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Abstract: 

 
In nature, flows can turn unstable and generate waves. Depending on circumstances, these waves may in 

turn retard or accelerate these flows. The importance of rotation on this process is studied. This is done 

by pumping fluid through a rectangular duct that is put on a rotating platform, and by measuring, for 

given pump and rotation rates, cross-channel pressure difference as well as through flow.  As the flow 

passes the rigid-lid duct, instabilities develop that lead to inertial waves. Depending on a lateral tilt of 

the duct, these waves may or may not be focused onto a simple-shaped wave attractor, which may impact 

the through flow.   
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1 Introduction 

 
When by subjecting a fluid to a pressure head, a flow is pumped through a container – a 

duct, is rotation going to aid the through flow or obstruct it? Naively one expects that rotation 
leads to additional drag on the fluid motion. Energy is needed not only to support the secondary 
circulation set-up by Ekman fluxes in horizontal boundary layers which appears in the form of 
streamwise tubes of two or four cell structure (Nandakumar, Raszillier and Durst 1991),  but 
also to support the turbulence resulting from centrifugal, Ekman layer and other instabilities of 
the sheared through-flow (Greenspan 1968, Finlay 1992). When the rotation rate increases, all 
of this should lead to an increased pressure drop in the down-channel direction, which, in other 
words, is sensed as increased friction (Mårtensson et al 2002, Pallares, Grau and Davidson, 
2005). Remarkably, there are cases when the pressure drop does however not seem to grow with 
increasing rotation rate (Dobner 1959). This suggests that the answer to our question is more 
subtle, and that, in fact, rotation may perhaps facilitate an increasing flow rate. The reason for 
this might lie in the fate of the aforementioned instabilities. In a three-dimensional, non-rotating 
fluid, instabilities will bring energy to the smallest scale through a process of nonlinear 
interactions. At these smallest scales, energy is degraded into heat. Rotation, however, leads to 
an inverse energy cascade supporting the largest (basin-scale) motions as it suppresses radial 
motion. This suppression of radial motion is caused by a radial stratification in angular 
momentum that presents the fluid with an apparent two-dimensionality, akin to that of a density-
stratified fluid in a field of gravity. This type of stratification is stable as long as the angular 
momentum increases radially outwards (Rayleigh's criterion) and endows the fluid with 
elasticity, supporting inertial waves (Greenspan 1968). These waves propagate throughout the 
fluid, up to the container scale, which for the basin-scale waves takes place within one rotation 
period (Morize and Moisy 2006, Bewley et al. 2007, Messio et al. 2007).  Thus, when instability 
('turbulence') manifests itself, it will likely be, to some extent at least, in the form of inertial 
waves. This may completely change the cascading of energy; the energy transfer no longer 
necessarily evolves through nonlinear interactions, but might as well proceed through the re-
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organization brought about by multiply-reflecting inertial waves (see Davidson, Staplehurst and 
Dalziel 2007). It thus becomes of interest to consider the fate of these inertial waves. Do the 
waves spread ergodically through the container, thus eventually again loosing their energy due 
to internal friction and upon reflection at boundaries? Or, do the waves organize themselves, 
e.g. in forming eigenmodes, i.e. spatially standing waves (Maas 2003)? It appears, perhaps 
somewhat surprisingly, that the shape and orientation of the container may play an important 
role here, as it turns out to be important whether the container shape is breaking the symmetry 
imposed by rotation, or not. Phillips (1963) first showed how linear inertial waves that reflect 
from an inclined wall change their wave number. This is due to the peculiar dispersion relation 
that these waves satisfy, which is scale-free. The frequency only relates to the wave vector 
direction, not to its magnitude. As the wave frequency is unaltered upon reflection of the wave, 
so is its angle with respect to the rotation axis. But, in order to satisfy the impermeability 
constraint at the solid boundary, the wave number changes. In other words, the waves focus or 
defocus, which is accompanied by either an amplification or reduction of energy density 
(current speed), respectively. In a confined domain (such as any real fluid needs for its 
containment) focusing dominates (Maas and Lam 1995).  For almost any container shape, at 
least in two dimensions, wave energy appears to collect on a limit cycle, called wave attractor 
(see review in Maas 2005). This is a well-defined orbit (see Fig. 1) whose location is 
determined by the geometry and by the ratio of wave frequency, ω, to inertial frequency, 2Ω, 
where Ω is the frame's rotation rate. It is on approach of this wave attractor that the inertial 
waves turn unstable and mix fluid differing in angular momentum. In a laboratory experiment 
this was observed to set up a (cyclonic) mean flow (Maas 2001) that might in the present 
experiment actually amplify also the through flow. This suggests that, while the wave attractor  

