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ABSTRACT

As a generalization to box models of the large-scale, thermally and wind-driven ocean circula-
tion, nonlinear equations, describing the evolution of two vectors characterizing the state of the
ocean, are derived for a rectangular ocean on an f-plane. These state vectors represent the basin-
averaged density gradient and the overall angular momentum vector of the ocean. Neglecting
rotation, the Howard-Malkus loop oscillation is retrieved, governed by the Lorenz equations.
This has the equations employed in box models, in the restricted sense where no distinction is
made between the restoring time scales of the temperature and salinity fields, as a special
case. In another approximation, with rotation included, the equations are equivalent to a set
E. N. Lorenz introduced to describe the “simplest possible atmospheric general circulation
model”. Although the atmospheric circulation may be chaotic, parameter values in the ocean are
such that the circulation is steady or, at most, exhibits a self-sustained oscillation. For a purely
thermally forced ocean, this is always a unique state. Addition of a wind-induced horizontal

circulation allows for multiple equilibria, despite the neglect of the salinity field.

1. Introduction

Following Stommel (1961), the use of box
models to describe aspects of the large-scale
circulation in the oceans has seen a revival over
the last few years (Welander, 1986; Weaver and
Hughes, 1992). Stommel’s work was concerned
with the possible existence of multiple equilibria
in a two-box model (crudely representing the
equatorial and polar regions) of a single hemi-
sphere ocean due to a difference in restoring time
scales of the temperature and salinity fields. The
equilibria are characterized by a different sense of
the meridional circulation. Multiple equilibria are
also traceable in many of the more complicated
two- and three-dimensional numerical models
(e.g., Bryan, 1986; Manabe and Stouffer, 1988;
Marotzke et al., 1988; Weaver et al., 1993). Much
more elaborate box models have been proposed
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since (Huang and Stommel, 1992; Thual and
McWilliams, 1992), but these retain the ad hoc
nature of the simpler box-models. Moreover, these
models, as well as other analytical models (Killén
and Huang, 1987; Cessi and Young, 1992), seem
incapable of incorporating the Coriolis force in
their description. It is the purpose of this paper to
show how both of these difficulties can be over-
come by generalizing box models, not by adding
more of them, but by deriving the governing equa-
tions directly from the equations of motion.

To see how this can be achieved it is useful to
formulate an even simpler version of Stommel’s
(1961) model, by assuming that the temperature
and salinity fields have the same restoring coef-
ficients (or neglecting salinity altogether). His
model of the thermohaline circulation would then
read:

dA (y)
L= F—c A 14l Ap®, (1a)
g=A4Ap», (1b)
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where Ap'®) signifies the north-south (y) density
difference in the meridional (y—z) plane, F
denotes the difference in density (buoyancy) flux
between both boxes and ¢ is a “restoring coef-
ficient” (related to diffusive processes). The last
term describes the advective exchange, with g
denoting the (scaled) flow rate between the boxes
(and 4 a Rayleigh damping term). Stommel
reasoned that the absolute value of this quantity
should appear, as it does not matter to the
actual exchange which sense the circulation has.
The second equation constitutes the “dynamics”
in Stommel’s model, which may, in fact, be
recognized as a relic of more general vorticity
equations:

gl e,

oy

since the flow g is, due to its confinement, always
of a differential nature and therefore, when scaled
with a proper length scale, equivalent to the
x-component of the vorticity vector, w,. Here,
g denotes the acceleration of gravity and r is a
friction coefficient Conspicuously absent in this
simple model, however, is the Coriolis term, which
should couple the dynamics in the meridional
plane to that in the zonal plane, i.e., to w,. At the
same time it seems desirable to allow the density
field to develop an east-west and top-bottom
contrast, i.e., to consider evolution equations, like
(1a), for Ap™ and Ap'®, which will be changed by
“differential advection”. However, efforts to for-
mulate an extension of Stommel’s original (1961)
model exactly along these lines are tedious and
somewhat superficial. An alternative and perhaps
more direct formulation of the problem can be cast
in terms of the “lowest (non-vanishing) moments”
of the momentum and density fields.

