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Abstract

Distinguishing between globally and locally (materially) conserved quan-
tities, existing conservation laws in hydrodynamics are reviewed. A brief
comment is made on the possibility of recursively applying Ertel’s theorem.
A new flux conservation law, leading under certain conditions to a globally
conserved quantity, is derived for both 2D and 3D flows. When position and
velocity fields are uniquely related, this quantity can be considered as the
conservation of mass in velocity space.

1 Introduction

The nonlinear equations of hydrodynamics, describing the flow of a fluid,
contain a number of invariants, or conserved quantities, which constrain this
flow in some sense. Knowledge of these invariants is of paramount importance
in restricting the solution space. Indeed it has been shown for some simpler,
but still nonlinear subsystems of the general equations of hydrodynamics
(e.g. the 1D shallow water equations ( Whitham, 1974; Miura, 1974) and the
Korteweg-de Vries equation (Miura, Gardner and Kruskal, 1967), that they
contain an infinite number of conserved quantities. This seems to restrict the
flow to the extent that one is able to obtain exact solutions of these systems
of equations. Whether the existence of an infinite set of conserved quantities
always implies integrability is a question not fully resolved (Miura 1976).

Quantities can be conserved globally and/or locally. A globally conserved
quantity is obtained from a (flux) conservation law:

or

- X = 1
8t+v 0, (1)

which relates the local time (t) evolution of a quantity 7' to the spatial (x)
divergence of a flux X. By applying Gauss’ theorem, the integral of (1) over



a volume V of fixed size generates the globally conserved quantity [ [ [TdV,
whenever the integrated flux normal to the boundary of V' (denoted by A),
[/ X-dA, vanishes (or, in case the integration domain extends to infinity,
drops off with distance rapidly enough). The conservation of energy in hy-
drodynamics often appears in this form. One may be tempted to apply this
integration not over the entire fluid domain, but rather over some restricted
part of it. There is no basis however to expect this to lead to any conserved
quantities in a fixed, Eulerian space, but, once applied to a material fluid
‘element’, conservation of some properties of the fluid packet in Lagrangian
space is feasible. As the material fluid packet itself is moving with the fluid
flow, u, a local, or more properly speaking, materially conserved quantity
is satisfying
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where the material derivative d/dt, now containing the advective operator
d 0
- - .V,
@ ot

denotes the evolution in time following the motion of this packet. Materi-
ally conserved quantities can be obtained by integration of equations similar
to (1), but which differ depending on the dimension n over which the in-
tegration is performed (i.e. whether one is dealing with a line, surface or
volume element). The reason for this difference is that the fluid domain -
and in particular its boundary - is now itself evolving, in contrast with the
integration of (1) over a fixed domain. Fortak (1956), generalizing earlier
results by Ertel(1942a,b, 1954) and Ertel and Rossby (1949), showed that in
three-dimensional space for any tensor quantity A, ,

d D,

S A avi) = [ Fra; av, (3)
where dV,, denotes the line (dz;), surface (dA4;), or volume (dV) element
of dimension n = 1,2 or 3, over which the integration is performed. The
operators D,,/Dt are defined by

D, B %Az + (Blu,)A, (n = 1)
A =1 LA+ (Ow)A;. — (Oui)A; (n = 2) (4)

T~ .. d
Dt 44, 1 (Bu) A (n=3)



using the abbreviation 9; = 9/0x; . Here, as in the subsequent part of
this paper, repeated occurence of indices implies summation over their entire
range. Whenever a variable satisfies the equation D, A; /Dt = 0, for some n,
Eq. (3) shows that we can obtain a materially conserved quantity [ A; dV,.
One example is the conservation of density, p, given by (Batchelor, 1967)

(4 +V wp=0 (5)

which, in Fortak’s terminology, is nothing but D3p/Dt = 0, whence we obtain
the material conservation of mass: d/dt[ [ [ [pdV] = 0. Often one encounters
an equation expressing the material conservation of density itself, but this is
just a consequence of making the approximation that the flow itself is non-
divergent. Another example is afforded by the well-known vorticity equation
derived by Helmholtz (Lamb, 1932, p.205), also known as the d’Alembert-
Euler equation (Truesdell, 1954) for an inviscid, barotropic (pressure, p, being
a function of the density) fluid:

£)-()~

where the vorticity, w = V x u, the curl of the velocity field. Together with
Eq. (5) this can be rewritten as

d
%w—l—(v-u)w—(w-V)u:O, (7)
which is the vectorial equivalent of Eq. (4b), or
D,

from which we obtain, :

%//Aw-dA:O, 9)

which, by Stokes’ theorem, expresses just Kelvin’s material conservation of
circulation C' = . u-dx, with I' the boundary of the open surface A.
Intuition suggests that materially conserved quantities impose stronger
constraints on a flow than their global counterparts do, as the former are
obeyed by every single fluid element rather than by just the entire volume of
fluid. Indeed, in geophysical fluid dynamics (Pedlosky, 1987), the material



conservation of potential vorticity (Section 2) controls a great deal of the
existing flow fields and is a central principle in many modelling studies in
this field. In passing we remark on a recursive application of Ertel’s theorem,
which, ideally, generates an infinite number of materially conserved quanti-
ties. The main emphasis will be on the derivation of a new conservation law
(Section 3), whose impact needs to be assessed in future studies.

