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This report is about solving the Poincaré equation within a tilted square. This
will be done using a ray-tracing method after having prescribed the solution on
appropriate parts of the square’s boundary. Thereby the difficulty is to locate
proper intervals at which the solution can be prescribed. In order to find such
intervals it is necessary to study the limit behavior of reflecting characteristics.

1 Introduction

The equation we want to study, the so-called two dimensional Poincaré equation,

∂2ψ

∂x2
− λ2 ∂

2ψ

∂z2
= 0 (1)

is closely connected to internal waves in a uniformly-stratified, inviscid, linear, hydrostatic,
non-rotating, two dimensional Boussinesq fluid. Starting with their governing equations
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and introducing a streamfunction Ψ(x, z, t) with u = −∂Ψ/∂z and w = ∂Ψ/∂x, which for
monochromatic waves of frequency ω becomes

Ψ(x, z, t) = ψ(x, z)e−iωt,

the Poincaré equation (1) can be derived, where λ2 = ω2/N2, if λ << 1. Thereby t denotes
time, u and w are the velocity components in horizontal (x) and vertical (z) direction and
g denotes gravity. N is the Brunt-Väisälä frequency, defined by N2(z) = −(g/ρ∗)(dρ0/dz).
Buoyancy is given by b, p denotes pressure and ρ as well as ρ∗ and ρ0 are components of
the density field. The approach we will use to solve the equation, a ray-tracing method, as
well as the derivation of the Poincaré equation is presented in detail in [1].

It is well known that solutions of (1) are given by

ψ(x, z) = f(x− γz)− g(x+ γz)

with arbitrary functions f and g, where γ = λ−1. For future convenience we define

F (x, z) = f(x− γz),

G(x, z) = g(x+ γz).
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We want to solve (1) within a tilted square S, where the boundary condition is given by

ψ = 0 at ∂S. (2)

Applying the boundary condition (2) to a point (x0, z0) ∈ ∂S yields

F (x0, z0) = G(x0, z0). (3)

Let (x1, z1) be the intersection point of the boundary with the characteristic c = x − γz
starting at (x0, z0) and (x2, z2) the boundary intersection point with the characteristic d =
x+ γz starting at (x1, z1). Since f remains unchanged along c and (x1, z1) ∈ ∂S

F (x0, z0) = F (x1, z1) = G(x1, z1),

in the same manner g is unchanged along d, which yields

G(x1, z1) = G(x2, z2) = F (x2, z2).

We see that F and G remain unchanged at the boundary intersections of reflecting char-
acteristics. Thus, we can compute the streamfunction value ψ(x0, y0) for any given point
(x0, z0) by following the characteristics passing through this point until they intersect the
boundary on intervals where the function F = G has been prescribed. Thereby the problem
is to find appropriate distinct intervals where this function can be prescribed and thus to
avoid the ill-posedness of the problem. Therefore it is necessary to study the limit behavior
of the reflecting characteristics.

2 Characteristics movement

2.1 Introduction and definitions

As our domain we consider the square [0, 1] × [0, 1] ∈ R
2 tilted counterclockwise with tilt

angle 0 < θ < π

2
. The angle between the characteristic with positive slope and the vertical

will be referred to as φ, i. e. λ = tan(π/2 − φ). Thus the angle determining the negative-
slope characteristic measured from the vertical is −φ. For the sake of simplicity we switch
to a coordinate system parallel to the square’s boundaries. From this point of view, we
can choose two arbitrary angles φ1 and φ2 determining the slopes of the two characteristics
as shown in Figure 1. In the following we consider φ1 to be measured clockwise from the
vertical and φ2 to be measured counterclockwise from the vertical. Then θ and φ are given
by

θ =
φ1 − φ2

2
, φ =

φ1 + φ2

2
.

It is clear that our initial situation can always be reobtained by rotation.