2. Evolution of basin-averaged angular
momentum and density gradient

2.1. Evolution of angular momentum

Consider an idealized, rectangular ocean basin,
of sizes L, B and H in the x, y and z-directions
(oriented along the east, north and upward direc-
tion) respectively. The basin is assumed to have a
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rigid lid, any free surface displacements being
translated into corresponding pressure variations
at the lid. Consequently, the volume and any other
geometric factors characterizing the basin are
fixed quantities. Choose the origin of the coor-
dinate system to be in the geometric centre of the
basin. Let the motion of the fluid be described on
the f-plane by the Navier-Stokes equations in
Boussinesq approximation, where f denotes the
Coriolis parameter. The lowest moment of the
momentum field is, in an enclosed ocean, given by
the basin-averaged angular momentum vector,
which, in Boussinesq approximation (and per unit
mass), is defined with respect to Cartesian axes as

1
L=I—/JxxudV.

Here V denotes the volume of the basin (and dV a
volume increment) and u the velocity vector. Note
that the smallness of the magnitude of the vertical
velocity in a small aspect-ratio basin like the ocean
is offset by the larger arm over which it extends
and contributes as much to the angular momen-
tum as does the horizontal flow.

Since the boundaries are fixed, time-differen-
tiation and integration over the basin can be
exchanged. Hence, taking the cross-product of x
with the momentum equations and subsequently
integrating over the entire basin yields:

L f, . IJ
5 tokxLl=—7 | Vx(P)dV

1 z
+—fg’zj (—p,i+p.jldz dV
14 H2

+Ii/fxxv-(Avu)dV. 2)
Here,
P=p+| pgaz, @)
H/2

describes the non-hydrostatic and free-surface con-
tributions to the pressure field, with perturbation
pressure and density defined as p=(p, — po)/Po
and p = (p, — po)/dp, in which the starred quan-
tities denote the original, dimensional quantities
and p, is the constant reference density with which
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a pressure p, is hydrostatically related. The scale of
the density perturbations, ép (< p,), which will be
made more explicit later, has been used to render
p an O(1) quantity and has consequently been
combined with g into a reduced gravity g’'=
g dp/po. Also, i, j and k denote unit vectors in the
x, y and z-directions and A4 the eddy viscosity
tensor. The basin-averaged angular momentum is
thus changed by the Coriolis torque, the pressure
torque, the buoyancy torque and the Reynolds
stress torque respectively. Note that nonlinear
advective terms cancel identically for the basin-
averaged angular momentum vector.

The pressure torque will be assumed to vanish.
The integral containing this term can be rewritten
in terms of boundary integrals, but for the sym-
metric (f-plane) model adopted here, is not likely
to contribute a net torque if only the response to
buoyancy forcing is considered. In case a wind
stress is applied a net pressure torque, due to
divergences in Ekman transport, is likely to be set
up. However, it seems to require more complicated
wind patterns than the uniform, or simply sheared
wind-stress fields considered in the following.
Torques due to the Reynolds stress can again be
partially integrated and, at the surface, are related
to torques of the wind stress, 7:

1 H H
=—I7J’J. ( ——2—1"", —2—1"", xt) — yr"‘)) dxdy.

(4)

The other terms contain torques due to friction at
the rigid walls and internal friction. Evaluation of
the former usually requires some knowledge of the
internal dynamics of the ocean as the shear terms
at the boundaries are determined by the boundary
layer physics (Wright and Stocker, 1991; Wright
and Vreugdenhil, 1994), but the aggregate of all
frictional terms is here interpreted as yielding a
general Rayleigh damping term, —(r,L,, ryL,,
r, L), with r,, , friction coefficients.

The buoyancy torque can be evaluated by
employing a “global” Taylor expansion:

p=xp 1)+ yp, (1) +2p.(1)

+ (2= LY3) plt) + -+, (5)

where the basin-averaged density gradients, or
moments of the density field, are defined con-
sistently as
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av
ﬁx(l)=§§€dv,
par (6)
py(t)ﬂff;(w’ etc.,

which are clearly related to the coordinates of the
centre of mass. Note that the expansion is chosen
such that higher order moments do not contribute
to the lower order moments, so that the evolution
equations for the latter may be safely truncated in
any desired order. Presently we will neglect terms
beyond the first order and hence approximate the
isopycnal field by a series of parallel planes. With
representation (5) the buoyancy torque in eq. (2)
evaluates to

gV [ 2 V-5, i+ 501, ™)

where the remaining integral is just a constant
geometrical factor.