In order to put these new conservation laws into proper perspective, as a
prelude, we review existing conservation laws and materially conserved quan-
tities appearing in fluid dynamics (Section 2). As there are many situations
in which conservation laws arise, depending on the precise assumptions, this
review is necessarily incomplete and sketchy. Because of the great practical
interest in the shallow water equations on a rotating plane a (2D subset of the
general hydrodynamic equations, particularly arising for a hydrostatic, ho-
mogeneous fluid) conservation laws of this system of equations are discussed
separately.

2 Review of conservation laws in hydrody-
namics

With an application to GFD in mind, in this paper we will frequently refer to
the equations of motion on an f-, or 3-plane®. The f-plane can be considered
as a plane tangent to the earth, of which the rotation rate, f/2, is constant
and which is determined by the projection of the earth’s rotation vector, €2,
on the local vertical: fy = 2 | Qy | x sin(pg). Here ¢y denotes the central
latitude around which the approximation is made. For relatively large-scale
features the Coriolis parameter, f, varies with latitude, which, in (-plane
approximation —(3 = 9f/d¢(py) - is mimicked by adding a linearly varying
part, By, to the constant part fy :

f=fo+ By, (10)

in this case one speaks of af3-plane.

Coordinates x, i.e. x,y and z are denoting the ”"East”, ”North” and vertical
(positive upwards) direction respectively. Velocities along these Cartesian
axes will be denoted by u = (u, v, w).



2.1 Conservation laws in three Dimensions

Starting point for any hydrodynamical problem are the conservation laws
which constitute the equations of motion. They are

1) Conservation of momentum; an integral relation which leads to the mo-
mentum equations

d
p%u+p2ﬂxu+Vp—pg: F. (11)
Here Vp is the pressure gradient, g = —glAf is the acceleration of gravity,

pointing downwards (where k is the vertical unit vector) and the rotation
vector Q@ = (0,0, f/2), according to the (-plane approximation referred to
above. F contains any other surface or volume forces present and in particular
the viscous forces, which, as is common when considering conservation laws,
are neglected throughout the main part of this paper.

2) Conservation of mass as given by Eq. (5).

From these two we can derive

3) Conservation of energy. Special forms of this conservation law are
derived under particular circumstances (see Batchelor, 1967). Thus, for ex-
ample, a flux-conservation law for the mechanical energy is derived by tak-
ing the dot-product of (11) with u. Then, in an incompressible (V - u = 0)
medium, it becomes

0,1 1
5 (3Pt u— g x)+ V- (ulp+cpu-u—pg-x))=0. (12)
When the fluid is considered compressible, usage of the internal energy, F,

related to the previously introduced dynamical variables by

dE P
% == —EV'U,

establishes the material conservation of

1/2u-u+p/p+E (13)

(Bernoulli’s theorem) provided the pressure is time-independent.

4) Conservation of vorticity, as given in Egs. (7 - 9), can be considered
the hydrodynamical analogue of the conservation of spin-angular momentum
in classical particle mechanics (see Appendix A). This follows by taking the
curl of the momentum equations (11), except that on a rotating frame it is the



absolute vorticity w,, being the vectorsum of the relative vorticity w and the
planetary vorticity 2€2, which is conserved. Remark that whenever pressure
and density are not uniquely related a solenoidal forcing term appears in
the right-hand side of (9), given by [ Vp x V(1/p)dA; an equality known as
Bjerknes’ theorem?®.

5) Conservation of potential vorticity. Potential vorticity is a term re-
ally encompassing a class of materially conserved quantities. Ertel (1942a)
ascertained that for any conservative property A (i.e. with dA/dt = 0), the
dot-product of Eq. (6) (where w is replaced by absolute vorticity w,) with VA
yields, in the absence of any forcing and dissipation, a materially conserved
quantity

Hozwa-V)\’ (14)
p
provided VA - (Vp x V(1/p)) vanishes, a condition particularly met with
whenever A = A(p,p) and trivially satisfied for a barotropic fluid. This
assertion has an interesting recursive property: once we have decided on a
conserved property A to generate a IIy according to (14) we may then use II
as conserved quantity A to generate II; and so on according to the scheme

o Wa * V]-_-[n—l
1%

I, (n=1,2,3...).(15)

6) Conservation of angular momentum, is, as discussed in Appendix A,
related to the conservation of orbital angular momentum of a portion of fluid.
It is obtained in flux conservation form from the equations of motion (11)
and the kinematical relation dx/dt = u for a non-rotating frame only:

9 plox % w) +V - [uplox x w) + Xp] =0, (16)

where X is the ’biposition’ tensor, the skew-symmetric tensor conjugate to
the position vector x :

