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Abstract

It is known that a non-viscous homogeneous fluid confined to a rotating spherical shell neither possesses
a discrete eigenvalue spectrum nor smooth eigenmodes. Mathematically, the motion of a fluid in a rotating
spherical shell is governed by a hyperbolic boundary value problem. Generic features of such problems are
singularities in the flow field, referred to as internal boundary layers. Physically, these singularities correspond
to wave attractors, that are regions to which all inertial waves in the fluid are inevitably drawn. This focusing
results from multiple reflections of the inertial waves at boundaries. Therefore, internal boundary layers
typically occur for enclosed fluids.

The model studied here is a certain approximation to the equatorial region of a rotating spherical shell. It
describes the structure of slow, zonally symmetric inertial waves of a homogeneous fluid in the neighborhood
of the equator, enclosed between a flat lower and upper boundary. Exact solutions, computed by a method
that can handle hyperbolic boundary value problems, are discussed. Solutions for different frequencies
show inertial boundary layers, corresponding with internal wave attractors. The boundary layers consist
of alternating shear layers aligned along the wave attractor. They show a self-similar pattern that becomes
infinitely thin at the position of the attractor.

In addition to the results discussed, the paper is intended to introduce the concept of internal boundary
layers and wave attractors to the broader meteorologic and oceanographic community. As in almost all theo-
retical studies of geophysical flows, strong model simplifications are required to find solutions analytically.
Nevertheless, it is believed that this approach is useful to highlight fundamental properties of equatorial
internal boundary layers that might be important for atmosphere and ocean.
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1. Introduction

There are phenomena in the ocean and the atmosphere where multiple wave reflections between
surface and bottom are important. The formation of internal tides in slope-shelf regions is an
example from oceanography (Vlasenko et al., 2005). For the atmosphere, the most prominent
example might be the formation of mountain lee waves. Under certain conditions (Pichler, 1986), a
standing resonance wave pattern emerges in the lee of mountains where the wave energy travels up
and down between the surface and an internal, reflective sheet in the upper part of the troposphere.
Regular patterns of trapped waves are observed by satellites and they can stretch across hundreds
of kilometers. Another phenomenon, caused by multiple boundary reflections of internal waves,
is the development of internal boundary layers, defined as boundary detached singularities in the
velocity field. This is the feature we will focus on in the present paper.

Internal boundary layers are typical for solutions of hyperbolic boundary value problems.
Such problems are natural in the context of internal waves in confined fluids and therefore they
are much less exotic as they might appear on a first glance. For example, the problem of finding
eigensolutions in a rotating spherical shell, filled with a homogeneous or a stratified fluid can
be reduced to a hyperbolic boundary value problem. This implies that internal boundary layers
are present in one of the most fundamental problems of geophysical fluid dynamics. A strongly
simplified version of the spherical shell problem was studied over 40 years ago by Stern (1963).
He investigated trapped, zonally symmetric waves in a homogeneous fluid on the equatorial beta
plane. Although strongly simplified and therefore limited, the hyperbolic boundary value problem
of Stern contains almost all the interesting and perhaps unexpected features of the original spherical
shell model. Most important, in contrast to the spherical shell it can be solved exactly. This opens
the possibility for an unclouded view on the structure of the internal boundary layers.

Bretherton (1964) realized that the trapped solutions discussed by Stern correspond to periodic
orbits of the equation’s characteristics.1 Somewhat later, Israeli (1972) and Stewartson (1972)
noted that these orbits are actually limit cycles that attract waves. They showed that singularities
in the velocity field (in fact overlooked by Stern) can be expected. Since then, wave attractors have
been discussed for internal gravity waves (no rotation), inertial waves (no stratification), inertio-
gravity waves (stratification and rotation), for plane, annular, and spherical geometry, by means of
theoretical and numerical models, and by laboratory experiments (Maas and Lam, 1995; Kerswell,
1995; Hollerbach and Kerswell, 1995; Maas et al., 1997; Fotheringham and Hollerbach, 1998;
Tilgner, 1999; Maas, 2001; Manders and Maas, 2003); an up-to-date review is given by Maas
(2005). They are discussed in different geophysical contexts, for example in an astrophysical
(Dintrans et al., 1999; Rieutord et al., 2001; Ogilvie and Lin, 2004), and an oceanographical
context (Stewartson and Walton, 1976). Therefore, it is justified to say that the existence of wave
attractors (and related internal boundary layers) in confined oscillating fluids is well known.
However, their relevance for processes in the earth’s atmosphere is not clear yet. Stronger, to our
knowledge they are not even discussed in the more recent meteorological literature. This appears
to be unjustified in view of the fact that, as pointed out in Appendix A, the vertically propagating
wave energy can be trapped not only in the ocean but also in the earth’s troposphere.

Recently, Rieutord et al. (2002) numerically studied the oscillations of a rotating viscous fluid
in the equatorial region of a thin spherical shell. They concentrated on the eigenvalue spectrum

1 In general, characteristics and short wave energy rays of linear second order partial differential equations differ.
However, for Stern’s equation it can be shown that there is an exact correspondence between characteristics and energy
rays (Harlander and Maas, 2006).
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when viscosity becomes very small. In the present paper, in contrast, we discuss exact non-viscous
solutions of Stern’s purely hyperbolic boundary value problem which does not possess a discrete
eigenvalue spectrum. Such solutions cannot be computed with traditional numerical techniques
but came into reach with the help of a solution technique that can handle ill-posed hyperbolic
boundary value problems. The method, developed by Maas and Lam (1995), is referred to as
characteristic web method. Briefly speaking, the method first gives the boundary regions (called
fundamental intervals) where data can be specified in order to make the problem well-posed, and
second, it gives the solutions in the interior by mapping the characteristics of the problem into the
fundamental intervals. The solutions illustrate the occurrence of internal boundary layers which
might have a prominent effect on the equatorial dynamics. The role that internal boundary layers
play for equatorial waves might be comparable to the role that critical layers play for Rossby
waves: in both types of layers, wave energy density blows up and waves can break. The related
wave momentum flux can drive observed zonal mean flows (Maas, 2001), and fluid can be mixed,
e.g. across the ocean’s thermocline or from the troposphere into the stratosphere.

For equatorial tropospheric motion, two distinctly different flow regimes can be identified
(Klein, 2003). For the first one, labeled ‘weak temperature gradient’ regime, vertical motions
are suppressed if energy source terms are neglected (Charney, 1963; Majda and Klein, 2003).
In this situation, discussed first by Charney for large-scale equatorial motions, the Intertropical
Convergence Zone (and possibly other convectively active regions) is considered as an internal
boundary layer, not resolved by the model. In the other regime, the equatorial troposphere is
considered to be convectively mixed, thus it involves nearly neutral stratification. As discussed
first by Ogura and Phillips (1962), in this regime air parcels can move freely in the vertical
direction. In the present paper the latter situation is considered. That is we assume a model
atmosphere that is neutral in the troposphere but has a large stratification in the tropopause. In that
limit, upward propagating inertial waves of all frequencies in the range 0 < σ < 2Ω (whereΩ is
the earth’s angular velocity) are reflected at the troposphere–tropopause interface (see discussion
in Appendix B).

Recently, Maas and Harlander (2007) discussed inertial wave attractors of three different
models of equatorial motion, including Stern’s model. That paper demonstrates that for general
geometries of the upper and lower boundary, wave attractors exist for certain frequency bands.
Adding stratification to Stern’s model gives rise to lateral turning surfaces which lead to a sig-
nificant broadening of the wave attractor frequency bands and opens the possibility for bottom
trapped waves. In the present paper, in contrast, we discuss exact solutions of Stern’s model
systematically and we explain in detail the characteristic web technique. There are noteworthy
differences between the non-viscous solutions of a fully closed convex domain2 discussed by Maas
and Lam (1995), the viscous solutions of a fully enclosed concave domain studied by Rieutord et
al. (2002), and the non-viscous solutions of a semi-enclosed concave equatorial region focused
on in the present paper. Moreover, we check to see whether the internal boundary layers could be
relevant for well-mixed equatorial atmospheres. We believe that such layers deserve attention in
the meteorological as well as the oceanographical community.

