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An exact, stratified model of a meddy 
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A b s t r a c t  

An exact model to describe submesoscale, coherent vortices in a uniformly stratified 
fluid is presented. The model allows for stratification of the eddy interior, so as to agree 
with observations. The closed set of equations governing the evolution of the eddy on the 
f-plane is derived. In the case that the interior isopycnal surfaces remain horizontal the 
stratified analogue of the 'rodon', a special solution of the 'lens equations' that govern the 
evolution of uniform-density, warm-core surface eddies, is obtained. 

I .  I n t r o d u c t i o n  

Observations of a meddy (Mediterranean eddy) by Armi et al. (1989) have 
revealed the following features (see Fig. 1). It consists of an anticyclonically 
rotating lens of salt water  (angular velocity approximately - f / 3 )  situated at a 
depth of about 1000 m. The meddy has a radial extent of approximately 25 km, a 
depth of about 300 m and a lifetime of over 2 years. The density field within the 
meddy is stably stratified, albeit weaker than the exterior stratification. The 
isopycnals within the meddy typically slope in a consistent fashion and change 
height dramatically at the edge. Motions in the core increase linearly with 
increasing distance from the centre. 

Meddies are one particular class of submesoscale, coherent  vortices, observa- 
tions and models of which have been reviewed by McWilliams (1985). In particular, 
he introduced a simple model of a steady circular vortex that may be stratified in 
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Fig. 1. (a) Cross-section of salinity (PSU) and (b) density (at, kg m - 3) for June 1985. The black area in 
(a) and stippled area in (b) correspond to the core of high-salinity Mediterranean water (salinity greater 
than 55.8 PSU in (b)). (c) Vertical profiles of density difference (kg m -3) between the centre of  the 
meddy and the exterior for the four cruises in October 1984, June 1985, October 1985 and October 
1986, labelled I - IV,  respectively. (d) Observed azimuthal velocity at 1000 m depth vs. radius. The 
straight line corresponds to 0.35 times local Coriolis parameter;  the dashed line is the salinity at 1000 
dbar (taken from Armi et al. (1989)). 
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the interior. The model is underdetermined - -  there is one more unknown than 
there are equations - -  and one is free to prescribe an 'eddy-like', monopolar 
pressure field, from which the azimuthal velocity and stratification follow. The 
boundary of the eddy in this model is, however, ill-defined. Other models assume 
the interior of the eddy to have either constant density (Gill, 1981; Dugan et al, 
1982; Ruddick, 1987), or the same density gradient as the exterior (Zhmur and 
Pankratov, 1990; Meacham, 1992). Gill's (1981) study determined the shape and 
exterior velocity structure of a (basically 2D) elliptical eddy based on quasigeostro- 
phy and hydrostacy assuming the potential vorticity to be constant in the exterior. 
This approach has been extended by Zhmur and Pankratov (1990) and Meacham 
(1992) by considering 3D ellipsoidal regions with different but uniform potential 
vorticity in the interior and by matching interior and exterior solutions. In Rud- 
dick's (1987) study the eddy is residing at the interface of two infinitely deep and 
therefore motionless layers. Attention was consequently concentrated solely on the 
interior dynamics. The model of Dugan et al. (1982) also concentrated on the 
interior dynamics, assuming somewhat unrealistically that the velocities in the 
exterior, stratified region vanish. In our model, a similar approach is taken, except 
that the exterior fields are instead considered to be unresolved (and solvable by, 
for example, the approach taken by Zhmur and Pankratov (1990)). 

To describe the observed interior stratification a simple, exact model of an 
ellipsoidal, stratified eddy in a rotating stratified sea is proposed below. In this 
model, the eddy is enclosed by a surface of vanishing perturbation pressure, and 
the velocity and density fields are linear, and perturbation pressure field quadratic 
functions of the spatial coordinates. These have time-dependent coefficients whose 
time evolution is determined by a closed set of ordinary differential equations, that 
can be solved explicitly in particular circumstances. 

