (A6)

where the integration constants A and B follow from
regularity conditions for cr ~0 and cr~ (x) and from re-
quiring continuity at o. =o, This gives

A =
—,
' exp[ —,'y(a

&

—a2)]K /2(2yo, ),
B =

—,
' exp[ —,'y(a', —a,')]Il I/&(2yo, ) .

(A7)

(A8)

The solution of I in terms of a Fourier-Bessel series then
reads

S,(o,8)=Io(2ya ()Ko(2yo ) )

+2 g I (2yo )K„,(2yo. ) )cos(2m 8),
m =1

(A 10)

S~(o,B)=2 g I +&/2m(2yo ()Km+, /2(2yo ) )
m=0

Xcos[(2m +1)8], (A 1 1)

in which o.
& =cr, for cr & o., and o.

& =cr for o (cr, and
vice versa for cr &. The first series, S&, can be summed to
the zeroth-order modified Bessel function, EO:

1 =(4m) 'exp[ —,'y(a& —a2)][S&(cr,8)+S2(o,8)], (A9)

where

=lim f r 2)gdO .
r~0 0 BP'

(B1)

If now P has a logarithmic singularity the only contribu-
tions to the integral come from terms in the expansion of
f around the singularity that are independent of 0 and
proportional to lnr, whereas one has to prove that, in or-
der that the integral converges, all higher-order singulari-
ties, ~ r ", that may arise by applying the operator 2) on

Here we consider the calculation of the global deriva-
tives B and C,, for the solution of (Al), as given by (A17).
Let 2) be a linear differential operator and consider

f f2)hat d A. For f f b,f d A we have either, by Green's
theorem, f fAP d A = f n Voids, where n is the outward
normal unit vector (cos8, sin0) and ds is the arc length of
the contour, or, introducing the vector v=k X Vf, which
is the geostrophic velocity in the present context, we have
by Stoke's theorem

f f hgdA = f f k (VXv)dA

v).d1 = f r r3$/dr d 0,
0

where k is the vertical unit vector and d 1

=r( —sing, cosO)dO. For a singular distribution that ex-
tends infinitely far, but drops to zero suSciently rapidly,
the only contribution to the contour integral comes from
the part surrounding the pole. Then we may calculate

f f2)hg d A by one of the two equalities

f f2)b, g d A = lim f n 2)VP ds
1~0
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g, do not have contributions independent of 0. We shall
now apply these rules to (A17) in order to determine the
coemcients in the renormalization of the P plane. For
brevity we write

G = (4m. ) 'e 9(o( —,
' y R; g ), h =

—,
' y( z 2

—z f —a 2 +a f ),

cosg
VR =2a (1+ . )+ r—+

sinO Q
(B1 1)

from which it can be checked that A&VR does not con-
tribute to the integral in (B9). As to the third term in
(B4) we have

(B2)

where R and q are defined by (A13) and (A15) and a is
given by (6.8), which we shall use frequently.

Starting now with the determination of the global
linear vorticity gradient 8, we need

cosg a cosga
sing "

282 sing 482

(a z')a +
2~4

(B12)

VG =(4m. ) '(%'oVh+ V%'o)e" . (B3)

Only the first term in the power-series expansion. of e" is
of use. Thus we have only to evaluate the terms between
parentheses. These read

which in product with exp( —yR(/2) does not contrib-
ute to the integral in (B4) either. Thus for the evaluation
of B we are left with (B9), from which we get (in the z'
coordinate system)

r z

Z ]
Ao —

—,'yW, VR +exp( —
—,'yR g)Vq, (B4)

sin(P+ P)
B=lim f r VG d0=/3 (~+~) (B13}

where

p+a
R

(B5)

Next we have to evaluate the components of C, for
which we need the second derivatives of G. Using
a, —=a/az, as a shorthand notation for derivatives to z, (or
z,'), we have

As the singularity of (B2) is located in z=a, it is more
convenient to translate our coordinate system to
z'=z —a, in which the singularity is located at z'=0.
Then, for r = Iz'I ~0, we have

B),G
h

2G 4~
22G

Z) Z ] B]&p
—z, z, y mo+ —,'(z, a,mo —z, a~o) y

y zz+y z, a@'o

and

rg=ln I'+2aI (B6) aipo
1PO

~2 0

(B14)

R =rIz'+2aI=2ar 1+ +a.z'

Q2

Then the first term of (B4) gives

Ao~2Ko( —,
' yR )~—2 lnr .

(B7)

(B8)

As to the first term in (B14), after transition to z'=z —a,
only the terms independent of z,

'
in the factor of Ao con-

tribute to the contour integral, such that for this term

lim f r a;Gd8
r o o Br

Upon substitution of z =z'+ a the final evaluation of this
part of the contribution to the contour integral gives

—f3 sin (P+P)+y
—,'P sin2(P+P}

—,'P sin2(I3+ P)
—P cos (f3+/) —

y

2~ a
lim f r V'G d8=y

o o dr 02

As to the second term in (B4) for g~ —~ we have

A&~2K, ( —,'yR )~2K&(Pr)=2(Pr) '+

and

(B9)

(B10)

(B15)

After transforming to the z' system using (Bl 1) and
(B12), it can be checked that there is no contribution
from the second term of (B14) to the integral in the left-
hand side of (B15). Finally the third term can be written
as

a,"j( = —
—,'ya, "R~,+ a;Ra R A + A, — (sinhg)exp( —,'yRg)—

+exp( ,'yRg)[ —
—,'ya;Ra—,g—coshq+a; q —

—,'ya;ga, (Rg)] . (B16)

Using again (B8), (B10), (Bl 1), and (B12), one can check that only the first part of the second term contributes to the
evaluation of C; by means of the integral in (B15). Its contribution reads

0
(B17)

2.
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whence we have in the end for C," (in the z' coordinate system)

—
—,'P [2sin (P+P)+1]+y

—,
' P sin2(P+ P )

—,'P sin2(P+P)
—

—,'P [2 cos (P+ P )+ 1]—y

which gives

C+ =
—,'P cos2(P+P)+y, C~ =

—,'P sin2(P+P) .
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