The paper is organized as follows. In Section 2 we derive Stern’s equation. In Section 3 we
discuss solutions of Stern’s equation for different frequencies. In Section 4 we demonstrate that
the existence of internal shear layers is not restricted to Stern’s model but can be found also in
models including stratification and a weak vertical shear. In Section 5 we give conclusions. Two

2 A domain is called convex, if it contains all line segments connecting any pair of its interior points.
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appendices are added. In Appendix A we describe the characteristic web method used to solve
Stern’s equation. Finally, in Appendix B we estimate reflection and transmission coefficients for
internal waves propagating towards the tropopause.

2. Model and method of solution

In Section 2.1 we show how the Boussinesq equations for the equatorial beta plane can be
reduced to a single streamfunction equation, describing the wave motion in the meridional plane
of the equatorial region (Stern, 1963). Introducing characteristic coordinates in Section 2.2, Stern’s
equation can be transformed to the classical wave equation. Due to their separability (in terms of
characteristics), it can be solved by the characteristic web method (Maas and Lam, 1995). This
method is explained in detail in Section 2.3.

2.1. Model

We start by considering the Boussinesq equations on the equatorial beta plane. In deviation
from standard models we keep also terms related to the horizontal components of the Coriolis
force, the so called non-traditional terms. Such terms, usually neglected in ocean and meteorology
applications, gain importance in tropical regions and there is scepticism in the literature about the
validity of the traditional approximation (Hendershott, 1981; Gerkema and Shrira, 2005). Colin
de Verdière and Schopp (1994) showed that if the horizontal scale L is smaller than (HR)1/2,
where H is the vertical scale of motion and R is the earth radius, then equatorial dynamics must
include the effect of the horizontal component of the Coriolis force.

The linearized model equations read in dimensional form (for harmonic motions in time):

iσ∗u∗ + 2Ωw∗ − βy∗v∗ = −p∗
x∗ , (1)

iσ∗v∗ + βy∗u∗ = −p∗
y∗ , (2)

iσ∗w∗ − 2Ωu∗ = −p∗
z∗ + b∗, (3)

iσ∗b∗ + w∗N2 = 0, (4)

u∗
x∗ + v∗y∗ + w∗

z∗ = 0, (5)

where p∗ is the pressure perturbation divided by the mean density ρs, buoyancy b∗ = −gθ∗/θs,
g the constant of gravity, θs the mean of the potential temperature, θ∗ the perturbation of the
potential temperature, N2 = −(g/θs)(dθ0/dz) is a constant Brunt–Väisälä frequency, θ0(z) the
hydrostatic part of the potential temperature, u∗, v∗, w∗ are the zonal (x∗), meridional (y∗), and
vertical (z∗) velocity components,Ω the earth’s angular frequency, β = 2Ω/R, and, finally, σ∗ is
the frequency of the waves. Note that a super-rotational mean flow can be included inΩ. Then the
coordinate system co-rotates with the atmosphere and not with the earth. We are interested here
in the zonally symmetric part of the solution. Therefore, we integrate the above equations over x
and apply zonal periodicity as ’boundary condition.’ Then all terms with zonal derivatives vanish
from (1)–(5). Next we introduce typical scales to non-dimensionalize the equations. Following
Stern (1963) we use:

[y∗, z∗, σ∗, u∗, v∗, w∗, p∗] = (Ly, εLz, 2Ωεσ,Uu,Uv, εUw, 2ΩεLUp), (6)
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where ε = L/R � 1. Note thatU is the velocity scale of the wave motion and not of a zonal mean
flow. Stern considered a homogeneous fluid (N = 0). In contrast, here we scale the buoyancy by
b∗ = 2ΩUεb and assume N2 ∼ (2Ωε)2σ, to obtain the non-dimensional system:

iσu+ w− yv = 0, (7)

iσv+ yu = −py, (8)

iε2σw− u = −pz + εb, (9)

b− iεw = 0, (10)

vy + wz = 0. (11)

By neglecting terms of order ε or smaller, the dynamics reduces to the one of a homogeneous fluid.
Introducing a streamfunction in the meridional plane v = −ψz, w = ψy, we find from (7)–(11):

ψyy − (σ2 − y2)ψzz + 2yψyz + ψz = 0, (12)

which is Stern’s equation (Stern, 1963). As boundary conditions we use ψ = 0 at z = 0 (bottom)
and at z = 1 (top).

2.2. Stern’s equation in canonical form

The characteristic curves of (12) are given by the ordinary differential equation:

dy

dz
= 1

y ± σ
. (13)

Details on characteristics for linear second order equations can be found for example in the book
by Myint-U (1987) on page 30–34. By integration, (13) gives the characteristic coordinates:

ζ = z− 1

2
y2 − σy, (14)

η = z− 1

2
y2 + σy. (15)

Using the variables:

Y = 2(η− ζ) = 4yσ, (16)

Z = 2(η+ ζ − σ2) = 2(2z− y2 − σ2). (17)

Eq. (12) is reduced to the (spatial) wave equation (Maas and Harlander, 2007):

ψYY − ψZZ = 0. (18)

In this frame, characteristics are straight lines with slopes of ±1. Solutions of (18) are

ψ(Y,Z) = f (Y + Z) − g(Y − Z), (19)

where f and g are arbitrary functions. Note that the flat earth’s surface and the flat upper boundary
(z = 0, 1) of (12) turn into two displaced parabola in the Y–Z-frame. Bottom and surface are
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given as

Zb(Y ) = −2

(
Y2

16σ2 + σ2
)
, (20)

Zs(Y ) = Zb(Y ) + 4. (21)

Imposing the boundary conditions ψ = 0 at Z = Zs, Zb we find that

g(Y − Zs,b) = f (Y + Zs,b). (22)

Let us consider a single point at the boundary where a characteristic, on which a certain f-value
is constant, is reflected. Obviously, the g-value of the reflected characteristic has to be equal to
the f-value in order to satisfy the boundary condition at the point of reflection. In other words, all
characteristics connected via boundary reflections (a characteristic web), carry the same value.
Consequently, the f-value, corresponding to the initial characteristic is invariant along the whole
web. Thus, it is sufficient to specify f in a single point of the web.

2.3. Characteristic web method

Let us assume for a moment that there is no upper boundary Zs. In other words, the waves can
radiate away from Zb without any back scatter. Then (18) forms a classical Cauchy problem, i.e.
if ψ, ψY and ψZ are given along Zb, a unique solution exists for any choice of the boundary data.
Owing to the boundary conditions, the boundary data are given completely by specifying f along
Zb. For any point P above Zb the solution ψ(P) can easily be found by reading off the f-values
at the points where the c+ and the c− characteristics connect P with the boundary Zb (c+ and c−
denote the characteristics that correspond with a positive and negative slope, respectively).

Coming back to the original problem and introducing a reflective upper boundaryZs, a serious
problem occurs. Now, characteristics can be reflected between the two boundaries and, in general,
the f-values in an arbitrary interval along Zb cannot be chosen independently from the f-values in
another interval. Mathematically spoken, (18) with boundary conditions at Zb or Zs forms an ill-
posed problem and we cannot find solutions if f is given along the whole lower or upper boundary.
Maas and Lam (1995) solved this problem by introducing so called fundamental intervals. These
intervals can be characterized best by the following property: a characteristic ‘launched’ from
a fundamental interval and followed by subsequent boundary reflections (forming a so called
characteristic web) may never intersect with the same or another fundamental interval. Then the
data in the fundamental intervals are independent and, by specifying f in the fundamental intervals
only, a unique solution can be constructed.