With these considerations, the evolution equa-
tion of the angular momentum vector is given by

dL f
?17+-2-ka

=gV [ 2 VL= 0i+5.0) ]

—(roLy,sroLy,r,L3)+ T. ®)

2.2. Evolution of density gradients

An evaluation of the buoyancy torque (7)
obviously requires a consideration of the evolution
equations of the basin-averaged density gradients.
These are obtained by multiplying the equation
which describes the evolution of the density field
with x and averaging over the basin. Assuming
that the eddy diffusivities are constants, albeit of
different magnitude in the horizontal (X, ) and ver-
tical (K,) direction, this equation, after a partial
integration and employing the no-flux condition at
the solid boundaries, reduces with (5) to

1 dp, 1 _ 1 _
—I;szdV (ﬁ +5L3py—§L2pz
— —Kypot F¥, ©a)
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1 dp, 1 |

,—,jyded +35Lip:—5 Lap,
= —Kyp,+F, (9b)

dp. 1 1.

f &V L4 Lapo—3 L,
=—K,p.+F®, {(9¢)

where the moments of the buoyancy flux, Q,
assumed to enter the basin only through the
surface, appear in

F= (F(x}, F("), F(Z))

=/ | [ (s H72) Qdxdy. (10)

In a similar way account may be given for
buoyancy fluxes entering the basin through one of
the lateral boundaries.

Together with (8) these constitute a closed system
governing the evolution of two state vectors, L(t)
and Vp(1), describing the circulation and density
field in a rigid lid, f-plane ocean, driven by dif-
ferential momentum (4) and buoyancy (10) fluxes.

2.3. Scaling

It is convenient to assume that the horizontal
scales B and L are identical and keep, in an
application to a “thin” ocean, only the distinction
in horizontal and vertical scales explicit and
employ the following scaling (denoted by square
brackets):

[x’ y’ Z’ t] = [‘L’ LY H’ Lz/Kh]7

in which the time scale is associated with horizon-
tal diffusion of heat. Accordingly

[u, v, w, 6p]
=[Ky/L, Ky,/L, KhH/Lzs 12por, Kyn/gH],

suggested by continuity, while the (internal) scale
of the density variations (that had been absorbed
in g’ up to now) has been chosen such that the
buoyancy torque is (for O(1) density variations) of
the same order of magnitude as the frictional
torque. The external density and momentum fluxes
(per unit mass) are scaled as

[0, .L-(x,y)] = [6peHKh/5pL2, ui]a
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which really defines related scales of the external
density contrast, dp. and frictional velocity, u,.
The numerical factors in egs. (8) and (9) may be
absorbed by rescaling time with a factor 1/12 and
dp and u with a factor 2. This produces the numeri-
cal quantities in the nondimensional parameters
below.

2.4. Zero-dimensional model of three-dimensional
ocean circulation
With these scalings, the following simplified
model of the three-dimensional ocean circulation
can be obtained:

dL R
Prot st [k L= =p,(0)i+p )]
—(Ly, Ly, rLy)+ 1T, (11a)
g(—1V—p+\7 x L
=_(ﬁx’pyhuﬁz)+RaE (llb)

Here Pr =r, L?/12K,, denotes the Prandtl num-
ber (interpreting the Rayleigh damping term as
proportional to an eddy diffusion term), f* = f/2r,
the scaled Coriolis parameter, r = r, /r, the ratio of
the frictional time scales of horizontal and vertical
angular momentum, and T'=u3 L/2r, K, H is the
dimensionless magnitude of the torque exerted by
the wind stress. In (11b), the ratio of the vertical to
horizontal diffusion time scales is denoted as u=
K,L*/K, H? while the forcing strength is deter-
mined by the Rayleigh number Ra = g, H/2r, K},
with g a reduced gravity based on the externally
imposed density difference, 6p.. The dimensionless
momentum and density fluxes, T and F, are similar
to the expressions in (4) and (10) but with H
replaced by 1, and F’ =1 and T = —, as their
magnitudes have been employed in the definition
of Ra and T respectively, while a clockwise torque
is negative.