Furthermore we need some definitions. A characteristic coming from one of the square’s
corners will be referred to as critical characteristic. This denotation will become clearer
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Figure 1: Given two arbitrary angles φ1, φ2 which determine the slopes of the character-
istics we can always reobtain the initial situation by rotating the square.

later, when we have a look at the characteristic’s movement. The sequence of intersection
points with the boundary for a starting point x0 together with the connecting characteristics
will be referred to as the web of x0 and denoted by S(x0) = {. . . , x−2, x−1, x0, x1, x2, . . . },
xi ∈ ∂S.

In principle we could choose −π

2
≤ φ1, φ2 ≤

π

2
, but it is possible to restrict the parame-

terspace. Without loss of generality, we can take 0 ≤ φ1 and 0 ≤ |φ2| ≤ φ1. Otherwise we
can get this situation by swapping φ1 and φ2 and or reflecting about the z-axis. If φ1 = φ2,
then θ = 0 what has been excluded before. If φ1 = 0 or φ2 = 0 one of the characteris-
tics is parallel to the boundary, which yields exceptional reflection behavior. Thus we take
strict inequalities. Furthermore, we can assume φ1 ± φ2 ≤

π

2
. This situation can always

be obtained by rotating the domain by kπ/2 for integer k. See figure 2(a). The restricted
parameterspace is depicted in figure 2(b).

2.2 Limit behavior

Now we will have a closer look at the characteristic’s movement. As we will see there are
two different main types of limit behavior depending on whether φ2 is positive or negative.
For the following it is convenient to define t1 = tan(φ1) and t2 = tan(φ2).

Theorem 1. For any φ2 < 0 and for any starting point the characteristics approach to

the square’s upper left or lower right corner.

Proof. First of all we can assume the starting point to be at the bottom. In addition we
also assume that we trace the characteristics starting with the characteristic determined
by φ1. Let x∗ be the x-coordinate of the bottom point which gets mapped directly to the
upper right corner, then x∗ = 1− t1 and the sequence of successive bottom intersections
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parameterspace.

Figure 2:

is given by

xn+1 =

{

xn + t1 + t2, xn ≤ x
∗,

1− (xn − 1)t2/t1, x∗ < xn.

Since −φ1 < φ2 < 0 we have 0 < t1 + t2 and hence xn < xn+1 for xn ≤ x∗. We also
observe that for any starting point x0 ≤ x

∗ there exists a k ∈ N such that x∗ < xk holds
true. For xn = 1 also xn+1 = 1, thus there is nothing left to prove. For x∗ < xn < 1 we
have

xn+1 − xn = 1 + t2/t1 − (t2/t1)xn − xn

= (1− xn) (t2/t1 + 1) < 0,

since xn < 1 and −φ1 < φ2. Additionally the sequence is bounded, where the least upper
bound is 1. Hence limn→∞ xn = 1, which means that the characteristics are attracted
by the lower right corner.
A case where the starting characteristic is corresponding to φ2 can be put down to the
above mentioned case by rotation. Then the characteristics approach the upper left
corner.

Such a case of limit behavior is called a subcritical case (Figure 3(a)). Locating a convenient
fundamental interval where the streamfunction can be prescribed is rather simple in such a
case and will be discussed in section 3. If φ2 > 0 the limit behavior becomes more compli-
cated, since back-reflections can annihilate the ordering. Those cases are called supercritical

cases (Figure 3(b)).

There are three possible types of limit behavior in a supercritical case, namely periodic, er-

godic and attractor cases, see [2]. In a periodic case the web S(x0) consists only of a finite
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(a) Subcritical case with starting
point at x0 = (0.5, 0.5). φ1 = π/6,
φ2 = −π/18.
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(b) Supercritical case with starting
point x0 = (0.5, 0.5). Here φ1 = π/3,
φ2 = 5π/36.