A detailed description how fundamental intervals can be found is given in Appendix A. More-
over, we explain why symmetric/anti-symmetric solutions cannot be expected for an arbitrary
choice of data in the fundamental intervals. Finally, we estimate the number of fundamental
intervals for different frequencies in Appendix A.

3. Results

The characteristic web method, described in detail in Appendix A, will now be used to find
solutions of Stern’s equation. From the discussion above it is obvious that the boundary data f can
be prescribed arbitrarily in the fundamental intervals. If, for instance, f is non-continuous in one of
the fundamental intervals, the solution will be non-continuous too. Even continuous data in each
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fundamental interval generally give non-continuous solutions. In any case the solution will not be
everywhere differentiable, that is the velocity field will show singularities (referred to as internal
boundary layers) at limit cycles of the characteristic web (Maas and Lam, 1995). Therefore, it is
appropriate to extend the solution space and allow for non-continuous, so called weak solutions.
Weak solutions are common in the context of nonlinear hyperbolic equations and conservation
laws (LeVeque, 2002). In some sense we can say that boundaries can lead to shock-like structures
in the velocity field, even for linear hyperbolic equations.

3.1. Weak solutions

Let φ(Y,Z) be a set of smooth functions with compact support, that is φ, φY , and φZ go to zero
outside some bounded region in the Y–Z-plane. Now we define ψ such that it has to satisfy:∫ +∞

−∞

∫ +∞

−∞
(φYY − φZZ)ψ(Y,Z) dY dZ = 0, (23)

in order to be called a weak solution of (18). Note that classical smooth solutions satisfy (23). To
show this we multiply (18) with φ and integrate over space. This gives:∫ +∞

−∞

∫ +∞

−∞
(ψYY − ψZZ)φ(Y,Z) dY dZ = 0. (24)

With the assumption on φ made above we have:∫ +∞

−∞
ψXXφ dX = (φψX)+∞

−∞ −
∫ +∞

−∞
ψXφX dX, (25)

∫ +∞

−∞
ψXφX dX = (φXψ)+∞

−∞ −
∫ +∞

−∞
ψφXX dX, (26)

where X stands for Y or Z. Since the first term on the right-hand side of both equations vanishes
we obtain (23) from (24). Thus we have proven that solutions of (18) satisfy (23). However, a
nice feature of (23) is that the derivatives are on φ, and no longer on ψ. This means that even
discontinuous functions ψ can be weak solutions of (18).

Strictly speaking, the solutions that are discussed in the following section are weak solutions
of (18). However, for simplicity the adjective ‘weak’ is omitted.

3.2. Three solutions of Stern’s equation

The aim of this section is to apply the characteristic web method of Maas and Lam (1995) to
Stern’s equation and to discuss the solutions. As it has become clear from the discussion above, the
solutions depend on the choice of data in the fundamental intervals. This choice is arbitrary since
we have not identified a physical mechanism which requires a particular choice. The situation is
similar to classical Cauchy-problems in space and time, where initial conditions can be chosen
arbitrarily. Nevertheless, the data in the fundamental intervals are chosen to highlight typical
and, from a physical point of view, interesting features. The most interesting aspect, namely
the formation of internal boundary layers, is in fact independent of the choice of data in the
fundamental intervals.

The frequency has been chosen from frequency intervals where limit cycles of the characteristic
web exist (Stewartson, 1972). Maas and Harlander (2007) argue that these continuous frequency
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intervals may play a similar role for Stern’s hyperbolic boundary value problem as do the discrete
sets of eigenvalues for elliptic problems. The shape of the internal boundary layer changes from
frequency interval to frequency interval (and sometimes also within a single interval as we will
discuss below), but for every interval, internal boundary layers exist. For our choice of frequencies
the geometry of the limit cycle is relatively simple. The simpler the limit cycle, the shorter is its
total length and the smaller is its number of boundary reflections. Such limit cycles might stand
out even when dissipation and scattering are present. Therefore, geometrically simple limit cycles
(or internal boundary layers) are believed to be most relevant in practice, and they might be
the ones which can be observed in the ocean and the atmosphere. This expectation is supported
by laboratory experiments showing that the simplest limit cycles can be observed most easily
(Manders and Maas, 2003).

3.2.1. Solution for frequency σ = 0.9
Our task is now to discuss the first example. For σ = 0.9 we have discussed in detail how

the fundamental intervals can be found (see Appendix A). Let us first see which part of the fluid
depends on which fundamental interval. Fig. 1a shows the solution corresponding to fI1 = 1/3,
fI2 = 1, and fI3 = 0. Moreover, a c+ and a c− characteristic is displayed in the figure. As can
be seen, the two characteristics converge rapidly towards a limit cycle. To interpret the figure a
‘color code’ is given in Table 1 which has to be read in the following way: a c+ (c−) characteristic
‘launched’ in the red area will be mapped onto fundamental interval I2 (I3); a c+ (c−) characteristic
‘launched’ in the purple area will be mapped onto fundamental interval I3 (I2), and so forth. This
shows for instance that a change of the data in fundamental interval I1 will have no influence on
the solution in the red and purple areas.

An interesting feature which can be seen in Fig. 1a are the two ’beams’, radiated away from
the equatorial region. From Table 1 we find that wave energy can only be trapped completely
in the equatorial regions if we require fI1 = fI3 . Then, the contributions from I1 and I3 cancel
each other and all blue and green regions turn into light green, standing for ψ = 0. Otherwise the
waveguide is leaky and wave energy can propagate to the extra-tropics; there the low frequency
perturbations might resonate with midlatitude synoptic-scale flows (Majda and Klein, 2003).

In Fig. 1b we display the solution corresponding to data which vary in the fundamental intervals,
fI1 = sin(π[Y − s1,2]/[s1,2 − s1,1]), fI2 = sin(π[Y − s2,2]/[s2,2 − s2,1]), and fI3 = 1/8, where
sj,1 (sj,2) stands for the lower (upper) bound of fundamental interval j. In some regions, the
solution shows a stripy pattern with alternating up- and downward motions, other regions show a
cellular pattern with saddle points in the streamfunction field. Most striking however is the internal
boundary layer in which the velocity as well as the velocity shear blows up. To get more insight

Table 1
Colour scheme of Fig. 1a

I1 I2 I3

Red c+ c−
Purple c− c+
Yellow c− c+
Violet c+ c−
Green c+ c−
Blue c− c+
Light green c± c± c±

For details see text.
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Fig. 1. Two solutions of Stern’s equation in terms of streamfunction for σ = 0.9 in the Y–Z-frame. The equator is located
at Y = 0. In (a) f is constant in the fundamental intervals. The fundamental intervals are shown by thick curves above
the upper boundary. A c+ (solid line) and a c− (dashed line) characteristic is launched in the center of the domain. Both
characteristics converge towards a limit cycle. In (b) sine functions have been used in the fundamental intervals. For more
details see text. The figure b is taken from Maas and Harlander (2007).

into the fine structure of this layer we enlarge a small rectangular region (with upper left corner
point (3.9, −1.4) and lower right corner point (4.1, −1.6)), including the boundary layer. Fig. 2a
shows a large number of shear layers (note that the color range differs from that in Fig. 1b),
perfectly aligned along the limit cycle. Enlarging the inner part of the boundary layer further
(Fig. 2b, upper left corner (4.0062, −1.4826), lower right corner (4.01, −1.4865)) uncovers its
self-similar nature: more and more shear layers show up, indicating a blow up of velocity. Apart
from their physical relevance, the fragile looking filaments of alternating jets in the boundary
layer are also appealing from an esthetic point of view.

