Focusing of internal waves and the absence of eigenmodes
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Abstract The spatial structure of inviscid, monochromatic, internal waves in a uniformly stratified fluid is governed by the
wave equation in spatial coordinates. Following Magaard (1962), solutions for this equation can be constructed by means
of a recursive mapping. Solutions for a closed domain with supercritical side walls suggest that internal waves get focused
to a fixed limiting trajectory, irrespective of the location where energy is introduced. As the focusing is accompanied by
amplitude growth, this thus offers a mechanism by which ‘mixing at a distance’, along certain very special ray paths, may
be accomplished. The location of the attracting trajectory is a fractal function of the frequency of the monochromatic wave.
Solutions exist for any frequency of the wave field and thus no specific spatial patterns, ‘eigenmodes’, prevail.



Introduction

It is a well-known feature of plane internal waves,
propagating through a uniformly-stratified fluid, that
they retain their angle with respect to the horizon-
tal upon reflection from a sloping bottom (Phillips,
1977). TFor a wave entering a subcritically sloping
wedge (having a slope which is less than that of the
energy flux vector) the reflecting wave, bouncing back
and forth between bottom and surface, propagates
into the wedge, see Figure 1. Upon each reflection
from the bottom the amplitude and wavenumber in-
crease and will eventually become so large that they
will give rise to nonlinear and / or viscous effects.
This implies that the energy, which the incoming wave
field carries, will be deposited there and will locally
contribute to mixing (Wunsch, 1968, 1969). If the
basin, however, has a supercritical side-wall, incoming
internal waves will be reflected back into the deep-sea
region. It seems legitimate to wonder what happens
if the (2D) basin consists of two opposing supercrit-
ical side-walls. Because, in that case, neither of the
two corner regions will ‘attract’ the incoming internal
wave, one might anticipate that the internal wave will
be engaged in some complex process of criss-crossing
of the basin. What exactly its ray path will be, how-
ever, is not immediately obvious.

When one looks for a stationary internal wave pat-
tern of a particular frequency in an enclosed basin its
streamfunction is determined by a hyperbolic equa-
tion in spatial coordinates that vanishes at the bound-

ary. Cushman-Roisin et al. (1989) and Minnich
(1993) each developed numerical algorithms that com-
pute the structure of these patterns. The results seem
to be partly at variance with analytical results that
are discussed here and, more extensively, in Maas and
Lam (1995; ML hereafter), due to the discretization
of the bottom Magaard (1962, 1968) showed that the
partial differential equation can, remarkably, also be
solved by an implicit map, which relates the new po-
sition at which a wave ray reflects from the surface to
its previous position. By supplying a streamfunction-
related ‘field variable’ (carried invariantly along the
ray) in a unique interval the streamfunction field is
determined completely. Magaard applied this heuris-
tically to a subcritical domain. It turns out that
the map can be obtained explicitly for some simple
bottom shapes, of which only the parabola will be
considered here. With some modification this map
can also be used for a basin with supercritical side-
walls, which enables us to address the question, raised
above, quantitatively.

Bi-modal map

Consider a uniformly-stratified fluid in a parabolic
basin with depth

H(z)=71(1—2%), z€[-1,1] (1)

and rigid lid at z = 0. The spatial structure of the
streamfunction of a monochromatic wave of frequency
w is determined, in dimensionless form, by the canon-



ical hyperbolic equation (see e.g. ML)
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The only non-dimensional quantity still appearing in
this problem, Eq. (1), is the ‘virtual” depth,
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Figure 1. Sketch of a wave ray, propagating to the right
in a parabolic basin given by (1) with 7 = 0.4.

and L are the depth and half-width of the basin re-
spectively) and the ratio of the buoyancy N and wave
frequency w. This can, alternatively, be interpreted
as a scaled period of the wave. Magaard (1962, 1968)
shows that a solution of (2a), that also vanishes at
the surface, is given by

Ul z) = fle—z) = flz +2), (4)

for arbitrary function f(z). Physically f(x) is (except
for a phase factor) related to the surface pressure, and
its derivative to the horizontal velocity at the surface.
Note that by adopting this kind of scaling the wave
rays (along the directions of the characteristics z =
+ z+const.) always make an angle of 45° with respect
to the horizontal, regardless of frequency. This scaling
has as its disadvantage that rays can be plotted for
just one frequency at a time, but makes it easier to
assess the ray diagrams. In particular, from Figure