Figure 3: Examples of sub- and supercritical cases.

number of elements, i. e. S(x0) = {x0, x1, . . . , xn} with a fixed n for any x0. If for each
x0 the trajectory comes arbitrary close to any point in the square, the case is called ergodic
or quasi-periodic. The most frequently occurring case of limit behavior is the attractor. In
this case the characteristics are attracted towards a limit cycle. For our geometry the oc-
curring attractors are always global attractors, i. e. for any starting point the characteristics
get attracted towards the same limit cycle. Attractors are characterized by the number of
boundary intersections they have. The overall number of an attractor’s intersections with the
boundary is called the attractor’s period. Due to the symmetry it is sufficient to count only
the intersections on the left and top of the boundary. An attractor with m intersections at
the left and n intersections at the top is referred to as an (m,n)-attractor. The simplest type
of attractor is a (1, 1)-attractor, a so-called simple attractor. It is remarkable that simple
attractors occur in a continuous region of the parameterspace.

Theorem 2. A simple attractor occurs if and only if π

4
< φ1 ≤

π

2
− φ2.

Proof. It is clear that the possibility to inscribe a parallelogram inside the square is a
necessary condition for the occurrence of a simple attractor. From the figure below we
observe the following conditions.

l1, l2, l3, l4 > 0, (4)

1 = l1 + l2, (5)

1 = l3 + l4, (6)

l1 = t2l4, (7)

l2 = t1l3 (8)

l3
l4

l1 l2

φ1
φ2
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Adding up (7) and (8) in consideration of (5) and (6) yields

1 = l4(t2 − t1) + t1.

and hence

l4 =
t1 − 1

t1 − t2

Since l4 > 0 by assumption it follows that φ1 >
π

4
.

Now, let π

4
< φ1 ≤

π

2
. Since φ1 >

π

4
the positive-slope characteristics have a slope smaller

than 1, which implies that for any starting point at the bottom the next intersection
point will be at the right. Additionally we have φ2 ≤

π

2
− φ1 < π

4
and hence the

negative-slope characteristics have a slope smaller than −1. This means that for any
starting point on the right the next intersection point will be on the top. Altogether we
can compute a map which maps a point at the bottom again to the bottom, independent
of the points position. This map is given by

T (x) = (t22/t
2
1)x+ c,

with a constant
c = t2

(

1− 1/t1 + t2/t1 − t2/t
2
1

)

,

Due to the assumptions
T ′(x) = t22/t

2
1 < 1

holds true and so the sequence of successive iterations xn+1 = T (xn) converges towards
the unique fixed point x∗ of T , where

x∗ =
t2 (1/t1 − 1)

t2/t1 − 1

The fact that T (x) 6= x for almost all x additionally implies that there is no possibility
for periodic behavior in this case.

In particular this means that for φ1 >
π

4
and φ2 ≤ φ1 −

π

4
the only occurring limit behavior

in a supercritical case is the approach to a simple attractor. In terms of the tilted square
with tilt angle θ this is the case for π

8
≤ θ ≤ 3π

8
.

Now we have characterized three quarters of the parameterspace. The limit behavior in the
remaining quarter is more complex. In this region all possible types of limit behavior occur,
particularly high period attractors. Figure 4 shows the distribution of these attractors in the
corresponding region of parameterspace.

Now we are going to characterize periodic cases with help of the critical characteristics.

Theorem 3. Periodic orbits for each starting point occur if and only if each corner gets

mapped to another.
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Figure 4: For each pair (φ1, φ2) the period of the corresponding attractor is plotted. The
dark red areas represent attractors with period ≥ 100. The white lines indicate
periodic cases, see below. Notice that the upper left part is not a part of the
restricted parameterspace.

Proof. If every starting point gets mapped to itself after a finite number of iterations
particularly a corner point has to get mapped to itself. But the only possibility for this
is to map a corner to another and to go the same way back.
Now we presume that every corner gets mapped to another. If the characteristics were
approaching an attractor also the critical characteristics would have to approach this
attractor. Since this is not possible and obviously such a case cannot be an ergodic one
this must be a periodic case.