Fig. 1 Example of a wave attractor: the rectangular shape visible in the streamfunction field (colors), of 

focused inertial waves of frequency ω /2Ω = sin α = 0.657 that occurs in an infinitely long, tilted 

rectangular channel (tilt θ= 17.5
o
). Side view kindly supplied by S. Kopecz, and  computed using the web 

method of Maas and Lam (1995). The orientation of the four 'limbs' of the attracting rectangle betrays the 

underlying web of characteristics that maintain a fixed direction  α=42.5
o
, relative to the rotation axis as 

determined by the dispersion relation (see Fig. 2b). The imposed through flow, whose instabilities should 

give rise to the inertial waves, is designated by u and points into the paper.  
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presents an extra internal boundary layer, this does not necessarily lead to a degradation of 
energy into heat, but rather seems to transfer energy to the mean field via a process of inertial 
wave breaking and rectification as found in related studies (Thompson 1970, McGuinness, 
Boyer and Fernando 2001). 

 
 

Fig. 2 (a) Length of the wave attractor ( limit cycle) of titled square duct (color) as a function of tilt 

angle θ and ratio of wave frequency ω and inertial frequency 2 Ω, taken from Swart (2007). Dashed lines 

indicate tilts used in the experiments. Solid line segment is discussed in text. (b) Example of characteristic 

paths and rectangular wave attractor for particular conditions used in Fig. 1, the  white cross in (a).  

 
Wave attractors can be characterized by the length of their periodic orbit. Fig. 2a displays this 
length as a function of tilt angle θ and ratio ω/2Ω = sin α, related to angle to the vertical α. This 
plot is characterized by large areas of nearly equal attractor length, ranging from short (bright 
blue) to long (red). [Dark blue indicates that a corner point, of ‘length’ zero, is attracting.] Fig. 
2a shows that the attractor length has a fractal distribution (analogous to the Lyapunov exponent 
in Maas et al 1997), which betrays the presence of so-called Arnold’ tongues. In Fig.2a's central 
blue area (where also Figs. 1 and 2b are taken from, see white cross), the periodic orbit is 
simply a rectangle. In homogeneous rotating fluids, wave attractors have experimentally been 
found in a trapezoidal container (Maas 2001, Manders and Maas 2003, 2004). In these cases, 
waves were excited by purposely introducing a single perturbation frequency by weak 
modulation of background rotation rate Ω. An experimental confirmation for the existence of a 
wave attractor in a tilted box of square cross-section, forced in a similar manner for parameter 
values close to those used in the examples of Figs. 1 and 2b, is given in Fig. 3a. Despite the box 
being obviously of finite length in the real experiment, the current speed clearly shows the 
nearly square shape of the wave attractor corresponding to the forcing frequency. This compares 
well with the shape computed by Ogilvie (2005) for the analogous case of a wave attractor in a 
viscous, stratified, non-rotating fluid in a tilted square domain (Fig. 3b). 
 

While their excitation might not be as clear cut in rotating flows, the aim of the present 
contribution is to present a number of fluid experiments in which a broad-band spectrum of 
inertial waves may yet be relevant to the through flow such as measured here as a function of 
imposed rotation and flow rates. Significant findings are observations of a fast rotating 
geostrophic regime, where inertial and Rossby waves dominate, and a slowly rotating turbulent 
regime. The possible role of the inertial waves in amplifying the through flow, by generating a 
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wave attractor, is addressed.  Only preliminary results will be reported here. A more 
comprehensive discussion awaits further analysis.  
 