1, it is obvious that successive surface reflections of
a wave ray (denoted by z,, n=.,-1,0,1,2,..) are
related by

x —x

LT — sH(z), (5)
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Figure 2. The bi-modal map for a) subcritical (7 = 0.4)
and b) supercritical (7 = 0.7) values of the map pa-
rameter. Successive surface intersections are given by
Tn, n =0,1,2,... Special points are indicated as z: and
T, see Figure 3.

where £ = (2 + Zn41)/2 and sign s = +1,—1 de-
termines the two modes of the map for rightward
and leftward moving characteristics respectively. The
boundary condition at the bottom, z = —H (z), then
implies

flz + H(z)) = f(x — H(z)). (6)



Applied at z, Eq.6 and Figure 1 show that this implies
that f is carried invariantly along the characteristic:
f(znt1) = f(zn). From this Figure it is obvious that
once we specify f(z) for z-values in between two suc-
cessive surface reflections of any arbitrary ray, then
this function is determined over the whole interval
z € (—1,1). The parabolic bottom in (1) has max-
imum slope at its corners where it is £27. In the
example of Figure 1 the topography is everywhere
subcritical (27 < 1) and successive z, approach the
right (s = 41) or left (s = —1) corner respectively.
The corners act as attractors. This is also evident in
a graph of the map that we obtain explicitly from (5)
for H(x) given by (1) as

1 4z 1
X = —r— — — 4 J—
(z) - — At (7)

Here the ‘rightward map’ (s = +1) is considered and
the successor of # is denoted by X (). The successor
of « with a leftward map leads to —X (—z).

For subcritical topographies 7 < 1/2 the rightward
and leftward map are decoupled (Figure 2a), when
7 > 1/2, however, the corners are no longer attract-
ing and the rightward and leftward map get coupled
(Figure2b). Also, once ¢ > x; — where z; is the
point whose rightward map brings it directly into the
right-hand corner — the ray reflects downwards and
its image is given by ML as

Y(z) = %—x—?X(r). (8)
At the same time, once this happens, the horizon-
tal direction in which the ray propagates should be
reversed and one should shift to the leftward map
(lower curves in Figures 2a,b). A similar thing hap-
pens when the ray reflects from the leftward side of
the basin, and again s — —s. Figure 3 gives a geo-
metrical construction of Y (z) once the direct image
of z, 1.e. X, lies outside the physical domain. Also
given in this diagram are

2
Ty=——3 9a
=2 (90)
and the point where the critical characteristic reflects
from the surface

3

= — -7
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(9)
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These two ‘points’ play a special role in the subse-
quent part of this paper.

Figure 3. Construction of successive surface intersec-
tions of characteristics for a super-critically reflecting bot-
tom. The critical characteristic (surface intersection xc)
and characteristic going through the right-hand corner (in-
tersecting at z.) are given by dashed lines. Note that X
and Y are always eachother’s images for the rightward map.

Focusing of internal waves

With the bi-modal map given, the ultimate fate
of a wave-ray can be obtained by iterating it both
‘forward’ (initially to the right) and ‘backward’ (ini-
tially to the left). In this way it can be observed

Figure 4. Bi-modal map (curved lines) and trajectories of
a ray (rectangular lines) starting at zo for 7 = 0.9. Solid
(dashed) lines indicate the ray that initially ‘moves’ to the

right (left).

that the rays approach a limit cycle regardless of the



direction which they start out with. In the exam-
ple of Figure 4 this is a limit cycle characterized by
two reflections from the surface (a period-2 attrac-
tor). For even-period attractors this attractor is al-
ways unique, for odd-period attractors each attractor
also has a mirror-image, but the particular attractor
favored asymptotically, i.e. for n large, depends both
on the initial location and direction which the wave
ray follows (see ML; this explains why in Figure 6
below, the odd-period attractors are asymmetric: the
mirrored attractor also exists, but is not reached with
the initial conditions used). The approach of the at-
tractor can, of course, also be viewed in the physical
domain, which is shown, for this value of 7, in Figure
5. Independent of the direction in which the rays leave
xo initially, the attractor is asymptotically traversed
in the same sense.