This characterization of periodic cases in principle allows us to compute the parameters
(φ1, φ2) for which periodic cases occur analytically. As an example we consider the case
where a characteristic starting at the lower left corner of the square intersects the lower right
corner after 2k successive intersections at the top and bottom. With the help of simple
analysis, we obtain that the relation between φ1 and φ2 in such a case, is given by the
nonlinear equation

k(t1 + t2) = 1,

and finally we get
φ2 = arctan(1/k − t1).

The contribution of these periodic cases for k = 1, . . . , 15 within the upper left part of the
restricted parameterspace is depicted in Figure 5. Additionally you can see this contribution
in Figure 4, where these periodic cases are indicated by the white lines. For more complicated
types of periodicity the analytic computation becomes too complex. But the above mentioned
procedure can be used to obtain numerical results.

Another way to get an impression of the limit behavior is to look at a Poincaré plot. At
this the positions of the last few hundred intersection points on the left boundary as well
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Figure 5: Here the pairs (φ1, φ2) for which the explained type of periodic case occur are
plotted for k = 1, . . . , 15.

as the top boundary are plotted after performing a large number of iterations. Here this
is done for a fixed tilt angle θ = (φ1 − φ2)/2 as φ = (φ1 + φ2)/2 varies from θ to π/4.
Such a plot is given by Figure 6, where θ = π/18. For each gridpoint there have been
7500 iterations performed, where only the last 500 are plotted. The upper subplot depicts
the intersections on the left boundary, the lower one those on the top boundary. The figure
shows regions where the attractor period is constant, separated by regions with high period
attractors. We already know that simple attractors only occur in that part of the restricted
parameterspace where φ1 > π/4. Here this means that φ has to be larger than 35π/180
as can be clearly observed in the plot. Examination of the windows where no attractors are
visible at a finer scale, shows a form of self-repeating structure, where these regions are again
divided in windows showing attractors with a relative small period and other windows with
high period, which is shown in Figure 7. This figure also shows that the attractor period
increases rapidly while approaching a periodic case at φ ≈ 257π/1800.

A third possibility to study the limit behavior is with the help of the rotation number. The
rotation number is defined by

ρ = lim
n→∞

T̃ n(x0)

n
.

Here the map T = c−1 ◦ F ◦ c is the composition of a function F : ∂S → ∂S which
returns the next but one boundary intersection point and a parameterization of the boundary
c : ∂S → [0, 4[. For more information on T see Appendix A. T̃ : R → R is a continuous
transformation of T which is uniquely determined up to addition of a constant integer. It can
be shown that the rotation number is independent of the starting point x0. Interesting about
the rotation number is, that a rational rotation number corresponds to either an attractor
or periodic case and a irrational rotation number corresponds to an ergodic case. If ρ is a
rational number, and additionally T n = I for some n ∈ N, then T is periodic, otherwise
attractive. Besides that the rotation number varies continuously and monotonously with

10



Figure 6: Poincaré plot for θ = π/18. The last 500 intersection points after 7500 itera-
tions are plotted.

Figure 7: Examination of Figure 6
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(a) Rotation number for fixed tilt angle θ = π/18.
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Figure 8:

the parameters φ1, φ2 and remains constant in the attractive areas of the parameterspace.
This behavior can be clearly observed by Figure 8(a) and Figure 8(b). Comparing these two
figures with the Poincaré plots from above, we can see identical behavior for the different
parameter values.

Although one might expect, there is no chaotic behavior within the high period windows.
One way to obtain this result is the computation of Lyapunov exponents

λ = lim
n→∞

1

N

N−1
∑

n=0

log

∣

∣

∣

∣

dTn

dx
(x0)

∣

∣

∣

∣

.

The Lyapunov exponent measures the overall convergence or divergence of nearby character-
istcs. At this chaos is associated with λ > 0. Although the Lyapunov exponent is a function
of x0 the same λ will be obtained for almost any starting point x0. Figure 9(a) shows the
Lyapunov exponents for fixed tilt angle θ = π/18. Comparing it with figure 6 we can observe
relative small Lyapunov exponents in the windows with small attractor periods and Lyapunov
exponents close to zero in the regions with high period attractors and ergodic cases. At this
a Lyapunov exponent λ = 0 either indicates a periodic or ergodic case. Anyway, no positive
Lyapunov exponents can be observed. Figure 9(b) is corresponding to the Poincaré plot
figure 7 and also mimics this plot.