2 .  E x a c t  s t r a t i f i e d  e d d y  m o d e l  

Let us consider the inviscid Navier-Stokes equations on the f-plane, scaled with 
'external' scales: reference density P0, Coriolis parameter f and reduced gravity 
g' = ge, where g denotes the acceleration of gravity and e the scale of the overall 
density perturbation relative to P0. Regular perturbation expansion in E leads, in 
lowest order, to the following dimensionless equations for a Boussinesq fluid: 

Du ap 
v (la) 

Dt ~x 

Dv ap 
- -  + u = - - -  ( l b )  
Dt Oy 

Dt ~z +p  (lc) 

where D/Dt denotes the material derivative. Because both particle and phase 
speeds of disturbances are much smaller than the speed of sound, and also because 
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the vertical scales of motion are much smaller than the scale height of the ocean 
(which exceeds its depth), the ocean is an incompressible fluid: 

V.u = 0  ( ld )  

and hence 

Dp 
=o (le) 

Dt 

Here u, v, w are the velocity components along x, y, z directions in a Cartesian 
frame of reference whose origin is located at the centre of the eddy; p and p are 
the density and pressure fields expanded about the uniform and linearly varying 
reference state, respectively. The eddy is considered to exist within an enclosed 
region, outside which the fluid is assumed to be linearly stratified: p c ( z ) =  
- z N 2 / f  2, to which the exterior pressure field pc(z) is hydrostatically related. 
Here N denotes the Brunt-Viiis~il~i frequency, defined as N 2 = -g/Po dp/dz.  It 
is useful to define perturbation pressure and density: 

p'(x, t) =p(x,  t) -p,,( z) (2a) 

p'(x, t) =p(x,  t) -pe ( z )  (2b) 

which are nonzero in the interior only. The edge of the eddy is enclosed by a 
surface on which the perturbation pressure vanishes: p'  = 0. 

While considering the motion of a homogeneous water mass in a paraboloidal 
basin, Ball (1963) showed that the centre of gravity may execute inertial oscilla- 
tions, independent of any changes in shape of the free surface. His analysis was 
reinterpreted in a reduced gravity context and applied to model (uniform-density) 
warm-core, surface eddies by Cushman-Roisin et al. (1985), Young (1986), Cush- 
man-Roisin (1987) and others. It can be shown that the subsurface, stratified eddy 
considered at present may likewise execute inertio-buoyancy oscillations as a 
whole, independent of any changes in shape, orientation and size that it may 
exhibit (see the Appendix). These motions of the geometric centre are here 
ignored, however. Bali's (1963) result was based upon integral considerations. 
Young (1986), aiming to give a complete description of the motion of the warm-core 
eddy in terms of integral quantities such as the centre of gravity and moments of 
inertia, concluded that not enough such integral relations exist. Rather, by specify- 
ing the velocity and height fields to consist of low-order polynomials with time-de- 
pendent coefficients, the internal structure of the eddy turns out to be describable 
by eight coupled ordinary differential equations, termed the lens equations by 
Ruddick (1987). Young (1986) solved these, up to a final quadrature; a last 
integration that can be accomplished in terms of elliptic integrals. 

Several conserved quantities can be formulated for the equations governing a 
Boussinesq fluid, Eqs. (1): 

(1) volume V 

V~- f dx  (3a) 
JD 
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(2) potential vorticity II 

( . ,  + ~ , ) .vp  

where o)= 7 × u is the vorticity and k a vertical unit vector. This quantity is 
materially conserved and therefore, in view of the commutativity of the time-de- 
rivative and global integration operators which the Boussinesq fluid exhibits, also 
its integral over the eddy domain D is conserved: 

n = fD(,O +/,)  "V o dx (3b) 

(3) energy E 

jo[l ] E = "-~U'U'+-ZR-I-Re dx  (3C) 

(4) the vertical component of the absolute angular momentum vector L(] ) 

1 
L (z) = f x v  - yu + -~ (x 2 + y 2) dx (3d) 

As in Young's (1986) analysis, this does not suffice to determine the complete 
internal evolution of the eddy, however. 