1,

Figure 5. Construction of ray pattern for 7 = 0.9 and
zo = 0.15 by iterated mapping. Right and leftward ‘mov-
ing’ characteristics are drawn as solid and dashed lines
respectively. The final sense in which the limit cycle is
traversed has been indicated by arrows.

The shape of the attractor is a function of the di-
mensionless parameter 7, the scaled period of the in-
ternal wave. A nice way of presenting this is by plot-
ting just the surface reflections of the attractor, that is
of the asymptotic state of a wave ray (n large). In Fig-
ure 6 this has been presented for values of 7 € (1/2,1).
The lower boundary of this interval is determined
by the requirement that the bottom be supercriti-
cal. The upper bound is arbitrarily chosen so as to
guarantee that there is always at least one ray that
is reflected simply forward (this is the corner point,
z = —1,for 7 = 1). A similar pattern exists, however,
in the next band 7 € (1,3/2) (ML). It is observed
that there exist regions where the ‘qualitative charac-
ter’ of the attractor (the period, say) is invariant for
small variations of 7, like the period-2 attractor dis-

Figure 6. Plot of zg900 — #1100 for o = 0.123456789 and
s = +1 in the interval 1/2 < 7 < 1, where 7 is incremented
with 1/1600 of this interval.

cussed in Figures 4 and 5 in 1/2v/3 < 7 < 1. These
smooth bands are interrupted, however, by high pe-
riod bands. Expansion of such bands shows that they
qualitatively repeat these same features over and over
again at ever reduced scales. As a function of 7 the at-
tractor, therefore, is fractal. Note that the wave rays
are never diverging (chaotic), as has been verified by
calculating Lyapunov exponents which are always less
than or equal to zero (ML).

Specification of the wave field

It has been argued in the discussion on the sub-
critical parabolic bottom, Figure 1, that once f(z) is
specified in between any two successive reflections of
an arbitrary wave ray then both f(z) and, as a con-
sequence, the streamfunction pattern are determined
in the complete domain. This statement is modified
in the case the bottom is (partly) supercritical and
no complete classification is available yet. For the
cases that the frequency (7) is in the period-2 (or
4) band, two regions (‘fundamental intervals’) exist
in which f(z) can be arbitrarily specified, such that
by its specification the solution is determined com-
pletely. In Figure 7 an example has been given for
the period-2 region: 7 = 0.9. The intervals on which
f(z) can be freely specified are found by inspection
and are given (Figure 7a) by (—z., z.) and (=1, ;).
The latter range may also be replaced by the mirror
interval (—z5,1). It is observed that once we follow a
beam of rays, originating in each of these fundamen-
tal intervals, in both the right and leftward direction



(indicated by solid and dashed lines respectively), two
regions are traced out in the physical z —z plane, that
are complementary to each other and that each ray is
ultimately approaching the attractor. This indicates
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Figure 7. (a) Lines +z.(7) and +z.(7) as a function of 7.
For 7 = 0.9 the fundamental intervals have been indicated.
b) Rays coming from the inner and c) outer fundamental
intervals in the specific 2-cycle case.

that once f(z) is specified in the regions indicated at
the top of Figures 7b and 7c, this field variable is de-
termined over the whole region # € (—1, 1). This has
been demonstrated for a particular choice of f(z) in
Figure 8a, being a sine, displaced differently in the
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Figure 8. a) Function f(z), specified in the two funda-
mental intervals (parts of z-axis indicated at the top, cor-
responding to those indicated on the dashed line of Figure
7a), and subsequently calculated values of f(z) in remain-
ing parts of domain for 7 = 0.9. b) Spatial structure of
streamfunction field, ¥(z, z), obtained from f(z) with Eq.
(10).

two fundamental intervals. With this function f(z)
the streamfunction pattern ¥(x, z) of the oscillatory
streamfunction Re[¢/(z, z)e'“!], where t is time, can
be determined as

fle—2)— flz + 2) inl
Y=< flalz—2)—2z+z)— flx+2) in 1T
fle—2z)— f(—a(z +2) —2x—2z) inIII,
(10a)

where regions I, I and III are defined as
I:i{z,z; |z|-1<2z<0}

M:{z,z; —Hx)<z<z-—1} (10b)
M:{z,z; —H(z) <z< —2x -1},
1+ /1+4r(r+y)

a(y) = : (10¢)