3 Computation of the streamfunction

As mentioned before we can compute the streamfunction field by prescribing the function F
on appropriate intervals at the boundary. Thereby it turns out that at most two intervals are
enough. In subcritical cases it suffices to prescribe F on only one interval. Locating such

12



π/18 π/12 π/9 5π/36 π/6 7π/36 2π/9 π/4
−2.5

−2

−1.5

−1

−0.5

0

0.5

φ

λ

(a) Lyapunov exponents corresponding to Figure 6

5π/36 257π/1800 11π/75
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

φ

λ

(b) Examination of Figure 9(a) corresponding to
Figure 7

Figure 9:

an interval is rather simple. For instance we can choose any interval [xn, xn+1[ between two
successive characteristcs intersections xn and xn+1 on the boundary. Having prescribed F
on such an interval the function is already prescribed on the whole boundary.

In supercritical cases we have to distinguish between the three types of limit behavior. In
an ergodic case there exists only one web. Thus, we can prescribe the solution only in
one single point at the boundary. Taking the boundary condition (2) into account yields
that the solution is the trivial solution ψ = 0. In order to locate appropriate intervals for
periodic and attractor cases we used the following Algorithm 1, see Appendix B. In case of
a simple attractor a proper choice of intervals are the ones depicted in Figure 10. One can
quite easily assure oneself that these intervals are chosen right. Algorithm 1 seems to be a
consequentially extension of the way to choose the intervals in case of a simple attractor,
but it would be much nicer if this could be proved.

Having determined the position of appropriate intervals where F can be prescribed, it is an
easy task to compute the streamfunction field ψ = F−G. We also can compute the pressure
field which is given by p = F +G. The following examples of streamfunction and pressure
fields, where computed by prescribing two cosines with an offset at the chosen intervals.
Figure 11 shows the streamfunction and pressure field in case of an simple attractor. Here
φ1 = π/3 and φ2 = 5π/36 corresponding to Figure 3(b). We observe a self repeating
structure near the attractor in both subplots. Figure 12 depicts the streamfunction field and
pressure field for φ1 = π/6 and φ2 = π/18. This means that θ = π/18 and φ = π/9. A
more complex attractor and the corresponding streamfunction and pressure field is shown by
Figure 13. Here φ1 = π/6 and φ2 = 13π/180. In a periodic case, for example with φ1 = π/6
and φ2 = arctan(1 − t1) we obtain smooth streamfunction and pressure fields. This is due
to the fact that in this cases the web of a point x0 divides the boundary into a finite number
of distinct intervals. Of course one has to prescribe a smooth function at boundary, in order
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Figure 10: Appropriate choice of intervals in case of a simple attractor

to obtain smooth streamfunction and pressurefields. See Figure 14.

4 Discussion

A still open question is for which parameters ergodic cases occur, or if these cases occur
at all. Figure 4 and Figure 7 suggest, that periodic cases appear at the heart of regions
with high period attractors. But this leaves little room for the ergodic cases. Candidates for
ergodic cases could be the boundaries between regions with high and low period attractors,
but this has not been further examined yet. One way to answer this question would be the
analytically computation of rotation numbers, but this seems to be quite a hard task.
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(a) Streamfunction: φ1 = π/3, φ2 = 5π/36
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(b) Pressure field: φ1 = π/6, φ2 = 5π/36

Figure 11:
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(a) Streamfunction: φ1 = π/6, φ2 = π/18
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(b) Pressure field: φ1 = π/6, φ2 = π/18

Figure 12:
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(a) Streamfunction: φ1 = π/6, φ2 = 13π/180
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(b) Pressure field: φ1 = π/6, φ2 = 13π/180