0 2z -y
X=||-=2 0 =z |[. (17)
y —x 0

A similar conservation law on a rotating plane does exist for planar flow
in a plane normal to the axis of rotation (next subsection). This property is



lost however, for general 3D flows on rotating f- or S-planes, despite the fact
that it exists on a rotating globe when evaluated with respect to its rotation
axis, which is well-known and applied e.g. in meteorology (Holton, 1979).
7) Conservation of helicity. In barotropic conditions, p = p(p), the equa-
tions of motion (11) can be written, again for the nonrotating case, as

d
—u=V(P+®), (18)

where P = /p and where all forces are assumed to be conservative and hence
derivable from a potential ®. Under these conditions the vorticity equation
takes the d’Alembert-Euler form, Eq. (6). Then the dot-product of u with
Eq. (6), in combination with the dot-product of w/p with (18), yields

%(“%)Z%.v(%u.u—P—é). (19)

By employing the definition of a Lagrange function, L, defined in terms of
an action function ( Wirkungsfunktion), W:

aw 1
L=—=-u-u—-P-9 2
= ouu , (20)
this can, of course, be rewritten as
d (u-w w aw
il = .V—. 21
dt < P ) P dt (21)

With the aid of the continuity equation (5) this is taken into flux conservation
form

%(u-w)jLV- lu(u-w)—w%—l/f] =0, (22)
from which we immediately retrieve the global conservation of the quantity
Ju-wdV, termed helicity (Moffatt, 1969. Conservation of potential vorticity
and helicity have later been generalized (see Mobbs, 1981, Gaffet, 1989) (in
analogy to its use in particle physics), provided either w - n vanishes on
the solid surface S bounding the volume V', or w decays sufficiently rapid
(|w|=0O( x| ™), when S is taken at infinity.

It apparently went by unnoticed that, prior to the establishment of the
importance of the global conservation of helicity, Ertel and Rossby had, al-
ready in 1949, derived its materially conserved counterpart (Ertel and Rossby,



1949). This is retrieved from (21) by reversing the order of the derivatives
in its right-hand side, so that it becomes

d (u-w w d w-u

—|— ) =— =V — - VW. 23

dt(ﬂ) p dt +l<ﬂ>u] %)
By subtracting the dot-product of VW with the d’Alembert-Euler vorticity
equation (6) from Eq. (23), we obtain the material conservation law

d (w
o <p-(u VW)) = 0. (24)
They readily extended their result to an application in a rotating frame of
reference by substituting the ’absolute velocity’ u, = u-+ 2 x x and absolute
vorticity w, = w + 2§ instead of the relative velocity u and vorticity w
proper, and by adding a term € - (x x u) to the definition of dW/dt, Eq.
(20). The impact of the Ertel-Rossby material conservation law (exclusively
present in 3D flows) has remained largely undiscussed (Truesdell, 1954). A
flux conservation equation for helicity on a rotating plane then is obtained
similarly by replacing the same quantities in (22), except for the advective
velocity appearing in the flux (i.e. the first u in between square brackets),
which remains unchanged.

2.2 Conservation laws in two dimensions

In the particular circumstance that the fluid under consideration is 1) ho-
mogeneous, 2) hydrostatic, 3) inviscid and 4) initially free of shear in the
vertical, the equations of motion can be replaced by the shallow-water, or
long-wave equations. Condition 2) especially has prompted the naming of
this approximate set of equations as it requires the wavelengths of the phe-
nomena involved to be larger than the water depth. By condition 3) one may
circumvent the introduction of boundary layers near horizontal boundaries,
while condition 4) is a necessary requirement for the continued vanishing of
any vertical shear in the field variables. Under these conditions the horizon-
tal velocity field is replaced by its vertically-averaged counterpart, such that
we obtain
1) Conservation of momentum,

d N
%u+fk><u+gVC:0, (25)



where, in this subsection, d/dt = 9/0t+u0,+v0,,u = (u,v), f = 2|Q| xsingp
is the Coriolis parameter, k is the vertical unit vector, x = (z,y),V = (0, 0y)
and ( is the vertical elevation of the free surface above the mean position.
We obtain similarly
2) Conservation of mass,
9¢

E+v-[u(H+C)]:0, (26)

where H(z,y) is denoting the bottom profile. This latter equation can be
recast in terms of the total depth,

(%+V-u)h:0. (28)

The operator in brackets is the 2D equivalent of the D3;/Dt - operator, in-
troduced in (4). In analogy with (3), Eq. (28) generates the material con-

Servation Of mass as
4 / / hdA =0 (29)
dt o

Using (28), for a uniformly rotating (f = constant), uniform depth (H =
constant) sea, the vertically integrated momentum equation (25) can be cast
in a true flux conservation form

%[(Hﬂ%xx)h]+v-[uh(u+f1%xx)+§gh2]:o. (30)

It may be remarked that in a non-rotating (f = 0) fluid of uniform depth
the one-dimensional analogs of (25) and (26) are satisfied by an infinity
of conserved quantities, which are generated by an appropriate algorithm.
Whitham?® suggested this to be related to the fact that the equations can be
solved exactly by means of a hodograph transformation, which switches the
roles of dependent and independent variables. In a rotating frame (f # 0)
this algortihm breaks down, the equations remain two-dimensional and the
invariants come one by one.