In practice, dissipative and nonlinear effects control these regions and the fluid is mixed inten-
sively in the internal boundary layer. Physical implications of such processes are discussed by



10 U. Harlander, L.R.M. Maas / Dynamics of Atmospheres and Oceans 44 (2007) 1–28

Fig. 2. Zoom in of Fig. 1 b to uncover the fine structure and the self-similarity of the solution in the vicinity of the limit
cycle.

Maas (2001). Here we want to point out that laboratory experiments have shown that the efficiency
of the mixing is not distributed equally along the limit cycle. Mixing seems to be enhanced where
characteristic focusing is strong. For the geometry considered here the two inner points of contact
of the limit cycle with the upper boundary correspond with regions of especially strong mixing
(Maas, 2001). In our context this could mean that in such regions there is a strong exchange of air
between the troposphere and the stratosphere. Such regions could be local sinks of tropospheric
moisture.

Note that the self-similar structure of the internal boundary layer neither implies a complicated
distribution of fundamental intervals, nor a complicated non-smooth mapping of characteristics
into different fundamental intervals. From Fig. 1a and Table 1 we find that all c+ (c−) characteris-
tics to the left of the thinnest layer visible in Fig. 2b are mapped to I2 (I3), and all c+ (c−) character-
istics to the right are mapped to I1 (I3). Therefore, in view of the complicated self-similar structure
of the boundary layer velocity field, the corresponding characteristic map is strikingly simple.
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Table 2
Colour scheme of Fig. 3a

I1 I2 I3 I4

Red c− c+
Purple c+ c−
Yellow c− c+
Violet c− c+
Light blue c− c+
Blue c+ c−
Green c± c± c± c±

For details see text.

3.2.2. Solution for frequency σ = 0.52
Note that for this frequency, the geometry looks different than for the previous case since the

Y–Z coordinates depend on σ. As before we first assume constant f values in the fundamental
intervals (fI1 = 1, fI2 = 5/2, fI3 = 18/5, and fI4 = 4/3). Together with the ‘color code’ given
in Table 2, Fig. 3a shows which region of the fluid domain is related to which fundamental interval.
In addition, the figure shows the characteristic web of a c+ and a c− characteristic. Interestingly,
two independent limit cycles exist. As discussed in Appendix A, we need in total four fundamental
intervals (shown as thick curves above the upper boundary in Fig. 3a) to find a unique solution. It
should be noted that for σ = 0.5 the two limit cycles melt into one another to form a single cell,
oriented symmetrically with respect to the Z-axis. This means that the appearance of the limit
cycle can look different within the same continuous frequency band (the bands for σ > 0.8 are
tabulated by Stewartson, 1972, the one for σ < 0.8 are given in Fig. 2 of Maas and Harlander,
2007).

In Fig. 3b a solution is shown for fI3 = sin(3π[Y − s3,2]/[s3,2 − s3,1]), fI1 = fI2 = fI4 = 0.
In contrast to Fig. 1b, functions have been chosen such as to avoid any energy loss due to radiation
to extra-tropical latitudes (cf. Table 2). For this choice the red and violet areas of Fig. 3a show a
stripy pattern of localized motions, framed by the internal boundary layer.

3.2.3. Solutions for frequency σ = 0.37
As can be seen from Fig. 4a, for this frequency the limit cycle looks more complicated than for

the other two examples (the limit cycle has 6 cells in contrast to the two cells of the previous cases).
However, there exists just one independent limit cycle as was the case for σ = 0.9, implying three
fundamental intervals (see Appendix A). The partitioning of the fluid domain with respect to
the three fundamental intervals is shown in Fig. 4a (fI1 = 1, fI2 = 5/2, and fI3 = 4/3) and the
corresponding ‘color code’ is given in Table 3. In Fig. 4b we display the solution belonging to
fI1 = sin(π[Y − s1,2]/[s1,2 − s1,1]), fI2 = sin(π[Y − s2,2]/[s2,2 − s2,1]), fI3 = 0. Viewed from
some distance, the solution looks almost like a smooth mode, however, a closer inspection reveals
a sharp internal boundary layer coinciding with the limit cycle shown in Fig. 4a. The reason for
the ‘smooth appearance’ of the solution is, first, that the fundamental interval I2 is large and
that large parts of the domain are mapped onto it, and second, that the geometry gives rise to a
strong focusing of characteristics. Note that in contrast to the solution shown in Fig. 3b the one
shown in Fig. 4b is not fully trapped, that is the solution is non-zero outside the equatorial region.
Nevertheless, given the large amount of kinetic energy trapped along the internal boundary layer
it is justified to say we see a trapped equatorial wave.
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Fig. 3. Two solutions for σ = 0.52. For more details see text and caption of Fig. 1.

Table 3
Colour scheme of Fig. 4a

I1 I2 I3

Red c− c+
Purple c+ c−
Orange c+ c−
Violet c− c+
Blue c+ c−
Green c− c+
Light green c± c± c±

For details seetext.
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Fig. 4. Two solutions for σ = 0.37. For more details see text and caption of Fig. 1.

In summary we can say that the examples presented cover several interesting new features
deserving attention in the meteorological as well as the oceanographic community. Most impor-
tant, of course, is the fact that smooth solutions cannot be found and that internal boundary layers
are a generic feature of Stern’s model describing trapped zonally symmetric equatorial waves.

4. Physical validity of the solutions

In this section we discuss scaling variants of (1)–(5) leading to three different equations for
the meridional streamfunction. We show that a conventional model that assumes stratification and
neglects non-traditional Coriolis terms also shows wave attractors. Using numerical solutions we
demonstrate that even a general model including all terms of (1)–(5) shows localized solutions
similar to the ones of Stern’s model. Therefore, it appears that the validity of the solutions discussed
in Section 3.2 can be extended beyond the Stern limit.
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4.1. Scaling variants

Let us start with the conventional model by scaling the dependent and independent variables
as

(y∗, z∗, u∗, v∗, w∗, p∗, b∗) = (L,H,U,U,HU/L,NHU,NU) · q, (27)

where q = (y, z, u, v,w, p, b)T is a nondimensional column vector. Assuming

σ∗ =
(
NH

L

)
σ, β = 2Ω

R
, L =

(
NH

β

)1/2

, L � H, N � 2Ω, (28)

we can (i), make the traditional approximation by neglecting the Coriolis terms proportional to
2Ω in (1)–(3), and (ii), make the hydrostatic approximation. Note that for typical values of N
and H we find a length-scale of a few hundred km and a frequency scale in the order of the earth
rotation frequency Ω. For the nondimensional streamfunction we obtain:

ψyy − (σ2 − y2)ψzz = 0, ψ = 0 at z = 0, 1. (29)

In contrast to Stern’s model (12) leading to (18), Eq. (29) is of mixed type with turning curves
at y = ±σ poleward of which the equation turns elliptic. The boundary value problem is still
ill-posed. Nevertheless, for flat boundaries it possesses the well-known smooth solutions in the
form of Hermite polynomials. But, as discussed by Maas and Harlander (2007), any additional
symmetry breaking of the hyperbolic region – such as for instance due to topography – leads
to focusing of characteristics. Therefore, the smooth solutions of the conventional model are
extremely sensitive to boundary perturbations. As we will discuss in more detail in Section 4.2,
for mixed type boundary value problems internal boundary layers generically occur. Note that
(29) cannot be reduced to (18) and thus cannot be solved for more general boundaries.