 
Fig. 3 (a) Experimental confirmation of existence of inertial wave attractor in tilted box of square 

cross-section (Manders and Maas, unpublished ms). Notice that the blue area at the top indicates 

absence of scatterers (due to sinking). These scatterers are used in the Particle Image Velocimetry 

method employed to visualize the currents, of which the speed, |u|, is shown here (arbitrary units). (b) 

Numerical computation of same quantity taking viscosity into account (from Ogilvie 2005). 
 
2 Experiments 

 

2.1   Experimental set-up 

 
Fig. 4 shows the fully enclosed rectangular container (10 x10 x20 cm3) as viewed from the 

top. This container, of square cross-section, was put on a platform and is here shown in its 
horizontal position (bottom and top perpendicular to direction of rotation axis). The tank is 
filled with homogeneous, degassed tap water. Via connecting tubes (of diameter d=0.8 cm), 
water is pumped through the tank by a pump (green in Fig. 4) and flows in the direction 
indicated by the white arrow, at an imposed rate q [l/min]. Here, q=0.4572 Vq + 0.0639, where 
Vq is the applied pump voltage (in volts, varying from 0.25-7.0V). Pressure differences are 
measured with the LPM5480 differential pressure sensor (Druck), which can measure up to 
±200 Pa, with a precision of ±0.08 Pa, between pressure slots which are indicated by numbers 
1-6 in Fig. 4. Here we focus on the pressure difference between slots 5 and 6, ∆p5-6. The flow 
rate is measured by a propeller vane (Höntzsch, Fa 40/10), the device indicated by the red arrow 
on the left. The platform is set into rotation at an angular velocity ±Ω [rad/s] by a KMF WD251 
electromotor (Electro ABI, not visible - below turntable). Here, Ω=1.004VΩ-0.2942, where VΩ 
(in volts, varying from 0.25-7.0V) is the voltage applied to rotate the turntable. 

Automatic control of applied pump and rotation rates, over prescribed measurement Tm 
and adjustment period Ta respectively, as well as measurement at a 4 Hz rate of differential 
pressure and flow rate, is made by means of software package LabView. In a typical mode of 
operation, choosing an adjustment period Ta=50 s and a measurement period Tm=150 s, a scan is 
made over the indicated pump and rotation voltage ranges. This means that at a fixed pump rate, 
the rotation rate is kept fixed over 200s, of which the final 150 s are used to measure differential 
pressure and flow speed. Then, the rotation rate is increased by an increment (0.2 or 0.25V) and 
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this is repeated until maximum rotation rate is obtained. Subsequently, the flow rate is increased 
in similar increments, and the rotation rate is incrementally decreased until the lowest rotation 
rate is reached again, upon which the flow rate is increased again.This whole procedure is then 
repeated a number of times. The spin-up time needed to adjust to the new frame rotation rate is 
as usual estimated by TE =Ω

-1E-1/2, where E=ν /Ω H2 denotes the Ekman number, ν viscosity and 
H the (axial) depth of the fluid (Greenspan and Howard 1963).  The adjustment period, Ta, that 
we employ is generally slightly shorter than TE, but the measured pressure difference has 
usually adjusted quite well within this period of time.   

 
2.2  Results 

 
When the container is horizontal, we measure a pressure difference whose average over 

period Tm is given for each bin in figure 5. The table is rotating anticlockwise. We thus expect 
that the Coriolis force deflects the through flow to the right, so that (see figure 4) the pressure at 
slot 6 should be increased relative to that at slot 5.  As figure 5 presents the pressure at slot 5 
minus that at 6, this is indeed observed in the triangular area to the right of the straight solid 
line; that is, for relatively strong rotation. In this region, we see that the pressure difference is 
nearly constant (color contours) along hyperbola (curved solid lines). This betrays a geostrophic 
equilibrium in which cross-channel pressure gradient dp/dy= -2 Ω u ρ, so that for a fixed lateral 
pressure gradient, velocity u is inversely proportional to rotation rate Ω.  Here ρ is the density of 
the fluid. The straight solid line is a line for which the Rossby number, Ro= U/2Ω L, is a 
constant, whose value depends on the velocity and length scales, U and L, that we adopt (see 
below). The part above the straight line consists of a positive 'ridge' (red), and an anomalous 
negative pressure difference. The interruption of the latter region at u=4mm/s is not an artefact. 
It is found repeatedly in this region and betrays the presence of multiple equilibria, which are 
reached depending on whether the rotation rate is incrementally increased or decreased. 
Physically, it is caused by the presence of an eddy. After spin-up to a new rotation rate, the 
container is usually filled with two vortices: one big cyclonic vortex that fills almost the entire 
container, and a smaller anticyclonic one. The latter sits near the entrance of the container, on 
the low-pressure side (in this case below slot 5, to the left of the through-flow) and seems to 
cause the anomaly. The flow in the container is considered a ‘sheet’ rather plug flow. We regard 
its lateral extent to be set by the diameter of the feeding tube, d, as rotation prohibits radial 