By taking the curl of (25) we obtain

3) Conservation of vorticity

d
(% +V- u)wa = 0, (31)



where w, = f + w, with w = v, — u,, now expressing only the vertical (z)
component of its 3D counterpart. The actual conserved property, again is
the horizontally integrated vorticity

% [ /] wadA] 0, (32)

a 2D version of Kelvin’s theorem. Combining (31) with the conservation
of mass (28) we obtain one member of an ensemble of conserved quantities
known as

4) Conservation of potential vorticity,

‘()=

Indeed, from (33) it is obvious that any differentiable function G(w,/h) is
materially conserved, a feature applied by Stern (Stern, 1975) in obtaining a
description of modons by taking a particular polynomial form G = (w,/h)?,
where in his special case v was assumed to be integer. This generalized form
of the potential vorticity is sometimes applied to its integrated counterpart,
where it takes the form

% [ [ nG(u/myaa] <o (34)

The potential vorticity, appearing in Eq. (33), ws/h, corresponding to the
polynomial form of G with v = 1, can again be interpreted as the fluid dy-
namical analog of the conservation of spin angular momentum, /w,, once
1/h is interpreted as the moment of inertia, I, of a fluid cylinder of ”in-
finitesimal radius R”. The latter phrase is placed in between quotes as it
refers to a (for didactical purposes useful, but qua definition of R) nebu-
lous concept of a cylinder of fluid. In terms of polar coordinates r and 6,
I = [F 2" hor?rdrdd = %thR‘l.

R 2m
M= / / hprdrdf = TphR?, (36)
0 0

therefore I = (%) % o %
. P 4 . .
Using v = 2, we obtain what is most properly described as the conserva-
tion of potential enstrophy, (w,/h)?. The conservation of enstrophy (vorticity
squared) proper does not, as often loosely stated, follow from the shallow-

water equations, but is conserved only on the sphere, or, on the plane within

10



the quasi-geostrophic approximation. The flux conservation form of the po-
tential enstrophy conservation law is

0 (1uw? lw2)
& (5?) —|—V - <u§7> = 0, (38)

which is best interpreted as the fluid dynamical analog of the global conser-
vation of ’spin’ kinetic energy, associated with the solid body rotation of the
fluid column, once we again interpret 1/h as moment of inertia, I.

This is not to be confused with

5) Conservation of energy, which refers to the energy associated with the
linear momentum, and which is conserved (in a global sense) separately. We
obtain this conservation equation by taking the dot-product of hu with the
momentum equations (25) and adding 1/2u - u + gh times the conservation
of mass, Eq. (28), to it

%[%hu-u+%gh2]+v-[u(%hu-u+gh2)]=0- (39)

As the Coriolis force is normal to the momentum vector this force is doing
no work and hence does not appear in (39).

6) Conservation of angular momentum, is again referring to orbital angu-
lar momentum, defined on a rotating plane as

szv—yu+%fr2. (40)

The flux conservation equation then takes the form

%(Qh) +V - [uQh + %gh% x x] = 0. (41)

Therefore, contrary to the 3D case, it is possible to define the conservation of
orbital angular momentum on a rotating plane as w is directed perpendicular
to x, which strictly lies in the horizontal plane. The integral constraint,
derived from (41), has for instance been used in a study on isolated elliptical
vortices (Cushman-Roisin et al 1985, Young, 1986).

3 A new flux conservation law

Another conserved property can be added to the list given in the previous
section, for which it is most instructive to follow the derivation in 2D, that is,

11



starting from the shallow-water equations. These results, discussed in section
2.1, suggest the way to generalize the conservation law in 3 dimensions, the
topic of Section 3.2.

3.1 The conservation law in 2D

By taking the spatial derivatives of the momentum equations (25) we may
derive evolution equations for, what are called (Molinari and Kirwan, 1975)
the differential kinematic properties (DKP’s) of the flow, i.e. for the vorticity,
w, divergence, ¢, stretching deformation, s, and shearing deformation, s,
defined as

W= Up — Uy
0 = ugy + vy
Sp = Uy — Uy (42)
Sx = Vg 1 Uy

The subscripts of s, and s, can be thought of as pictorially referring to the
principal axes, along which the deformation takes place. These equations, on
a rotating (-plane (f = fy + Sy) become (Petterssen, 1953; Kirwan, 1975)

iw+(f0+w)5+ﬁv:0

dt
d Lio o 2, 2
%5+§(8++8X + 6% + w*) — fow + Pfu = —gAl
d -
PTA + 540 — fosx — fu = —gA( (43)

d
%Sx + 540 + f05+ - ﬂU = _29<a:ya

where

A =0y — 0y, (44)

In the traditional treatment of these equations it is argued that the compli-
cations in solving equations (43) arise from the left-hand side of the diver-
gence equation (43b). It is subsequently argued that approximate solutions
can be obtained by neglecting the local evolution in time of the divergence

12



- thus rendering a diagnostic equation, instead of its full prognostic form
(43b). This approximation, which filters out time-dependent gravity waves
(Holton, 1979), is often defended (Petterssen, 1953) by noting that the nu-
merical magnitude of the neglected term is much smaller than those of the
remaining terms (at least in the application to large scale planetary waves).