T

and

For f(x) real, the resulting pattern is, formally, a
spatially standing internal wave pattern. As in the
study of internal waves approaching a wedge (Wun-
sch, 1968, 1969) it is unlikely, however, that the waves
approaching the attractor ever get back (in order to
form a standing wave) as other physical processes (like



nonlinear and viscous effects), neglected sofar, will
become active and drain the incoming energy flux,
implying mixing along the attractor within the basin.
A more correct solution would equally have to show
an internal wave pattern just propagating towards the
attractor. The technical implementation of this and
the evaluation of a proper initial value problem are
currently being studied.

Absence of eigenmodes

It has been expected that internal waves in en-
closed stratified basins will be characterized by the
existence of eigenmodes. This is suggested by the
presence of such modes for the corresponding surface
gravity wave problem and similar modes for interfa-
cial waves in a two-layer fluid, referred to as internal
seiches (Defant, 1941). Consider, for instance, the
long wave modes that appear at the surface of a ho-
mogeneous fluid in a one-dimensional basin z € (0, 1)
of constant depth. The horizontal velocity field is de-
termined by the wave equation

9%u ¢ 0%u

TR P (11)

Here L denotes the basin length and ¢ is the long
wave speed. For monochromatic waves, u(z) o« e'?,
solutions, u,(z) = sinnmz, vanishing at the sides of
the basin, determine a discrete set of frequencies

Wl =nm,
where frequency has been nondimensionalized with
L/e: w' = wL/c. The existence of eigenmodes is
useful because, when they form a complete set, the
forcing — which in the above example should appear
at the right-hand of (11) with a spatial part F(z),
say — can be projected on the eigenmodes and the
solution of the forced problem can subsequently be
written down as the sum over the eigenmodes

[ee]

n .

u = — S SInnTxr

2 : w2 — 2 ’
n=1 n

weighted with amplitudes, F),, that are determined
by the projections of the forcing

1
F, = / F(z)sinnmaede.
0

Miinnich (1993, 1994) noted that this correspondence
breaks down once the fluid is continuously stratified.

This phenomenon is foreshadowed by the degener-
acy of the ‘eigenmodes’ that appear in a rectangular,
stratified basin. For a streamfuncion field describing
linear internal gravity waves, ¥(z,z)e’?, the spatial
pattern is determined by

821/) _ /282_1/) _

oz2 " 922 ’
where the wave frequency has here been normalized
with the buoyancy frequency and the aspect ratio,
and the rectangle is given by z, z € [0, 1] x [0, 1]. With
vanishing streamfunction at the boundary solutions
are obtained as

¥(z,z) =sinnresinmnz, (12a)

provided
W o=t (12b)
: m

for natural numbers n,m. As Minnich (1993, 1994)
remarks, it is clear from (12) that, first of all, the
‘eigenfrequencies’ wy, ,,,, being rational, are no longer
well-seperated — they are dense within the real num-
bers — and, second, that the ‘eigenmodes’ are no
longer unique, as any common multiple, 5 € N, of
n and m leads, by (12b), to the same eigenfrequency
but has a mode structure (12a) that is the j-tuple of
the original mode. As is observed in ML this implies
that for this geometry, in the case of forcing, we can
circumvent the forward and backward discrete Fourier
transform and are able to construct the solution di-
rectly from the specified forcing by means of the ray
method.

These results apply also to nonrectangular basins,
except that the degeneracy, as Figure 6 shows, is
even worse, because ‘eigenmodes’ exist for frequen-
cies within compact domains and are, within the fun-
damental intervals, completely arbitrary. Instead, for
the parabola discussed here, there is just a discrete
set of wave frequencies for which no stationary inter-
nal wave pattern exists. It is clear that by this time
the ‘eigenmode’ has lost all its specificness and this
terminology is no longer useful. The ‘failure of the
eigen value approach’ has previously been noted by
Cushman-Roisin et al. (1989), but the way the bot-
tom is discretized in their numerical approach (by a
set of horizontal and vertical line segments) precludes
the identification of the focusing phenomenon.
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