In contrast to the conventional model, in Section 2.1 we scaled (1)–(5) by

(y∗, z∗, u∗, v∗, w∗, p∗, b∗) = (L, εL,U,U, εU, 2ΩεLU, 2ΩUε) · q (30)

and assumed

σ∗ = 2Ωεσ, β = 2Ω

R
, ε = L

R
� 1, N2 ∼ (2Ωε)2σ. (31)

Thus, considering low frequencies and very small N but still keeping the vertical length scale and
velocity scale small in comparison with the horizontal scales gives Stern’s model (12). As for the
conventional scaling, the inertia term can be neglected in the vertical momentum Eq. (3) but the
non-traditional Coriolis terms are order one now and have to be kept. Note that in contrast to (29),
Stern’s model is purely hyperbolic, that is the turning curves of (29) have been mapped to ±∞.

Physically, the regime considered by Stern may perhaps apply to the deep equatorial ocean,
where N is indeed negligible (see e.g. Fig. 2.6 of Tomczak and Godfrey, 1994). The assumption
of zonal symmetry is here also acceptable in view of the fact that several observed phenomena in
the equatorial ocean are almost zonally symmetric (Ollitrault et al., 2006). To apply Stern’s model
to atmospheric dynamics three questions need to be addressed: (i) can N become very small in
the equatorial atmosphere? (ii) Which upper boundary condition is more realistic for tropospheric
inertial waves, wave radiation or wave reflection? (iii) Which role do zonally symmetric waves
play for the atmosphere?
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(i) As we have already mentioned in the introduction, for equatorial tropospheric motion two
distinctly different flow regimes can be identified, a stable one and a convectively mixed one
with nearly zero background stratification (Klein, 2003). Stern’s model corresponds to the latter
if a time-scale much longer than the typical convective time-scale can be justified. It is known
(Wheeler and Kiladis, 1999) that equatorial waves can force convection. Our model suggests that
inertial waves trapped on a wave attractor might also trigger convection that locally reduces static
stability over long periods. (ii) In Appendix B we study the scattering of plane inertial waves at the
tropopause. It is found that the tropopause acts as a rigid surface that reflects almost all incoming
low-frequency inertial waves. Thus, for inertial waves in a well-mixed neutral troposphere, a wave
reflection upper boundary condition appears to be more realistic than a radiation condition. (iii)
The study of zonally symmetric modes has a long tradition in atmospheric sciences and such
modes have raised interest also recently (Raymond, 2000; Zhao and Takahashi, 2006). In spite
of the inhomogeneous distribution of land and sea, zonally elongated patterns of wind and cloud
fields are common in the equatorial atmosphere. Thus, for the present conceptual study, zonally
averaged solutions might be a worthy first step in the investigation of internal boundary layers in
the tropics.

Let us finally study the resilience of the predicted results to stratification and (weak) vertical
shear. To do so we add the linear advection term w∗ū∗

z∗ to (1) and scale (1)–(5) by

(y∗, z∗, u∗, v∗, w∗, p∗, b∗) = (R,R,U,U,U, 2ΩUR, 2ΩU) · q (32)

assuming

σ∗ = 2Ωσ, β = 2Ω

R
, ū∗

z∗ = α∗, α∗ = 2Ωα. (33)

Here ū∗ is a dimensional zonal mean flow that depends linearly on z∗. For this scaling each term of
the nondimensional version of (1)–(5) is of order one. Thus, in contrast to the conventional system
and Stern’s model, we can neither make the traditional nor the hydrostatic approximation and we
have to keep all terms. Using α′ = 1 + α, Γ = (α′ +N2 − σ2)/α′2, y′ = y/Γ 1/2, z′ = α′z we
obtain for the meridional streamfunction:

ψy′y′ − (σ2 − Γy′2)ψz′z′ + 2y′ψy′z′ + ψ′
z = 0, ψ = 0 at z′ = 0, α′. (34)

This equation is strikingly similar to Stern’s equation (12). However, for Γ �= 1 it cannot be
reduced to (18) and thus cannot be solved using the characteristic web method by Maas and Lam
(1995). Still, Maas and Harlander (2007) showed that characteristics of (34) converge towards
wave attractors which is a first hint for the existence of internal boundary layers. Here we will go
one step further and discuss the occurrence of internal boundary layers in numerical solutions.

4.2. Finite difference solutions

Hyperbolic or mixed type equations like (12), or (29) and (34) with elliptic boundary conditions
are difficult to solve numerically. Usually, standard numerical techniques give inaccurate or even
misleading results. Mainly, eigenspectrum degeneracy and the strongly localized character of
the solutions accounts for these difficulties. However, with the knowledge of the wave attractor
frequency intervals and the gross structure of the expected solution we can apply central finite
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differences to obtain (at least qualitative) insight. We use a regular grid and the discretisation:

ψz ≈ ψk+1,j − ψk−1,j

2�z
, ψyz ≈ ψk+1,j+1 − ψk+1,j−1 − ψk−1,j+1 + ψk−1,j−1

4�y�z
,

(35)

ψyy ≈ ψk,j+1 − 2ψk,j + ψk,j−1

�y2 , ψzz ≈ ψk+1,j − 2ψk,j + ψk−1,j

�z2 (36)

with lateral boundary conditions ψ = 0 for y → ∞,3ψ(y, z) = −ψ(−y, z) (anti-symmetric
modes). Then we solve (12) and (34) as a generalized eigenvalue problem:

A V = B V D (37)

by using the MATLAB routine eig(A,B). Here, A and B are matrices containing the discretised
differential operators, the columns of V are the eigenvectors, and the diagonal matrix D contains
the eigenvalues (frequencies). Note that B (corresponding with ψzz) is identical for (12) and (34).
Note further that Γ in (34) depends on σ. Therefore, even for Γ close to one, the matrices A of
(12) and (34) differ significantly.

Fig. 5a and b shows two example solutions, one corresponding to (12), the other to (34).
Comparing Fig. 5a with Fig. 1b it becomes obvious that the finite difference solution is rather
poor. Though not well resolved, the internal shear layer can still be identified in the solution.
Most important, however, is the qualitative similarity between Fig. 5a and b. In Fig. 5b we used
α′ = 1 and N2 = 9/2 and still we can find an internal shear layer, though poorly resolved. The
figure should be compared with Fig. 4 of Maas and Harlander (2007) that shows the position of the
wave attractor for the same α′,Γ , but with σ = 3/2 instead of the ‘eigenfrequency’ σ = 1.4996. It
appears that the addition of stability does not remove the shear layers, a result that corresponds with
earlier findings (Dintrans et al., 1999). Since the structure of (34) is not changed by introducing
a weak shear, there is no reason to believe that vertical shear will remove the internal shear
layers. Note that due to the zonal symmetry, critical levels where zonal phase speed equals the
zonal mean velocity cannot exist. Nevertheless, Γ is singular for α = −1, corresponding with a
decreasing zonal mean flow with height. For weak shear with |α| � 1, however, all coefficients
of (34) are regular. Note further that, apart from the geometry of the internal shear layer, the
solution shown in Fig. 1b depends on the data given in the fundamental intervals. A quantitative
comparison of the solutions obtained by the characteristic web method with the solutions obtained
via (37) is therefore not useful. In fact, to obtain Fig. 1b we have used boundary conditions that
make the hyperbolic boundary value problem well-posed. In contrast, ‘well-posedness’ seems
to be artificially forced by the finite difference approach. A more detailed discussion on the
shortcomings of finite difference solutions for ill-posed boundary value problems will be given
elsewhere.

Before we give conclusions we note that besides the scalings (27), (30), and (32) discussed
above, there exist other scalings that yield intermediate types of equations. For example, changing
the coefficient of the mixed derivative term of Stern’s Eq. (12) by a positive factor smaller than
one turns Stern’s boundary value problem from hyperbolic to mixed type. This reminds of the
baroclinic Eliassen problem for a forced mean overturning circulation, where the mean vertical
shear determines the coefficient in front of the mixed derivative term. Depending on the shear, the

3 In fact, ∞ is replaced by a y that is far enough from the wave attractor.
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Fig. 5. (a) Numerically computed eigenmode of Stern’s model (12) with eigenfrequency σ = 0.90055. The figure should
be compared with Fig. 1. (b) Numerically computed eigenmode of (34) with eigenfrequency σ = 1.4996. We used
N2 = 9/2 and α′ = 1. Both solutions are computed for a 34 × 34 grid and are plotted in the transformed space (16) and
(17). Wave attractors are shown by dashed white lines. The turning curve in b) is shown by a solid white line.

problem can be elliptic (in which case an overturning circulation exists) or hyperbolic (in which
case modes of inertial instability exist) (Dunkerton, 1989).