However, this approximation is unnecessary and, moreover, destroys the
existing symmetry within Eqs. (43), since a flux conservation law is obtained
by multiplying equation (43.a,b,c¢ and d) with w,d, s, and s, respectively,
and by subsequently adding the first two of theseand subtracting the last two
from them. We then obtain

%% (8 +w?) = (2 +52)) + g ((62 + w?) = (52 + %)) + BO:(u - u) =

g(—0AC + 254 Coy + 54 AQ), (45)

which, remark, is independent of the local rate of rotation, fy. This can be
expressed in a more compact form, as the variable in square brackets is twice
the Jacobian of u and v:

T,0) = ety = wyoe = (P +0?) = (R +2), (40)

whereas, the right-hand side of (45) is also expressible in terms of Jacobians.
Thus (47) becomes

%J(u, v) +0J(u,v) + ﬂ@x%(u -u) = g(J(v, &) — J(u, §)). (47)

On a uniformly rotating plane (8 = 0), Eq. (47), using (28), reveals the
existence of a materially conserved quantity,

J(u,v), (48)

once u is geostrophic, 7.e. once u is in a dynamical steady state, in which
case Eq. (25) is satisfied by

d .
gu:(), fkxu+gV({=0, (49)

seperately. Using (49b) to eliminate the velocity components in (48), we find
that under these conditions

13



CaaCyy — azzy = J(z,y), (50)
where J(z,y) specifies the initial value of the Jacobian of the material el-
ement which initially resides at position (z,y). This equation is somewhat
similar to a form which the conservation of potential vorticity takes in a
study on frontogenesis by Hoskins and Bretherton (1972). Considered as an
equation for ( it is an elliptic equation of the Monge-Ampeére type (Courant
and Hilbert, 1953; Cheng and Yua, 1980), in which discontinuities in the sec-
ond derivative of ((the DKP’s) arise only at the boundaries, or at positions
where h(or its first or second derivatives) are discontinuous. As geostrophy is
a force balance frequently met with in oceanic and atmospheric applications
it would be interesting to test the material conservation of (50). Preliminary
investigations by the author of moving drogues, which allow a Lagrangian (or
material) evaluation of the DKP’s, lends some experimental support to the
conservation of the quantity in (48). The sign of the ’constant’, 7, appearing
in Eq. (48), is of some importance as it separates what may be termed ’ellip-
tic motions’ (along r and 6 contours) - as when the divergent and vorticity
terms dominate - from ’hyperbolic motions’ (along hyperbola’s) - as when
the deformation terms are most strongly present.

The way in which the pressure gradient force, gV(, enters Eq. (47) is
representative of the way in which any force term, F = (F*, F¥), appears in
this equation. Introducing, for instance, a Rayleigh friction,

F = —ku, (51)

with ka friction coefficient, then the geostrophic equilibrium is replaced by
a three-term force balance and some down-gradient flow is generated:

u=aV( + bk x V¢, (52)

where constants a and b depend on the relative degree of friction. In this
case, the right-hand side of (47) is proportional to J(u, v) and there is no true
conservation of (48) anymore. However this quantity still satisfies a simple
decay law along its trajectory.

Often, some simple type of flow field is considered, which, in terms of the
present conservation law, may be called degenerate. Define a degenerate flow
field as one for which

J(u,v) =0. (53)

14



Consideration of such a flow field then implicitly puts constraints on the
elevation field, as it requires the vanishing of

J(v, () — J(u, ¢y) =0. (54)

In complex notation, with u = u + iv and V* = 0, — 0y, this reads

Re[J(u,iV*C)] =0, (55)

where Re[..] denotes the real part of the quantity within brackets. Hence,
this implies a functional relation

u = U(iV*(), (56)

with U(s) an arbitrary function, which can be considered as a generalized

geostrophic relation (to which it reduces once U(s) = s). As an example

consider a spatially uniform shear flow (u, # 0,u, = v, = v, = 0), which

satisfies (53), then from (54), ¢ has to satisfy a hyperbolic equation (,, = 0.
Eq. (47) can be brought in flux conservation form

0 1 R
aJ(u,v)—l—V- [uJ(u,v)+§ﬂ(u-u)i+Z] =0, (57)
where i is the unit vector in the z-direction and Z can take either one of the
following forms

— g(Uny - uy<y7 uny — Ung)
4= { _g(vcxy - u(yy; ucxy — viw), (58)

as we can arbitrarily absorb a divergenceless vector in it. The latter expres-
sion in particular is useful when considering the integral of (57) over a fixed
area A. Conservation of

//J(u, v)dzdy = constant (59)

is guaranteed whenever the flux normal to the boundary vanishes. The term
originating from the nonlinear advection, uJ, automatically satisfies this
requirement on solid boundaries. The other two terms, however, vanish only
when the velocity itself is zero on the solid boundary, such as occurs in a
viscous flow. This additional, more stringent condition is akin to the one
which had to be imposed in the conservation of helicity (Section 3.1, #7),

15



where it was required that the vorticity vanishes. In the absence of the
(-term, this no-slip condition can be somewhat relaxed to the requirement
that the boundary coincides with a geostrophic contour. Its most general
application, however, is the case where the disturbance is localized, so that
velocities vanish far away from it, and the integral value of the Jacobian is
conserved.