Fig. 4 :Topview of turn table (dashed), container,  

pump (green), propeller vane (red arrow) and pressure slots1-6 
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spreading. Its vertical scale, however, seems to be determined by fluid depth, H, as spreading in 
the axial (vertical) direction is not suppressed by the rotation of the frame. Hence as velocity 
scale we adopt U=q/Hd.  
 

 
Fig. 5 Each bin represents observed (over a 150s time-interval) averaged pressure difference 

between slots 5 and 6, ∆p5-6 [Pa], measured by varying rotation rate Ω and pump rate q. Pump rate is 
here expressed as velocity of a ‘sheet’ flow: u=q/Hd, i.e.  pump rate q divided by fluid height, H, times jet 

width, d. The pump rate q is the one found in the absence of rotation, which is linearly related to the 

applied pump voltage. The straight solid line divides regions having different spectral shape, discussed in 

the text. Hyperbola reflect geostrophic equilibrium flow, in which, for fixed lateral pressure gradient, 

through flow is inversely proportional to rotation rate. 

 
The Rossby number associated with the straight solid line in Fig. 5 gets very small when we 
assume the length scale L to be set by container depth H. However, by considering in each bin 
the Fast Fourier Transform (power spectrum) of the differential pressure (see example in Fig. 6), 
we deduce that this length scale L must be diameter d. This conclusion is based on a remarkable 
change in spectral distribution that takes place across this line. For slow rotation and high pump 
rates (above straight line in Fig. 5), the variance spreads out equally, indicative of turbulence. 
However, for fast rotation (below straight line), the power spectrum shows significant variance 
only below 2 Ω, indicative of inertial waves (Fig. 6c). In a rotating frame, turbulence and 
inertial waves are considered to take place above and below Ro=1, respectively. Hence we 
deduce that the straight line should be Ro=1, and we check that along this line, 
U/2Ω=0.056/(2×3.1)=0.009m ≈ d. In view of the use of the small length scale employed, the 
relevant Rossby number appears to be a micro Rossby number. We conclude that the line Ro=1 
separates a hyperbolic regime (Ro<1, below line), where the variance ('turbulence') is taking 
shape in the form of a 'sea of inertial waves' (Tritton 1978), from a weakly-rotating 'elliptic' 
region (Ro>1, above line), where variance appears as a spectrally broad-band phenomenon, 
such as turbulence in non-rotating fluids. 

HF spectral cut-off 
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In the Ro<1 (inertial wave) regime, the low-frequency variance is often particularly 
present near ω=Ω. This is probably due to a slight misalignment of the table's rotation axis with 
gravity (see peak near ω/2Ω=1/2 in Fig. 6b). This is not the only spectral peak though, and a 
host of instability processes may be responsible for them (Greenspan 1968, Finlay 1992). 
 

 
 
  

 
 
 
When the tank is tilted, the power contained in very low frequency waves (ω/2Ω<0.1) is large, 
and manifests itself close to the line Ro=1. In Fig.7a, this line is nearly diagonal. It is slightly 
less steep as the corresponding one in Fig. 5, because under tilt the axial extent of the jet is 
increased to H/cos(θ), reducing the speed corresponding to a given flow. The increase of low-
frequency power along this line can be seen in Fig. 7a, where the percentage of the variance 
contained in this band relative to total variance is given. In a movie, clear cyclonically 
propagating waves are observed. The movie’s interpretation is facilitated by noting that due to 
the tank’s tilt, the depth of the fluid as measured along the direction of the rotation axis 
decreases towards the corners on either side (Fig. 8). This provides for the stretching and 
shrinking of vortex tubes which supports low-frequency topographic Rossby waves. Fig. 7b 
shows direct evidence of the Rossby wave’s strong presence, having a period of 18s, or about 
20 rotation periods.   