5. Conclusion

We considered equatorial, zonally symmetric inertial waves, propagating in the meridional
plane. Such waves are solutions of the boundary value problem derived by Stern (1963). As was
proven by Stewartson (1971, 1972), the solution of Stern’s equation possesses singularities in the
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velocity field, referred to as internal boundary layers. Nevertheless, a complete understanding of
Stern’s equation was still lacking since exact solutions that explicitly resolve these singularities
were not available. This gap is filled now: we computed exact solutions of Stern’s model by using
the characteristic web method of Maas and Lam (1995). This relatively new method is suitable
to resolve the structure of the non-viscous internal boundary layers that contain the attracting
limit cycles discussed by Stewartson (1971), to arbitrary fine scales (see Figs. 1b, 2 a and b).
Interestingly, a self-similar pattern of shear layers can be found, oriented in alignment with the
limit cycles. At its position, the shear layers become infinitely thin. Velocity as well as higher
derivatives of the streamfunction blow up within the internal boundary layers and the major part
of the kinetic energy of the wave field is trapped there. Similar solutions are discussed by Maas
and Lam (1995), Maas et al. (1997), and Manders et al. (2003), but for different geometries and
in a different physical context.

Eigensolutions of a viscous (elliptic) version of Stern’s boundary value problem can be expected
to be symmetrical (ψ(Y,Z) = ψ(−Y,Z)) or antisymmetrical (ψ(Y,Z) = −ψ(−Y,Z)) with respect
to the equator (Rieutord et al., 2002). However, for arbitrary data in the fundamental intervals,
Stern’s hyperbolic boundary value problem usually possesses asymmetric solutions (see for exam-
ple Fig. 1b). As explained in Appendix A, the reason for the asymmetry is an asymmetric mapping
of characteristics into fundamental interval I1 (see Fig. A.1b). To avoid asymmetry, constant data
in I1 have to be used. Then an asymmetrical mapping into I1 can no longer affect the solu-
tion. One example of this kind was shown in Fig. 3b where we used f = 0 in I1, I2, and I4.
For this choice of data, a fully trapped antisymmetrical solution can be found. Another exam-
ple with energy radiation towards mid-latitudes is shown in Fig. 6a. For this Figure we used
σ = 0.9, fI1 = 0, fI2 = sin(π[Y − s2,2]/[s2,2 − s2,1]), and fI3 = sin(π[Y − s3,2]/[s3,2 − s3,1])
and we plotted sign(ψ(Y,Z)), defining sign(0) = 0. White corresponds to −1, dark grey to 1,
and light grey to 0. By using constant data in I1, the pattern is antisymmetrical. Note that the
asymmetric solutions are generally noncontinuous in contrast to the symmetrical/antisymmetrical
solutions. Therefore, it is not possible to obtain the asymmetric solutions by a superposition of a
finite number of symmetrical and antisymmetrical solutions.

Stern’s equation is relevant for geophysical fluid dynamics since it is an approximation for the
equatorial region of a rotating spherical shell (Brown and Stewartson, 1976; Stewartson, 1978).
The typical features described here for Stern’s boundary value problem can thus be expected
also for spherical geometry. For the rotating shell, Stewartson and Rickard (1969) showed that
time-harmonic non-viscous solutions are generally singular. Based on numerical computations,
Fotheringham and Hollerbach (1998) and Rieutord et al. (2001) discussed the asymptotic prop-
erties of inertial modes confined to a spherical shell when viscosity becomes small. They found
internal boundary layers similar to the one we discussed for Stern’s equation. In contrast to our
analysis, the self-similar structure of the boundary layers could not be resolved due to the addition
of viscosity, however, it is likely that for the spherical geometry the non-viscous boundary layers
possess a fractal structure, too. Rieutord et al. (2001) and Rieutord et al. (2002) showed that
viscosity can control the singularities in a rotating spherical shell. They found by numerical and
asymptotic techniques that the innermost internal layer scales with E1/3, where E = ν/2ΩR2 is
the Ekman number, ν is the kinematic viscosity, Ω is the rotation frequency, and R is the outer
radius of the spherical shell. On the other hand, laboratory experiments by Manders and Maas
(2004) imply that nonlinear processes might also play a role in determining the width of the
boundary layers.

Having noted that internal boundary layers are typical features for waves in rotating spherical
shells (and approximations thereof) it might surprise the reader that smooth Rossby-Haurwitz
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waves exist for this geometry when the radial component of the motion is small (Longuet-Higgins,
1964). However, as was shown by Stewartson and Rickard (1969) for the spherical shell, the
regular expansion that leads to such smooth solutions fails when higher order terms are taken into
account, and singular solutions emerge. Thus, paraphrasing Huthnance (1978), these large-scale
regular modes continuously leak energy to the fine-scale inertial wave field that is not square-
integrable. Inspecting the solutions of Stern’s equation from this point of view is instructive. The
solution corresponding to σ = 0.37 (Fig. 4b) reminds of a smooth mode that is cut by the internal
boundary layer. There is a spatial scale separation between the region close to the limit cycle
and the rest of the domain. This feature is typical for small frequencies. Fig. 6b shows a solution
for σ = 0.179 (in contrast to Fig. 4 we use the cosine for fI1 and minus the cosine for fI2 ) to
underline this fact. Note that the large-scale features of this solution remind us of the pattern of

Fig. 6. (a) sign(ψ(Y,Z)) (defining sign(0) = 0) is plotted for σ = 0.9 when fI1 = 0. The pattern (and the corresponding
solution ψ) is antisymmetrical. White corresponds to −1, dark grey to 1, and light grey to 0. (b) Solution corresponding
to σ = 0.179. Here, cosine functions have been used in the fundamental intervals. See text for more details.
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deep equatorial currents recently observed in the Eastern Equatorial Atlantic Ocean (Bourlés et
al., 2003).

Numerical techniques or severe truncations of perturbation series might artificially regularize
local singularities (Huthnance, 1978; Swart et al., 2007) and such approaches should therefore be
applied with caution to hyperbolic boundary value problems. Thuburn et al. (2002) for instance
look for time-harmonic solutions of a non-viscous, non-hydrostatic, compressible fluid comprised
in a rotating spherical shell. As Stern’s equation, this problem is ill-posed and regular eigenmodes
cannot be expected (Stewartson and Rickard, 1969; Brown and Stewartson, 1976; Stewartson,
1978; Dintrans et al., 1999). Surprisingly, Thuburn et al. discuss only regular solutions found by a
numerical finite difference approach. To understand better how solutions with internal boundary
layers are represented in finite difference models we solved Stern’s Eq. (12) as a generalized
eigenvalue problem by using central finite differences. We found that even with low resolution
a regularized internal boundary layer is visible (compare the right hand side of Fig. 1b with
Fig. 5a). We then extended Stern’s equation by adding stratification and vertical shear. For this
model we found regularized versions of the boundary layers in finite difference solutions, too.
Thus it appears that the boundary layers found for Stern’s boundary value problem are resilient
to small amounts of vertical shear and stratification. This implies that the results discussed in
Section 3.2 hold beyond the Stern limit of a homogeneous fluid.