Therefore we also employ a low-order polynomial expansion of the velocity, 
density and pressure field: 

ui (x ,  t) = u i j ( t ) x  j (4a) 

p(x ,  t)  = p i ( t ) x i  (4b) 

1 
- p ! .  t ) x i x  ~ (4c) p ' ( x ,  t) =p0( / )  + 2 u( 

where indices i, j ~ {1, 2, 3} and summation over repeated indices is implied. 
Matrix p!. is symmetric. Substituting these expressions with 19 unknown functions tJ 
of time in (1), we obtain 

d u i j  
- -  --I- UikUkj  d- e i3kUkj  -t- p~j -t- ~i3P~ = 0 (5a) 

dt 
dpi 
d----t + UkiPk = 0 (5b) 

and 

u~k = 0 (5c) 

w h e r e  ~-ijk and 8ij are the anti-symmetric and Kronecker-delta tensors, respec- 
tively. These constitute a total of 13 equations. The six missing follow from the 
boundary condition expressing that a particle once residing on the boundary 
remains on the boundary: 

Op' (x ,  t) 
= 0 at  p ' ( x ,  t )  = 0 

Dt 
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Inserting expression (4c) in both the boundary condition (employing (4a) in the 
material derivative) as well as the description of the boundary itself leads to two 
equations, having polynomial expressions with seven independently varying, spatial 
fields, that have to be satisfied simultaneously. Eliminating the spatially uniform 
term between these two and subsequently requiring the separate vanishing of each 
of the coefficients of the resulting polynomial with six spatially dependent terms 
leads to 

( d  l a p ° ) ,  , 
dt Po dt Po +PikUk +PlkUki=O (5d) 

This leaves us with a closed set of 19 nonlinearly coupled, ordinary differential 
equations for as many unknowns, describing the evolution of an eddy in a 
uniformly stratified, rotating medium having a different internal stratification. 

No notion of applying the model to oceanic eddies (except the arguments to 
validate the Boussinesq approximation) has been introduced up to now. The model 
equally applies to laboratory eddies. However, if we intend to apply the model to 
oceanic eddies, the observed disparity in horizontal and vertical scales L and H 
has to be brought into the description. In such a case, it is useful to rescale the 
horizontal and vertical scales and velocities separately, and Eqs. (5) change only by 
the appearance of the square of the aspect ratio a = H / L  << 1 in front of the 
acceleration terms in the vertical momentum equation. For i = 3, Eq. (5a) simpli- 
fies to 

p;, : -p ;  

where perturbation density p' =p'ix,. As the interior is less stratified than the 
exterior, p~ > 0 (see Fig. 1(c)) (Dugan et al., 1982; Armi et al., 1989). The exterior 
density field is in this case given by p,,(z) = - S z ,  with S = ( N H ) 2 / ( f L )  2 denoting 
the Burger number, which implies 

Pi = P'i - -  8 6 3 i  (6) 

3. S p e c i a l  c a s e s  

3.1. Disc-shaped eddy 

A solution of (5) is given by the disc-shaped perturbation pressure field 

1 1 
p'= ~p~(H 2- z 2) + ~-,O,(.Q + 1 ) ( x  2 + y 2 )  

where u21 =--U12-----I] and the central pressure P0 has been determined by 
assuming that the vertical scale H of the eddy is known. If also horizontal scale L 
and interior stratification p' 3 are given, the angular velocity l) can be obtained 
from 

H 2 

~ ( a +  1)= - p ;  L2 
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It should be recalled that p~ > 0. As P'3 is a sizeable part of N2/f 2, the right-hand 
side can be expressed as a fraction of S. The vortex is necessarily a high-pressure, 
anticyclonic eddy with l l  ~ ( -  1, 0). 