Taking ocean-like parameter values: L=
5x10°m, H=5x10"m, —IOms L f=
10-* -1, K,=10"m?s~!, K,=10"*m?s™",
u,=10"?ms™', ry=r,=10" o s, 6pe/po=

4x 1073, typical magnitudes of the nondimen-
sional numbers are: Pr=2x10% f'=50, r=1,
1=1,Ra=10%and T = 500, while the dimensional
time scale, L?/12K,,, is of order 500 years.
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3. Special cases

3.1. Circulation in the meridional plane: f' =0

With /" =0 in (11), the circulation in the zonal
and meridional plane decouples and the latter is
described by

dL
Pr“—dt—ler'} L;, (12a)
9Py 1 o= —p,+R 12b
dr lpz——py+ a, ( )
45
d’ZZ—L,ﬁy= —pp.+Ra F'9. (12¢)

Assuming that there is no inertia in the angular
momentum equation (Pr — o0) we retrieve Stom-
mel’s dynamics
py=~L,, (13a)
see (1b), in which the buoyancy torque is exactly
balanced by the frictional torque. However, in con-
trast to his model, egs. (12b, ¢) still carry informa-
tion about the vertical density structure: any
change in the meridional density gradient can only
occur via an intermediate change in the vertical
density gradient. This process can, at best, happen
instantaneously, as when the first term in (12¢) is
much smaller than the other two (assuming that
the net heating term, F, vanishes, such as seems
likely for a large-scale basin). Formally this is
obtained by rescaling §,, L, and Ra with p'? and
subsequently taking the limit 4 — co. The remain-
ing balance can be used to eliminate 5. from (12b)
to yield the following equation, recast in the
original variables, for the evolution of the
meridional density gradient:
dp L?

—d~=Ra—ﬁy—7ﬁy. (13b)

y
!

Comparison with (1a) shows that the “insen-
sitivity” to the sense of the circulation is accom-
plished by the squared magnitude of the “advective
flow field”, rather than by the modulus of it. This
“stripped” version of Stommel’s original equa-
tions, has only one, stable (thermal, L, < 0) steady
state.

Without these last assumptions, the circulation
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in the meridional plane described by (12) is inter-
esting in itself, as it is equivalent to that in a
Howard-Malkus loop (Malkus, 1972). This is a
thermal oscillator in which fluid in a ring, placed in
the vertical, is differentially heated vertically. The
buoyancy torque creates angular momentum,
which advects the buoyancy field. The process is
checked by thermal and frictional damping.
Welander (1991) also included asymmetric forcing
and pointed out that eqs. (12) are of Lorenz-type
(Lorenz, 1963). However, they become identical to
Lorenz’ equations, except for a trivial transforma-
tion of variable, only if the lateral differential heat-
ing (the forcing term in (12b)) vanishes; convec-
tion in this case being driven purely by differential
heating in the vertical. (A limit formally obtained
by taking simultaneously Ra -0 and F* - oo
while retaining a finite value of their product.) If
lateral differential heating is added, Welander
(1991) showed, that chaos may still be prevalent.
For the oceanic case, however, the other extreme,
viz. the vanishing of the differential heating in the
vertical, is more likely to occur. In that case it can
be shown that the equations acquire a single,
steady state, which is stable for all possible values
of the parameters.

3.2. Three-dimensional circulation for f’#0 and
Pr— o

It seems worthwhile to consider the effect of
rotation in what seems to be the realistic limit
Pr — oo (Weaver and Sarachik, 1991; Wright and
Stocker, 1991; Zhang et al., 1992). In an applica-
tion to a large-scale ocean it also seems realistic to
assume that there is no direct wind forcing of the
zonal and meridional circulation: T®' =T =0.
Egs. (11a) then yield:

1

L1='1—175(_p‘y+f/ﬁx)’ (14a)
1

L2=Tf-/2(ﬁx+f/ﬁy)7 (14b)

L=~ (14c)