Taking together our results and what has been published before on internal wave solutions
of fluids confined to (semi-)closed domains it is evident that solutions with internal boundary
layers are relevant to geophysical fluid dynamics. Stronger, for the non-viscous case, smooth
eigenmodes appear to be exceptional, occurring for special geometries only, or being the result of
approximations, resulting for example through the exclusion of vertical motions or the assumption
of quasi-geostrophy. The question arises if the type of internal boundary layer discussed here has
been observed in the atmosphere or the oceans. Of course, it would be too optimistic to expect that
clean boundary layers, as shown in the Figs. 1, 3, 4 and, can be observed. Nevertheless, effects
of internal boundary layers might be observable in certain regions. From laboratory experiments
(Maas, 2001) it is known that the strongest mixing occurs around points where the internal
boundary layers focus at the boundaries. If we consider the equatorial tropopause as the upper
boundary, tropospheric air could effectively be mixed into the tropopause at those points. This
kind of mixing could work in addition to convective overshooting (Sherwood and Dessler, 2003),
where air from the tropospheric boundary layer is lifted into the tropopause. We conclude by saying
that internal boundary layers might be an issue in deep ocean mixing or stratosphere–troposphere
coupling (Shepherd, 2002) that should possibly be taken into account when observations of
equatorial deep currents or troposphere–stratosphere air exchange are interpreted.
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Appendix A. How can fundamental intervals be found?

In general, the so called grazing points can be used to construct the fundamental intervals. At
grazing points, the boundary slope equals the slope of the characteristics. For a domain bounded
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Fig. A.1. Construction of fundamental intervals for σ = 0.9 in the Y–Z-frame. Circles (crosses) denote reflection points
of a characteristic web from the boundaries when a c+ (c−) characteristic is ‘launched’ from a fundamental interval.
The boxes indicate the position of the grazing points g1, . . . , g4. Fundamental intervals are denoted by I1, . . . , I3 and
are shown by line segments above the upper parabolic boundary. The polygons in between the two boundaries are the
characteristic webs used to find the fundamental intervals. In (a) characteristics are launched from I1 having a distance
of �Y = 0.1. In (b) characteristics are started from a small subinterval of I1 (�Y = 0.002). In (c) and (d) characteristics
from I2 and I3 (�Y = 0.1) are mapped to the boundaries.

by a polygon, for example, grazing points correspond with corner points of the polygon (Maas
et al., 1997). For the equatorial shell geometry, four grazing points exist and they correspond
to points where the boundary slope is one. These points are shown in Fig. A.1 by squares and
are denoted by gi, i = 1, . . . , 4. Typically, grazing points divide the boundaries into regions with
different reflection properties: a characteristic hitting the boundary to the left of a grazing point
will be reflected in the opposite direction than a characteristic hitting the boundary to the right of
a grazing point.

Let us now construct the fundamental intervals for waves with frequency σ = 0.9. (For other
frequencies the construction is similar as is shown in Table A.1). To make the discussion tighter
we introduce the notation gi‖c+, k‖sj,n that has to be read in the following way: launch a c+
characteristic from gi, follow it along k reflections, and read off the final reflection point sj,n,
corresponding to the lower bound (n = 1) or to the upper bound (n = 2) of fundamental interval
j. Note that fundamental intervals are located at the top of the equatorial shell and that we specify
their boundaries by Y values alone.

To find the first fundamental interval I1, the following two operations have to be carried out

g3‖c−, 1‖s1,1, and g3‖c+, 5‖s1,2.
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Table A.1
A summary of all characteristic webs used to find the fundamental intervals

σ 0.9 0.52 0.37 0.179

s1,1 g3‖c−, 1‖s1,1 g3‖c−, 1‖s1,1 −1.7402 g3‖c−, 1‖s1,1
s1,2 g3‖c+, 5‖s1,2 g3‖c+, 3‖s1,2 s1,1‖c−, 10‖s1,2 g3‖c+, 17‖s1,2
s2,1 g2‖c+, 3‖s2,1 g1 g3‖c−, 4‖s2,1 g3‖c−, 8‖s2,1
s2,2 g1 g4‖c−, 2‖s2,2 g4‖c+, 2‖s2,2 g4‖c+, 2‖s2,2
s3,1 g3‖c−, 2‖s3,1 0 g1‖c−, 10‖s3,1 g1‖c−, 18‖s3,1
s3,2 −s3,1 s3,1‖c+, 4‖s3,2 g1 g1

s4,1 – g3‖c−, 2‖s4,1 – –
s4,2 – g2 – –

Graphically, these operations are shown in Fig. A.1a. As mentioned above, the boundaries s1,1
and s1,2 of I1 are Y-values, that is the interval has to be read off ‘vertically’ from the figure,
which is shown in the Y–Z-frame. Note that, following the characteristic web, s1,2 is the reflection
point at the upper boundary which comes closest to s1,1. We can check whether or not I1 is a
first fundamental interval by ‘launching’ characteristics from this interval and verify that none
of those will enter the interval again. The circles (crosses) in Fig. A.1 show boundary reflection
points of a characteristic web when a c− (c+) characteristic is launched from I1 (60 reflections
are computed for each characteristic). Indeed, no characteristic is mapped back onto I1.4

Fig. A.1b demonstrates that relatively large boundary segments can be mapped onto very small
parts of the fundamental interval. This is caused by the small distance between the upper bound
of I1 and the limit cycle, combined with a fast focusing rate. Note that in contrast to Fig. A.1a,
the set of characteristics launched from the small subinterval (it covers only 11% of I1) is rather
dense (�Y = 0.002).

To find the second fundamental interval I2 we perform (see Fig. A.1c):

g2‖c+, 3‖s2,1.
As upper bound of I2 we take g1. Note that for the chosen characteristic web, s2,1 is that

reflection point at the upper boundary which comes closest to g1. Therefore, I2 is a possible
fundamental interval. This can be tested by mapping points from I2 onto the boundary to verify
that no characteristic is mapped back onto I1 or I2. Finally, a third fundamental interval is neces-
sary corresponding to characteristics ‘escaping’ to infinity. Obviously, c− characteristics which
intersects with a point located beyond g3 (i.e. further away from the equator than g3) cannot be
mapped back into the equatorial region. Therefore, we apply

g3‖c−, 2‖s3,1,
to find the lower bound of I3 (see Fig. A.1d). The upper bound is located symmetrically to the
right of the Z-axis. As for the other fundamental intervals we can verify whether the data in I3
are independent from I1 and I2. Note that for computational reasons we have introduced vertical
walls at Yw = ±5.1, visible in Fig. A.1d. These walls do not affect the fundamental intervals as
long as |Yw| is larger as the magnitude of the lower bound of I1.

4 One circle seems to be in the fundamental interval. However, the interval displayed in the figure has to be projected
vertically on the upper boundary. Then it becomes plausible that the suspicious point is in fact located outside of the
interval.
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A synopsis of Fig. A.1a–d shows that the boundary is completely covered by reflection points
(crosses or circles). Clearly, a one-to-one correspondence between the boundary points outside
and inside the fundamental intervals exists. Since any point inside the fluid domain can be mapped
to a point on the boundary by a c+ or a c− characteristic, the solution of (18) is given uniquely
if f is specified in the fundamental intervals only. This forms the basis of the characteristic web
method introduced by Maas and Lam (1995). The algorithm to find ψ at any point P inside the
fluid domain can be summarized as follows:

(i) Launch a c+ characteristic at P and trace it back until it intersects with one of the fundamental
intervals. Read off the value of f = f+.

(ii) Repeat point (i) but with a c− characteristic. This gives f = f−.
(iii) Find the streamfunction at P by ψ(P) = f− − f+.