3.2. Stratified rodon 

Let us consider the case that isopycnal surfaces stay flat: Pl = P2 = 0. From (5b) 
this implies //31 = U32-----0 a n d  u 3 3 -  - 1 / P 3 d P 3 / d t ;  i.e. horizontal uniformity of 
the vertical velocity field. With the hydrostatic assumption, Eq. (5d) for P'13 and 
P23 implies that the horizontal velocities have no shear in the vertical: u13 = u23 = 0. 
Consequently, again from (5d), , _ 2 P33- CoPoP3, where c o is a constant. However, 
because of hydrostacy, p' - ' 3 3 -  - - P 3 ,  and 

P0 dt = - ( U l l q - t / 2 2 )  2 -  P3 

The right-hand side reduces to - ( u  n + u22) only when the Burger number S 
vanishes, in which case the equations for u11, u12, u21, u22, P'Xl, P'12, P~2 and P0 
formally become identical to the lens equations (see Cushman-Roisin et al. (1985), 
Young (1986), Cushman-Roisin (1987) and Ruddick (1987)). This leads to some 
inconsistencies, however, as 0 < p~ < S, whereas for static stability P3 < 0. 

A useful particular solution of (5), valid even for arbitrary aspect ratio and 
Burger number, is the stratified analogue of the rodon (Cushman-Roisin et al., 
1985). This is, in the present context, an anticyclonic, steadily rotating ellipsoid of 
fixed shape in which the horizontal divergence vanishes (u n + u22 = 0 and hence 
u33 = 0). The isopycnal field is horizontal and, as the central pressure, is constant 
in time. Motions are purely horizontal, lacking vertical shear. 

4. Discussion and conclusions 

A complete set of equations, (5), describing the evolution of an interiorly 
stratified eddy in a uniformly stratified, rotating medium has been derived. The set 
has been shown to reduce formally to the lens equations in the limit that the 
aspect ratio and Burger number are small. For this set, formerly derived to 
describe constant-density, warm-core eddies, solutions have been obtained, which 
show that the eddy executes simultaneous shape, size and orientation changes that 
occur superinertial, inertial and either sub- or superinertial, respectively (Young, 
1986). In the present application, where the surroundings are uniformly stratified, 
inertial and superinertial oscillations are subject to radiative damping. Hence, it is 
likely that only orientation changes will remain. The case of small Burger number 
has some limitations, however. It is satisfactory therefore that a stratified analogue 
of the rodon, which rotates steadily at subinertial frequencies, satisfies the equa- 
tions of motion unconditionally. 



222 L.R.M. Maas, K. Zahariet, / Dynamics of Atmospheres and Oceans 24 (1996) 215-225 

More detailed analysis of the equations needs to be performed. In particular, 
the case with sloping isopycnal surfaces needs to be addressed, as this feature was 
suggested in the observations of Armi et al. (1989) (see Fig. l(b)). Also, the 
adjustment of the exterior in response to the revolving meddy needs more careful 
consideration. 
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Appendix: Motion of the geometric centre of the eddy 

We consider the perturbation of a stably stratified reference state, which 
consists of a combined displacement, tilting and (possibly) internal distortion, or 
partial mixing of the density structure. We assume this to be confined to the 
enclosed region of space, D, on which boundary, OD, the perturbation pressure, 
vanishes: 

p' = 0 at x ~ ~D 

We let the position vector x of a fluid element within the packet of fluid be 
measured with respect to the Cartesian frame of reference centred at O, the 
time-averaged position of the geometric centre. At each instant it thus consists of a 
t ime-dependent displacement of the geometric centre of the eddy, X(t),  which 
vanishes when averaged over an as yet undetermined period T), and which points 
to the oscillating centre O', and a vector, x', relative to this: 

x = X ( t )  + x '  (A1) 

By definition then, 

1 
x ( t )  = f x dx (A2) 

where volume V is defined as 

V = fo dx'  (A3) 

where here and in the previous expression the surface of the eddy is assumed to be 
parametrized from the oscillating centre O'. From (A1)-(A3), it follows that 

fD x' d x ' =  0 (A4) 
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Because of the Boussinesq approximation, the conservation of mass implies the 
conservation of volume of the enclosed region, V. Thus the time-derivative and 
volume integral operators commute: 