As J(u,v) stands for the Jacobian d(u,v)/d(x,y), it is tempting to inter-
pret the globally conserved quantity in (59) as the total area which the flow
occupies in velocity space:

//dudv = constant, (60)

where the integration area is the physical area mapped onto the velocity space
by the time-dependent transformation u(x,t). This, of course, applies only
when the mapping is one-to-one, a situation generally not met with in reality,
where similar velocities occur at different positions (e.g. the velocity in the
core of a vortex and that far away from the vortex both tend to zero).

We may verify (see Appendix B) that the general Eq. (47) is related to a
well-known materially conserved quantity. This is (perhaps) more readily
recognized from an examination of a similar flux conservation law for the
Jacobian in 3D, which, therefore, is the topic considered below. 3.2 The
conservation law in 3D

Consider the momentum equations (11), written in the form

d

dt"
where, obviously, the density is for the moment absorbed in the description
of the forcing terms, F. Remark that F is now supposed to contain Coriolis
force, pressure gradient force, gravity force and, when present, any other
force terms. Let the velocity, u have components u,v and w and let F =
(F*,FY,F#), and let us further denote differentiations, d/0z;, by a single
subscript i, (i.e. i = 1,2 and 3 stand for §/0z, /0y, and §/0z respectively)
and similarly for other dummy subscripts, 7 and k, then, taking the derivative
of the u,v and w equation to z;, z; and z}, respectively, we obtain

= F, (60)

8Ui z
M [ V= F
ij o
5 Tl V)l =F (61)
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ot

Multiplying (61.a) with AUNSTIN -where a summation, running from one to

three, over repeated indices is implied-, Eq. (61.b) with UWEEj and (61.c)
with Uivj €k and adding them yields,

oJ
E + (11 : V)J 4+ JV-u= (Ffvjwk + F]yuiwk + F,fuivj)eijk, (62)
in terms of the Jacobian
O(u,v,w)
J = J(U,U,’(U) = m = UZUJWkﬁljk

Here €k is the alternating, or Levi-Civita tensor, which is zero when two of
the indices are equal, while €ijk = +1, —1 for an even / odd permutation of

1,2 and 3 respectively. The nonlinear advection term in (62) is obtained by
noting that terms in which a velocity component occurs twice, such as u in
uiukvjeijk, are zero.
Eq. (62) can be written in flux conservation form as
oJ

Fri V-[uJ — (F*s® + F¥sY + F*s*)] = 0, (64)

where,

s = (vaws — V3wa, V3W1 — V1W3, V1 W3 — VoW1) = ( ‘Z((’;’f;’)), %((’;’f;’)), Z({;Z)) ) . (65)

Similar expressions are obtained for s¥ and s* by cyclic permutations of u, v
and w. Note that V -s* =V -s¥ =V .s* = 0. This can be written as

DsJ o

—— 4+ V. (=F'")=0,

which implies, upon using (3),

d o
= / JdV = 7{ Fi(sin)dA
for a material volume V', with boundary A, moving with the flow. With
B = 0, this would yield an analogous 2D result from (57),
DsJ

d
g0 2 A:—?{ -ndl.
SV 2 0,—>dt/Jd ) 2-nal
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These two results will be particularly useful when volumes of fluid are chosen,
such that on their boundaries the righthand sides continue to vanish, as time
progresses.

Eq. (64) also assures the existence of a globally conserved quantity

///Jda:dydz = constant, (66)

whenever F*s® + FYsY + F*s* vanishes on the boundary S, bounding the
volume V over which the integration is performed, or, more likely, when the
disturbamce is localized. In analogy to the 2D case, Sect. 3.1, this may
for uniquely related position and velocity fields be interpreted as the total
volume which the flow occupies in velocity space, [ [ [ dudvdw. Note that,
together with Eq. (5), a materially conserved quantity,

J
— = constant, (67)
p

may again be obtained once the right-hand side of (62) itself vanishes, such
as occurs in geostrophic flow. Also, as in 2D, remark that the Coriolis term
does not contribute on an f-plane (i.e. there is no fo-dependence), but only
on af-plane, where the Coriolis force 2{2 X u produces a term

—BY - [(u? 4 v?) (w1 — wok)]

once we assume, as is customary, that only the projection of the Q*- term
(whose y-derivative is 3) is of importance.