Figure 13:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1.5

−1

−0.5

0

0.5

1

1.5

(a) Streamfunction: φ1 = π/6, φ2 = arctan(1− t1)
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(b) Pressure field: φ1 = π/6, φ2 = arctan(1− t1)

Figure 14:
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A Analytic map

In order to get a more analytic approach to the characteristics limit behavior we can compute
a map F : ∂S → ∂S of the circumference to itself. Combining two successive intersections as
one, we obtain an orientation preserving map, where F can be represented as F = T− ◦T+.
At this T− : ∂S → ∂S is defined by

T−(x, y) =











































(0, x/t2)), 0 ≤ x ≤ x∗, y = 0,

(x− t2, 1), x∗ < x ≤ 1, y = 0,

(1 + t2(y − 1), 1), x = 1,

(x+ t2, 0), 0 ≤ x ≤ x∗∗, y = 1,

(1, 1 − (1− x)/t2, x∗∗ ≤ x ≤ 1, y = 1,

(yt2, 0), x = 0,

x∗ = t2, x∗∗ = 1− t2,

and returns the next intersection point along the negative characteristcs. Similarly T+ :
∂S → ∂S returns the next intersection point along the positive characteristics and is given
by

T+(x, y) =











































(x+ t1, 1), 0 ≤ x ≤ x∗, y = 0,

(1, (1 − x)/t1), x∗ < x ≤ 1, y = 0,

(1− yt1, 0), x = 1,

(0, 1 − x/t1), 0 ≤ x ≤ x∗∗, y = 1,

(x− t1, 0, x∗∗ ≤ x ≤ 1, y = 1,

((1− y)t1, 1), x = 0

x∗ = 1− t1, x∗∗ = t1

if φ1 <
π

4
and by

T+(x, y) =











































(1, (1 − x)/t1), y = 0,

(1− yt1, 0), 0 ≤ y ≤ y∗, x = 1,

(0, y − 1/t1), y∗ < y ≤ 1, x = 1,

(0, 1 − x/t1), y = 1,

(1, y + 1/t1), 0 ≤ y ≤ y∗∗ x = 0,

((1− y)t1, 1), y∗∗ < y ≤ 1, x = 0

y∗ = 1/t1, y∗∗ = 1− 1/t1

if φ1 >
π

4
.
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A parameterization of the boundary ∂S is for instance given by c : [0, 4[→ ∂S,

c(t) =























(t, 0), 0 ≤ t ≤ 1,

(1, t− 1), 1 < t ≤ 2,

(3− t, 1), 2 < t ≤ 3,

(0, 4 − t), 3 < t < 4

with inverse function c−1 : ∂S → [0, 4[,

c−1(x, y) =























x, y = 0,

y + 1, x = 1,

3− x, y = 1,

4− y, x = 0.

The map T : [0, 4[→ [0, 4[ which was used to compute the Lyapunov exponents in section
2.2 is the composition T = c−1 ◦ F ◦ c.
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B Algorithm for computing intervals where the streamfunction

can be prescribed

Algorithm 1 Interval algorithm

. The square’s corners are denoted counterclockwise by A, B, C, D, starting with the
lower left corner.

a2 ← 0, b1 ← 1
for each of the corners A,B,C,D do

compute the web S(c) = {xc
0, x

c
1, x

c
2, . . . },

extract the subsequence {xc
nl
} of bottom-intersections

end for

b← min{xC
nl
}, b∗ ← min{xB

nl
}

if min(b, b∗) = 0 then

b2 ← max(b, b∗)
else

b2 ← min(b, b∗)
end if

a← max{xA
nl
}, a∗ ← max{xD

nl
}

if a = a∗ then

a1 ← 1
else

a1 ← max(a, a∗)
end if

I1 ← [a1, b1], I2 ← [a2, b2]
if |I1| = 0 then

I1 ← ∅
else if |I2| = 0 then

I2 ← ∅
end if

return I1, I2
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