() dx'= -iT f ( )  dx', 
As the perturbation pressure vanishes at the boundary, an integration of (la) and 
(lb) over the eddy yields 

d2X dY 
0 (A5a) 

dt 2 dt 

d2y d X  
dt---- Y + ~ = 0 (A5b) 

which means that the eddy may perform inertial oscillations in the horizontal plane 
in response to a horizontal, initial displacement. An integration of (lc), with 
perturbation pressure and density fields p' and p', yields 

d2Z 1 
-~ fD[P(X, t) --pe( Z)] dx' (A5c) dt 2 

As the interior of the fluid is just displaced (besides being internally distorted), 
reference to the displacement vector X(t) should vanish for points within the eddy: 

p(x, t) =p(x', t) =pe(Z') + p'(x', t) (A6) 

where the last equality follows from (2b). The integrand of (A5c) is thus given by 

p'(x', t) +pe(Z') --Re(Z) 
From (A1), however, the exterior density field can be expanded as follows: 

pe(Z) ----pe[Z' "[- Z( t ) ]  ~,pe(Z') +zdpe(Z"-----~)dz + 1z2  d2pe(Z'-------~)dz 2 -1- "'" (m7) 

such that (A5c) reads, in linear approximation, 

d2Zdt 2 = Z [lfodPe(Z')dx']-V dz (A8) 

Here we employ the fact that by proper choice of the reference density P0 the 
perturbation density field carries no net mass: 

fDP'(X', t) dx'---0 (A9) 

the perturbations merely reflecting tilting and mixing of the original stratification. 
Eq. (A8) shows that the eddy as a whole is thus subject to a buoyancy oscillation in 
the vertical with a buoyancy frequency which is the average Brunt-V~iis~il~i fre- 
quency. The latter, dimensionally given as N(z), is present in (A8) in nondimen- 
sional terms, because (N/ f )  2 -  -dPe(Z)/dz. These oscillations may become 
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nonlinear when the neglected terms are no longer small. If the exterior density 
field is linear, however, these terms vanish identically and the buoyancy frequency 
is, in that case, exactly equal to the (constant) N/.f.  

Independence of  motions of  geometric centre and internal distribution of  the eddy 

The inertio-buoyancy oscillations which the eddy as a whole executes are 
described by the motions of the geometric centre, determined by (A4) and (A8) 
and appropriate initial conditions. Relative to these the eddy may, however, exhibit 
oscillations in its orientation, shape and size, as well as in the distribution of its 
internal density field. As in the study of tidal oscillations in a paraboloidal basin 
(Ball, 1963), as well as in an application of that study in a reduced gravity context 
to describe warm-core eddies on an f-plane (Cushman-Roisin, 1987), these relative 
motions are independent from those of the geometric centre, as will be shown now. 

The velocity field in inertial space is the sum of the velocity field of the eddy as 
a whole and the motions relative to this: 

u(x ,  t) = U( t )  + u ' ( x ' ,  t) (A10) 

The total derivative of, for instance, the x-component of velocity then is given by 

D u ( x , t )  Ou(x , t )  

Dt at 
- -  + [u(x ,  t ) .  V]uCx, t) 

dU( t )  Ou'(x', t) au'(x' ,  t) ax' 
- - - +  + + . . .  

dt at ax' at 

au'Ix', t) 
. . . + [ U ( t ) + u ' ( x , t ) ]  ax' + " "  ( A l l )  

which, with x ' ( t ) = x - X ( t ) ,  yields the sum of the acceleration of the frame of 
reference, d U / d t ,  and the total derivative in the frame of reference, X(t): 

D'u'(x', t) au'(x', t) 
- - -  + [u '(x ' ,  t ) . V ] u ' ( x ' ,  t)  ( a12)  

D' t at 

A similar reasoning applies to the other equations. Hence, in the moving frame of 
reference the same equations as (1) and (2) apply (with p and p in (1) replaced by 
their perturbative counterparts), but now in terms of the relative (primed) coordi- 
nates. Thus the geometric centre evolves independently from any changes in form 
or internal density distribution, and for subsequent study of the latter, the former 
may be assumed to be absent without loss of generality. 
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