For the moment we will also drop the remaining
wind-stress torque (hence L;=0), which will be
considered in Section 5, as well as differential heat-
ing in the east-west direction (F) = 0). The latter
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assumption is not really restrictive because of the
isotropy of the f-plane. This means that if this term
was non-zero, we might rotate our coordinate
system in such a way that the new y-direction is
aligned with the direction of the net differential
horizontal heating and the same equations as (15)
below would result. If we redefine the basin-
averaged density gradients and Rayleigh number
in (11b) by dividing them by 1 + £, this factor is
eliminated from the denominator in (14a, b) such
that, after replacing L, and L, in (11b) by these
expressions, the evolution of the average density
gradients are given by

5 =Pt S D) PP (15a)
dp, . _

Tt—(py S'P:)p.—p,+Ra, (15b)
dp,

%=—uﬁ:—(ﬁi+ﬁi)+RaF‘z’. (15c)

Remarkably, these equations are equivalent
to a model that Lorenz (1984, 1990) proposed as
“possibly the simplest model describing the atmo-
spheric general circulation”. The correspondence is
ﬁ.rH27 ﬁyHY, p.-zHX’
where X, Y, Z are the dependent variables in
Lorenz’ model denoting the strength of the globe-
encircling jet stream, and the cosine and sine
components of a “chain of superposed large-scale
eddies” driven by thermal contrast between con-
tinents and oceans. Lorenz (1984, 1990) remarks
that this model can be derived from a severe trun-
cation of a geostrophic baroclinic model in spec-
tral form. Because X is geostrophically related to
the large-scale pole-ward temperature gradient, it
is the analog of F® which, in his case, is the domi-
nant driving term. He notes that if this term is suf-
ficiently strong (and positive) this system too may
exhibit chaos. However in those circumstances it
has positive values for X, which would correspond,
in the present context, to statically unstable states,
driven by vigorous surface cooling or evaporation.
Such processes may perhaps be locally of domi-
nating influence and contribute to deep-water
formation like in the Labrador Sea (Weaver and
Sarachik, 1991; Weaver et al. 1994), or some areas
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of the Mediterranean, but is unlikely to dominate
an entire ocean basin. Therefore the thermally
driven, general circulation in the ocean is probably
more realistically described by (15) with F*2 =0,

4. Steady states and stability of the thermally
driven ocean circulation

The steady state of eq. (15) is obtained by set-
ting the right-hand sides equal to zero. In this way
we obtain:

Ra(f'p.,1-p.)
[(1—p.)°+ /2521

from the first two equations. Inserting this into the
third (with F©) =0) gives

(P P)) = (16)

p-L(1—p.)*+ f2p2]+Ra’/u=0. (17)
This cubic in g, has, for all (positive) values of
the parameters, only one real root, which is
negative and thus corresponds to a statically
stable, physical state. From (16) it follows that
this corresponds to a positive meridional and a
negative zonal average density gradient. The
negative correlation between these two in the ther-
mohaline context (and in a spherical coordinate
frame) was first suggested by Wright and Stocker
(1991) and further substantiated by Wright and
Vreugdenhil (1994) and has been used to bring
three-dimensional aspects in a two-dimensional
(zonally averaged) numerical model of the ther-
mohaline circulation (see Hughes and Weaver,
1994). From (15a, b) it follows that the steady
state has L, <0 and L, >0, or in other words,
has a circulation with a northeastward-directed
surface flow.

There may be just one steady state, but, inter-
estingly, it can turn unstable for some parameter
values. The stability of the steady state in phase
space is determined by the eigenvalues, v, of (15),
linearized around the steady state described by
(16) and (17). The eigenvalue equation reads

(T+v)? (p+v) =25, (1 +V)2u+v)
+021+ f?)Bu+v)=0, (18)

where p_ in (17) and in this equation pertain to its
value at steady state. The steady state, which for
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small values of the parameters is stable, ie., for
which (18) has roots with negative real parts,
becomes unstable through a Hopf-bifurcation. At
the transition the cubic in v can be written as