Fig. 6 (a) Example of differential pressure (150 s) time series measured at 4 Hz, ∆p5-6, whose time 

average is shown in a single bin in Fig. 5. (b) Its power spectral density (PSD) as function of scaled 

frequency ω/2Ω in linear and (c) log-log representation. Here VΩ=5 V, Vq=4 V, and tilt is 10
o
. Dashed 

lines in (b) indicate solid bar in Fig. 2a. 
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Fig.7 (a) Fraction of low-frequency (ω/2Ω<0.1) power relative to total variance; (b) example of 

pronounced low-frequency time variations (measured at 4 Hz) in lateral pressure difference for VΩ=7 V, 

Vq=6.75 V, corresponding to a point near upper right corner in (a) and tilt angle equal to 10
o
. 

 

 
The question that concerns us here is whether the inertial waves, once excited, support the 
through flow. One might expect this from (a) the observed overlap of the frequency window of 
waves that are excited (in between the dashed lines in Fig. 6b) with the regime for which, 
according to Fig. 2a (solid line segment), a simple wave attractor exists, and (b) the fact that the 
presence of a simple attractor was observed to facilitate the generation of a mean flow (Maas 
2001), which may possibly be of relevance here for the excitation of both a time-averaged 
recirculation as well as through flow. For this reason, let us look at observed flows obtained 
from (1) the horizontal rotating tank compared to the non-rotating tank (Fig. 9a), and (2) the 
tilted rotating tank compared to the horizontal (non-tilted) rotating tank (Fig. 9b,c). In case 2, 
the tank is tilted 10 and 20 degrees respectively. In Fig. 9, the measured through flow is denoted 
Q, to distinguish it from the intended through flow q, set by Vq. Note, in the nonrotating case Q 
≡q. 

Surprisingly, even in the non-tilted case (Fig. 9a), rotation seems to enhance the through-
flow, particularly in the rapidly rotating triangular (Ro<1) region of the parameter plane 
spanned by the rotation rate (x-axis) and pump rate (y-axis).  For Ro<1, a further enhancement 
is found over that already present when the tank is tilted (Fig. 9b, c), with the exception of the 
region where the pump speed is small, for which the through flow is instead obstructed.  
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3 Discussion 

 

For high rotation rate, the average cross-channel pressure difference is found to be in near-
geostrophic balance. Judging from the spectral distribution of differential pressure, the 
perturbations in this area take the form of inertial waves. This inertial wave regime can be 
interpreted as the region where Ro<1. This interpretation requires Ro to be identified with a 
micro Rossby number, for which velocity scale is that of a sheet flow and length scale is set by 
that of the connecting tube. For low pump rates, perturbations are concentrated around certain 
spectral peaks (notably Ω). For higher pump rates, the spectrum is broader (albeit always 
staying well below the inertial frequency cut-off, 2 Ω). The 3D turbulent regime is found for 
Ro>1. While for Ro>1 the naïve expectation that rotation will inhibit the through flow, is in 
general found to be true, this is surprisingly not so in the inertial wave regime (Ro<1). Apart 
from the enhancement already found when the container is still in its flat position, perhaps due 
to a tilt of the effective rotation vector due to the presence of vertically sheared mean flow 
(hence creating an apparent tilt of the tank), a further enhancement is observed when the tank is 
itself tilted, especially when the pump rate is relatively large (and the spectrum broad-banded). 
We speculate that the latter enhancement is brought about by the organization of inertial waves.  
For some of these frequencies they will be focused onto a simple shaped wave attractor, where, 
as was found in an earlier study (Maas 2001), they mix background angular momentum leading 
to the generation of a cyclonic mean flow. It is speculated that for large flow rates, the 

 

 
broad-band spectrum encompasses those frequencies for which a wave attractor can be obtained 
and thus a mean and through flow is driven, while for small pump rates the few frequencies 
observed are likely not inside an attractor window, so that they only lead to extra damping, 
reducing the through-flow. Further analysis is needed to substantiate these speculations. 
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