A.1. Interhemispheric asymmetry

A conclusion we can draw from (i) to (iii) in combination with Fig. A.1b and d is that, for
arbitrary data in the fundamental intervals, solutions of Stern’s equation will in general show
interhemispheric asymmetry. To see this we consider an area S in the fluid, defined by points
which can be mapped by a single c− characteristic onto I1 and by a single c+ characteristic onto
I3. The streamfunction for all points P of S is simply given by ψ(P) = f−

I1
− f+

I3
, where f±

I1,3
stands for the f-value of the characteristic starting at P and intersecting with the fundamental
interval I1,3. Next consider the area S′ which is the mirror domain of S with respect to the Z-axis.
Clearly, all points of S′ can be mapped by a single c− characteristic onto I3. However, as is
obvious from Fig. A.1b, almost all points of S′ can be mapped onto the small subinterval of I1
shown in the figure. Consequently, ψ(P ′) generally differs from −ψ(P), that is we cannot expect
symmetric (or anti-symmetric) solutions for the equatorial shell if the data in I1 vary with Y.

A.2. Number of fundamental intervals

Let us address the question of how many fundamental intervals we can expect for a certain
frequency. For the convex geometries considered by Maas and Lam (1995) and Manders et al.
(2003) the results suggest that N limit cycles imply N + 1 fundamental intervals. For the Stern
equation, characteristics can additionally be mapped to ±∞, so we expect more than N + 1
fundamental intervals. It turns out that for Stern’s equation N + 2 fundamental intervals exist.
Note that, even if no counter example of this rule has been found yet, it is not mathematically
proven. Therefore, the rule has to be used with caution.

A.3. Summary

Table A.1 gives all the characteristic webs used to determine fundamental intervals at the
upper boundaries of the equatorial shell for four different frequencies. The symbol gi‖c+, k‖sj,n
means that a c+ characteristic has to be launched from gi and followed along k reflections, to
find one of the two boundaries of a fundamental interval. Here sj,n denotes the Y-value of the
lower bound (n = 1) or the upper bound (n = 2) of fundamental interval j, located at the upper
boundary. Note that the choice of fundamental intervals for a given frequency is not unique.
In other words, one can use different characteristic webs to find a fundamental interval. For
example, for σ = 0.9, 0.52, 0.179 we used g3 as starting point for the characteristics to find I1.
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In contrast, for σ = 0.37 we launched a c−-characteristic at (Y,Zs(Y )) with Y = −1.7402 to find
an appropriate I1. The interval is smaller compared with the other fundamental intervals I1, but
it is still located to the left of the point where the wave attractor touches the upper boundary.
The position of the internal boundary layer is independent of the choice of fundamental intervals,
nevertheless, the solution (i.e. the streamfunction) depends on this choice and, of course, on the
data specified in the intervals.

Appendix B. Internal wave reflection

If atmospheric waves (internal and planetary) would propagate into the mesosphere without any
back scatter, refraction, or breaking, an atmospheric corona would be produced as was pointed
out by Charney and Drazin (1961) [see Hines (1989) for a retrospective view on atmospheric
gravity waves]. Today we know that only some fraction of the wave energy which is radiated
upward from the earth’s surface can actually reach the middle atmosphere. To estimate the ratio
between transmitted and reflected waves at the troposphere–stratosphere interface let us consider
the region below the tropopause as well-mixed with constant Brunt-Väsälä frequency N2

1 = 0,
and the lower part of the tropopause as a region with constantN2

2 = 7 × 10−4 s−2. The number for
N2 comes from a recent study on the sharpness of the troposphere–tropopause boundary (Birner
et al., 2002), showing that the transition is much sharper than expected from earlier estimates.
We assume further that the atmosphere is at rest, that there is no density jump at the tropopause,
and that the Boussinesq-approximation holds. For simplicity, we also neglect the beta effect. This
is justified by the fact that Rossby waves cannot transport energy vertically in a homogeneous
medium. The beta effect modifies the inertial wave propagation. However, this modification does
not essentially change the results presented in the following.

With the assumptions above we obtain from (1)–(5) for a zonally symmetric well-mixed
troposphere:

ψzz −
(

4Ω2 − σ2

σ2

)
ψyy = 0, (B.1)

where v = −ψz and w = ψy. Note that in (12) we neglected inertia in the vertical momentum
equation. Then the coefficient in (B.1) would reduce to 4Ω2/σ2. However, keeping or neglecting
this term does not change the main results given below.

In the layer representing the tropopause, N2
2 � 4Ω2, thus we can neglect the non-traditional

terms there. Eqs. (1)–(5) yield:

ψzz −
(
N2

2 − σ2

σ2

)
ψyy = 0. (B.2)

To find the reflection and transition coefficients, we consider plane waves with an upward group
velocity, having amplitude one, and impact angle θ = arctan(ni/ li), where li andni are the incident
meridional and vertical wavenumbers (see Fig. B.1a). Note that group velocity stands perpendic-
ular to the wavenumber vector. At the troposphere–tropopause interface the matching conditions
are w1 = w2 and p1 = p2, where w1, w2, p1, p2 stand for the vertical velocity and pressure in
the troposphere (index 1) and in the tropopause (index 2). From these conditions we find:

T = 2ni
(ni + nt)

, R = T − 1 (B.3)
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Fig. B.1. (a) An upward propagating internal wave with vertical wavenumber n1 is partly reflected and partly transmitted
at the lower boundary of the tropopause at z = 0. (b) Transmission and reflection coefficients as a function of frequency.
We usedΩ = 7.2 × 10−5 s−1,N2

1 = 0 andN2
2 = 7 × 10−4 s−2. Note that T12 − R12 = 1. The thin curve shows the angle

of incidence θ, as defined in (a). To the right of the vertical dotted line, θ is smaller than 45◦ (steep ray), to the left it is
larger (shallow ray). In (c) we used N2

1 = 0 and N2
2 = 7(2Ω)2.
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with

n2
t =

(
N2

2

σ2 − 1

)
l2i and σ2 = 4Ω2l2i

(n2
i + l2i )

. (B.4)

Fig. B.1b shows the inertial wave reflection and transmission coefficients as a function of the
normalized frequency. Due to the fact that the vertical motion is not hampered by stratification in
the well-mixed lower layer but suppressed in the strongly stratified upper layer, the reflection of
inertial waves is almost elastic. No internal gravity waves can be excited by inertial waves at the
interface. In spite of the simplicity of the reflection process described, we can say that an upward
traveling inertial wave field will be reflected almost completely at the tropopause. Subsequently,
it propagates downward into the troposphere where it might be reflected a second time at the
earth’s surface and so forth.

It is instructive to reduce N2
2 to see for which value transmission becomes visible. Fig. B.1c

shows T and R for N2
1 = 0 and N2

2 = 7(2Ω)2. Interestingly, even for such a weak stratification,
reflection is rather prominent.

Finally, let us compare the results with the reflection of internal gravity waves when the
troposphere is not well-mixed. For such a more classical situation, the formulas for the reflection
and transmission coefficients can be found in Tolstoy (1973). With the assumption made above (no
density jump at the interface, Boussinesq approximation), the general formulas given by Tolstoy
reduce to (B.3) and (B.4) but with σ2 = N2

1 l
2
i /(n

2
i + l2i ). For a typically tropospheric stability of

N2
1 = 1 × 10−4 s−2 and N2

2 = 7 × 10−4 s−2, the transmission and reflection coefficients (when
plotted against σ/N1) are exactly the same as the one shown in Fig. B.1c. Remarkably, for all
impact angles (shown by the thin curve), the magnitude of R is roughly 0.5 or larger (see Fig. B.1d).
We see that for a stratified troposphere too, the tropopause is a rather effective reflector for internal
gravity waves.

References

Birner, T., Dörnbrack, A., Schumann, U., 2002. How sharp is the Tropopause in midlatitudes? Geophys. Res. Lett. 29,
10.1029/2002GL015142.
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