(v+a)(v+ib)(v—ib),

and by equating this with the cubic in (18) expres-
sions for a and b can be obtained. From the
remaining consistency equation we may obtain f”
as a function of u and the value of g, at steady
state. Viewing the latter in this expression and in
(17) as a parameter a parametric relation of Ra
versus f', defining the stability boundary for a
given value of y, is obtained (Fig. 1). Points in
parameter space below and to the left of the curves
are stable. In the unstable case a simple periodic
limit cycle, a self-sustained oscillation, occurs.
An example is given in Fig. 2. The meridional cir-
culation remains negative (thermal) but varies in
strength; the zonal circulation however, changes
its sense of direction and may become negative
when the meridional density contrast vanishes.
For the parameter values in Fig. 2 the circulations
are nearly geostrophically coupled to the density
gradients in the meridional and zonal planes
respectively. The oscillatory cycle is best described
starting from the moment that the meridional den-
sity gradient is slightly negative. In that case, the
east-west density difference relaxes due to diffusive
and frictional processes and hence the geostrophi-
cally coupled thermal circulation weakens. This
allows the ever-present thermal forcing to generate
a positive pole-equator density contrast, which,
however, promotes the geostrophically coupled

10/3

0 20 40 60

80 100
fr—

Fig. 1. Stability diagram of the steady state of eqgs. (15)
(with F®=0). Curves have been drawn for different
values of u above and to the right of which the single
steady state is unstable and gives rise to a limit cycle.
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L,

L

Fig. 2. Example of a limit cycle in eqgs. (15) (with
F®=0), for u=3, f'=10 and Ra = 5. The curves give
Pys P2y Py (a), Lyand L, (b) from above to below, respec-
tively, as a function of time. The three-dimensional
diagram (c) gives its behaviour in phase space.

zonal circulation. This, in turn, amplifies the
remaining east-west density difference and, with
it, thermal overturning which again removes the
pole-equator density difference and associated
zonal overturning, which closes the cycle.

Similar, purely thermally-driven limit cycles
occur in the Labrador Sea region of a numerical
model of the North Atlantic Ocean (Weaver et al.,
1994). In that case, however, it is likely that the net
buoyancy flux over this area (F*) #0) plays a role.

5. The thermally and wind-driven ocean
circulation

In addition to the meridional thermal forcing we
now consider the case where there is a nonzero
torque of the wind stress generating vertical
angular momentum. Under the assumption
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Pr — oo, this remains a constant (given by (14c)).
Egs. (15a, b, c), extended with terms related to the
L, component in (11b) (see eqgs. (22) below),
however, are isomorphic with egs. (15) themselves.
This result is obtained by a transformation in
which the new variables (capped below) are
related to the old by:

_(ﬁx’ ﬁy’ ﬁz—LS/fl’ ,U)

(p,w ﬁy’ P:s ,Ll)—— (1—L3/f’), (193)
i=t1-Ls/f"), (19b)
Ra=Ra/(1—L,/f") (19¢)

Due to the transformation a non-zero forcing term
now appears at the right-hand of the transformed
version of (15c). This appears exactly in Lorenz’s
(1984) format as the product of the damping coef-
ficient £, and a function

F=—Ls/(f"—Ls)

The steady states of the thus extended egs. (15)
are determined by

Ra?= y(F—p.)[(1—4.)* + %621,

(20)

(21)

whic/h\, as Lorenz notes, can be directly plotted if
the Ra number is viewed here as a function of 4.
Values of p, are restricted by the requirement that
the right-hand side of (21) is positive and hence
p. < F. With (19a) and (20), this implies that each
steady state is statically stable, g <0, but does not
indicate that they are necessarily dynamically
stable, i.e., the steady state may have eigenvalues
with positive real parts. In fact, the system may be
chaotic, as Lorenz (1984, 1990) showed with a set
of particular parameter values, but the chaos
which ensues is different from that obtained in his
celebrated (1963) model. Chaos in the latter results
by the simultaneous instability of two steady states
(representing convection with opposite senses of
direction) when the model acquires enough inertia
(i.e., for a particular, small enough value of the
Prandtl number in (12)). In contrast, in his (1984)
model, the particular Rayleigh number used
(Ra=1) is below the critical value above which
multiple steady states exist and hence there is just
one steady state. This state, however, is unstable
and states in phase space are attracted to a region
(approximately given by —2<fj.<2) where a
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new (stable) steady state will come into existence
for values exceeding the critical Rayleigh number.
However, as this steady state does not yet exist, it
defies a direct perturbation analysis by which the
classical (1963) model can be attacked, and the
extent of it, in parameter space, is consequently
poorly understood. Lorenz (1984), for the par-
ticular values of the other parameters, concludes
that chaos requires “large enough values of F”,
well above a value of one. Realistic estimates of the
torque due to the wind stress will likely yield
negative values of L5, and (20) shows that our Fis
below one and, again, is not likely to induce
chaotic motion in the large-scale ocean circulation.
Moreover, values of F greater than one are
obtained only when L;> f’, in which case the
transformation (19) has some peculiarities in that
the direction of time changes. A direct integration
of the original equations, (11b) and (14), is, in that
case, warranted.