By noting that the Jacobian can itself be written as the divergence of a
vector (for instance in 2D : J(u,v) = V - (uvy, —uv,)), it could be sug-
gested that (57) and (64) are void statements, it is the vanishing of terms
like those incorporating Coriolis effects which render (59) and (66) useful
conserved quantities: they belong to the kernel of the divergence operator,
which cannot be recovered by integration. In fact the argument would also
have applied to the vorticity equation, since, in e.g. 2D, the vorticity can be
written as w = V - (v, —u), which together with (31) equally suggests that
the divergence operator can be removed. This however does not lead us back
to the momentum equations as, in this case, the Bernoulli potential is not
recovered. Related results on the evolution of velocity gradient components
can be found in Kirwan (1975) and Cantwell (1992). As in this study, their
results get amplified once the external forcing and pressure forcing terms
vanish.
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4 Discussion

The material conservation of the Jacobian, that can be derived from the flux
conservation law in the absence of external forcing and vanishing pressure
forces, has previously been experimentally observed in a laboratory study
on the extension of large polymer-chains dissolved in a fluid, whose flow
was stretched in between two co-rotating parllel rollers (Frank and Mackley,
1975). The two-dimensional, non-divergent flow is kinematically character-
ized by the difference between teh squared vorticity and squared principal
strain rate (the squared combination of the two deformation rates s, and
Sy ). It is observed that when the flow is strain-dominated, it is characterized
by the existence of a singular point, and the fluid particles that are close
to the outgoing plance of symmetry of the flow field experience persistent
straining. The continued extension of the dissolved polymer-chains which is
the result of this, is manifested by (an observable) change in optical proper-
ties of the fluid along this plane (double refraction). The authors aptly refer
to (the square root of) the previously introduced kinematical quantity as the
persistence of strain.

Although this feature has been utilized in more complicated 2D flows (in
a 6 roll mill system by Berry and Mackley, 1976), and its application in dy-
namical systems theory has been proposed (Dresselhaus and Tabor, 1989),
its status as a conserved quantity does not seem to have been rigorously
established. Also, the generalization in 3 dimensions in the latter work —
quite different from the one derived in Sectin 4.2— is, though well motivated,
merely proposed. Again, the latter authors do not seem to take its name as
implying a conserved property too literally, as they propose to monitor its
evolution for different ‘lows’ and use this as an indication of the steady, peri-
odic, or chaotic nature of it.In this respect, their approach is very similar to
that taken earlier by Okubo (1970), who characterized particle trajectories in
a 2D flow field on the basis of the nature of the ‘singularity’ of the flow. This
is done by plotting the observed (squared) persistence of strain (as defined
above) versus the observed divergence of the flow field. By subsequently not-
ing in which region of this phase-plane the observation lies, one is able to
predict the behaviour of its particle trajectories.

In a previous field study, employed in the North Sea, observations of
horizontally moving drifters have been used to calculate the evolution of the
differential kinematic properties of the flow field (Maas, 1989). When these
are plotted as proposed by Okubo (1970), a slight tendency to fall along the
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central parabola, is evident (se Figure 1). This lends some (weak) support
to the (approximate) material conservation of the Jacobian (points which
are exactly on this central parabola have J(u,v) = 0). The implication of
its conservation is first, that the Jacobian is (apparently) initially zero, and,
second, that, since it remains zero, even though the drifters disperse, the
flow must be nearly geostrophic. The impact of the (more general) global
constraint, obtained in this study, however, remains to be assessed.
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6 Appendices

6.1 Analogy of vorticity to spin

In this appendix it is argued that the individually conserved quantities 'vor-
ticity’ and ’angular momentum’ are the hydrodynamical analogues of the
‘spin-’ and ’orbital angular momentum’ the sum of which is known to be
conserved for an ensemble of particles in classical mechanics .

For simplicity we consider a uniform density, 2D fluid. Let a circular,
infinitesimal (radius R) fluid portion be centred at a position X (Fig. 1). Let
the positions of fluid particles within this fluid element have positions x =
X + x', while their velocities are given by u = @i+ u’, being an average value
over the fluid element. The total angular momentum for continuous fields x
and u(supposed to be bounded by the circle of radius R) is a (normalized)
integral over each of the individual angular momenta within the disk:

%/xXpudA:%/(i—i—x')x (@+u') dA.

Now, the primed fields are defined to have a spatial average zero. There-
fore this expression has only two contributions 1)pX x @ , corresponding
to the orbital angular momentum and 2)p/A [x' x u'dA, corresponding to
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the spin angular momentum. The former involves only the gross-scale fea-
tures (especially the linear momentum) of the fluid element, while the latter
is equivalent to the area-averaged vorticity as we can observe by making a
Taylor-expansion of u’ around the central position X:

u'(X+x') =u'(%) + (x' - V)U'(X) + O(zjz)).

As angle-dependent terms all drop out in the averaging procedure only the
terms linear in x’ are sampled and we find

Pl s uldA = &
A/XXudA—47rpAw,

with w = v, — u,. This is (proportional to) the limit of the area averaged
vorticity, [ wdA( see Eq. (9)), applied to an infinitesimal fluid element, such
that w can be considered to become constant.