Without employing transformation (19), but
retaining the assumption that F'¥ =0, egs. (15),
extended with terms related to the vertical angular
momentum, read:

dp, ,_ _ - _

2= (o= 1) Pt (P2 = L) s (222)
dp _ _ _

S —(fp.=Ly)pu+ (p.= 1) 5, +Ra, (22b)
dp, _ _ _

Tem —up.— (524 5. (22¢)

The steady states are determined, as before, by
the zero’s of a cubic:

h(p.)=p.L(1=p.)*+(f'p.— L3)’]

=22 __pco (23)

The existence of multiple equilibria is deter-
mined by the occurrence of extrema in A({), which
in turn exist if the discriminant of the roots of
dh/d{ =0 is real and positive. Note that A({) may
have local extrema for positive values of {, but
these are unattainable for positive values of Ra?/u.
Therefore physically realisable multiple equilibria
will occur for f'> fhn= (/3 Ly— D/(Ls+/3).
Evaluating 4({) at the positions of the extrema
determines a range of /2 values in which multiple
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equilibria can be found. These boundaries are
given by

]2 = ____2__
max, min 27(1 +f12)2

X [(1+ f'L)[9(f" = Ly)* + (1 + f'L3)*]

£ L1+ f'Ly)* =3(f' = Ls)* 1], (24)

see Fig. 3. These boundaries coincide when the
argument of the 3/2 power vanishes, which occurs
at the above defined f};,. Alternatively, this may
be expressed as a condition on L;, which, when
reintroduced in the non-vanishing part of /2, ...,

gives the dashed curve in Fig. 3. It is defined by

8(1+/7)
3 = /3)

above and to the right of which multiple steady
states may exist in some range of Ra?/u-values for
certain L;-values.

There may thus either be one or two steady
states that may be steady or (one of which may be)
of limit cycle type. A complete understanding
of these equations and (15) is lacking at present
and requires further work in a more complete
parameter space.

P(f)=

Fig. 3. Diagram showing where multiple steady states
reside in parameter space. For points above and to the
right of the dashed line there exists a value of L, having
a range of Ra?/u-values for which multiple steady states
are obtained. Specific examples of these ranges are given
for three values of L;.
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6. Conclusions and discussion

It is shown that the equations describing the
circulation in a simple box model are, in a certain
limit, related to those describing the evolution of
the lowest moments of the momentum and density
fields in a rectangular, f-plane ocean. In contrast
to box-models, however, Coriolis effects and wind
forcing can be readily incorporated. For certain
parameter values the model formally reduces to
some well-known systems of equations (Lorenz,
1963 and Lorenz, 1984). Parameter values in the
ocean avoid the chaos which these equations may
exhibit. The thermally driven ocean circulation,
however, may feature self-sustained oscillations
with a typical time scale of 500 years, though their
occurrence for large Ra-numbers, as Fig. 1 shows,
strongly depends on the values of y, the ratio of
diffusivities scaled with the square of the aspect
ratio. Notwithstanding the neglect of salinity
effects the present f-plane model still exhibits mul-
tiple equilibria when wind-forcing is included, see
Fig. 3. It is evident from (24) that for the oceanic
values discussed at the end of Subsection (2.4)
(taking into account the rescaling referred to
above egs. (15) which yields Ra & 400), the ocean
is in a state where multiple steady states might
occur.
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