In fluid dynamics these two contributions to the total angular momentum
are found to be conserved separately (section 2.1, no.’s 4 and 6).

6.2 Recursive Application of Ertel’s Theorem

Thus, for a barotropic fluid an infinity of conserved quantities is generated
provided each of the II, has a nonzero gradient, which is not perpendicular
to we. As an example we may apply this idea to a barotropic, weakly fluctu-
ating (| w |<< f), uniformly stratified (N> = —g/pdp/dz = constant) and
incompressible fluid, where we take A = p. Then

fN?
g )
and with f varying linearly with y, Eq. (10), we find (using the previously

introduced notation for the derivative) the materially conserved quantity

H(]%

_ BN?

g
associated with the large-scale vertical circulation in a zonal plane. Thus, any
decrease of the vertical density stratification along the trajectory of the fluid
parcel may be associated with an intensification of any preexisting vorticity
in the horizontal plane. Indeed, such an intensification will also result for
uniform stratified flow, when the horizontal component of the earth rotation
is taken into account.

Hl (uz - wa:);
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6.3 Relation to Conservation of Mass

It is observed that Eqs. (62) and (64) have been derived for very general
circumstances, i.e. irrespective of the detailed form of the forcing. In fact,
a similar remark is valid for their 2D analogs, Eqs. (47) and (57), once we

replace Coriolis and pressure gradient force terms by a general forcing term,
F = (F®,FY). Then Eq. (47) reads

%J(u, o)+ J(u,0)V 1 = J(F®,v) + J(u, FY), (68)

where the 2D Jacobian J(u,v) = u,v, — vyu,. In Sect. 3 we observed that
the globally conserved quantity could be interpreted as an area (in 2D), or
volume (in 3D) in wvelocity space. This suggests that we should map our
equations from Cartesian x space to velocity u space. Indeed, following this
suggestion, we will obtain an even more compact form of the conservation
Egs. (64) and (68). To that end, rewrite derivatives to a scalar G in terms
of derivatives in u = (u, v) space

Ge \ [ Guua +Gou, \ [ Uy v G,
Gy ]\ Guuy+Gyy |\ uy vy, G,

from which we obtain, by inversion

va=(Gu)o_1 vy v\ [ G\ _ 1 J(G,v)
= ) T Two ey w )6 ) T T L Jwe) )
Applying this to F* and FY respectively we can rewrite Eq. (68) as

d
]+ IV u=JV,-F, (69)

where we use the abbreviation J to denote the Jacobian. Indeed, performing
a similar analysis in 3D leads to the (symbolically) same equation, except
that the Jacobian, J, total derivative, d/dt, and gradient, V,, attain their
equivalent 3D expressions. With the use of the respective continuity equa-
tions, Eqs. (28) and (5), this can still further be simplified to

dh h

and
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dp p _

for the 2D and 3D cases respectively. Since the material derivative is referring
to the coordinate system in which the evolution of the quantity concerned is
evaluated this operator in the present case should be read as

L _Z Z -2 4F.
dt 8t+ dt Oui 8t+ Vus

so that flux conservation laws become

d h h

- A2V F = 2

oty Ve KJ) ] 0 (72)
and

dp p

— = « |l=)F|=0.

oV [(J) ] 0 (73)

Eq. (71) is the analog of the operator D3/Dt in velocity space. Therefore,
after an integration in velocity space over the mapped volume of a material
element, we obtain, from (3),

% ( [[] gdudvdw> — 0. (74)

The interpretation of this conserved quantity is facilitated once we recognize
that p/J is in fact the ratio of two Jacobians. This is so because, except for
a normalizing factor, py, the density p is giving the ratio of the initial volume
of the material element concerned (whose location is fixed in Eulerian space
by its initial coordinates (a, b, c)) to the volume which it occupies at a later
instant

d(a,b,c)
= ——po- 75
P 8(37, v, Z) Po ( )
As the ratio of two Jacobians is just another Jacobian,
p _ 0(abc)
rF_=Z2\"5" 76
7 a(u’ v, ’U)) Po, ( )

Eq. (74) just expresses the conservation of mass in velocity space, or, as we
can arbitrarily multiply with a constant for which it is appropriate to choose
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the ratio of the initial volume occupied by the fluid element in velocity space
(denoted by subscripts 0) to the initial mass , i.e. by

ia(uﬂvvﬂawﬂ)
po O(a,bc) ’

it may also be interpreted as the conservation of volume occupied by a ma-
terial fluid element in velocity space.
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Figure 1: The quantity s2 + s? — w® — the persistence of strain, in the ter-
minology of Frank and Mackley (1976)— versus divergence ¢ for two drifter
experiments carried out in the North Sea in (a) july 1981 and (b) May 1982
(Maas, 1989). Each of the shear terms has been scaled and nondimension-
alized by a factor 107°s~!. In (b) the dashed line represents the case that
4] (u,v) = (s3 + %) — (w? + 6%) = 0.
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