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The spatial structure of the streamfunction field of free, linear internal waves in a two-
dimensional basin is governed by the canonical, second-order, hyperbolic equation on a
closed domain. Its solution can be determined explicitly for some simple shapes of the
basin. It consists of an algorithm by which ‘webs’ of uniquely related characteristics
can be constructed and the prescription of one (independent) value of a field variable,
related to the streamfunction, on each of these webs. The geometric construction of
the webs can be viewed as an alternative version of a billiard game in which the angle
of reflection equals that of incidence with respect to the vertical (rather than to the
normal). Typically, internal waves are observed to be globally attracted (‘focused’) to
a limiting set of characteristics. This attracting set can be classified by the number of
reflections it has with the surface (its period in the terminology of dynamical systems).
This period of the attractor is a fractal function of the normalized period of the internal
waves: large regions of smooth, low- period attractors are seeded with regions with high-
period attractors. Occasionally, all internal wave rays fold exactly back upon themselves,
a ‘resonance’: focusing is absent and a smooth pattern, familiar from the cellular pattern
in a rectangular domain, is obtained. These correspond to the well-known seiching modes
of a basin. An analytic set of seiching modes has also been found for a semi-elliptic basin.
A necessary condition for seiching to occur is formulated.

1. Introduction
Study of the canonical hyperbolic equation (the wave equation) is usually performed

on half-open domains only. This is because in those cases one of the independent vari-
ables is time and no future behavior of the solution is normally imposed. In the present
study the wave equation governs the spatial structure (of the streamfunction) of linear,
monochromatic internal waves in a stratified basin. It should thus be solved on a closed
domain on which boundary the streamfunction vanishes. Magaard (1962, 1968) showed
that this equation is solved by a functional relation that can be rewritten as a mapping
between successive surface intersections (reflections) of characteristics. The interval be-
tween two successive surface intersections is referred to as a fundamental interval. Once
the field variable is prescribed in a fundamental interval the complete solution can be
determined in two steps. First, from the specified value of the field variable at the surface
in that fundamental interval this field variable can be constructed over the whole surface
domain. Second, the streamfunction at any point of the interior domain is obtained
as the difference of the value of this field variable that is carried invariantly along the
characteristics intersecting at that point. Magaard basically restricts his study to prop-
agation of internal waves that have a frequency for which the basin bottom is subcritical
(characteristic steeper than bottom) which constitute two detached monotonic maps:
one for rightward and one for leftward propagation. In this study we extend this to a
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consideration of internal waves with frequencies for which the bottom is supercritical:
internal waves bounce back and forth between the sides of the basin. The right and
leftward modes of propagation get connected and present a bi-modal map. For certain
simple cross-sectional profiles this map can be obtained explicitly. The characteristics
fold back over and over again to form what will be referred to as a web. The construction
of webs of characteristics and the prescription of the field variable in a unique (funda-
mental) interval form the two independent parts of the solution of this problem. It is
the former, geometric aspect that is most influential however. Irrespective of what the
field variable may be it predicts the possible existence of certain limiting characteristics
to which the solution is attracted.

In section 2 the equations governing internal gravity waves in a two-dimensional strat-
ified basin are derived and the functional relation of Magaard (1962, 1968) is reviewed.
In section 3 this is applied to a non-trivial, one-parameter topography — the parabolic
basin — for which the bi-modal map can be derived. Webs of characteristics and their
asymptotic states are constructed with this map. Several geometrical aspects are pointed
out for these attractors, giving rise to a conjecture on nested maps. In section 4 an ex-
ample of a solution of the complete problem is given for a special choice of the field
variable in the fundamental intervals. Standing versus propagating modes of internal
gravity waves are discussed.

One would like to view a boundary value problem like the one presented here as an
eigenvalue problem. Solutions of such a problem are usually obtained as a (finite or
infinite) set of discrete eigenfrequencies separated by compact regions where no such
frequencies reside. The solutions of the hyperbolic equation in the only geometry for
which analytical solutions are presently available, the rectangle, however signal that there
are some unusual facets to this kind of eigenvalue problem (Münnich, 1994). First, the
eigenfrequencies (eigenperiods) are degenerate: for any eigenperiod there are an infinite
number of spatial structures corresponding to it (spatial multiples of the horizontal and
vertical structure of the basic state). Second, the eigenfrequencies are dense: every
rational frequency is an eigenfrequency, much like for inertial motion on a torus. Thus
the ‘eigen-ness’ of the eigenfrequencies is becoming dubious terminology. In section 5
the solution for the rectangle, obtained by separation of variables, will be compared with
that using the method of characteristics, employed here. It is argued that for irrational
frequencies the characteristics are plane-filling and thus the width of the fundamental
interval over which the field variable can be independently specified shrinks to zero (a
single point). Hence the streamfunction at any point — being the difference of two
sampled values of the field variable — vanishes and no free solution for such frequencies
exist. In contrast to what is found in a parabolic basin, for rational frequencies, each
characteristic exactly folds back upon itself: a resonance. In this section, finally, it is
pointed out that analytical solutions, bearing a one-to-one relationship to those found
for the rectangle, can be obtained in a (semi) elliptic basin.

For other non-rectangular geometries there also appear to be frequencies for which
stationary internal wave patterns do not exist. The notion of the existence of certain
discrete ‘eigenfrequencies’, however, regresses even further, since, in one sense, these now
constitute compact domains.

Section 6 discusses the same features for some other simple basin shapes. Section 7,
finally, discusses the relevance of the present study for oceanic and lake applications. It
also summarizes the main results and limitations of this approach.
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2. Internal-wave equation and solution by functional relation
2.1. Internal-wave equation

Internal waves in a uniformly-stratified, inviscid, linear, hydrostatic, non-rotating, two-
dimensional Boussinesq fluid are governed by the momentum equations, conservation of
density and continuity equation (e.g. Turner, 1973):

∂u

∂t
= − 1

ρ∗
∂p

∂x
, (2.1a)

1
ρ∗
∂p

∂z
= b ≡ −g ρ

ρ∗
, (2.1b)

∂b

∂t
+ wN2 = 0, (2.1c)

∂u

∂x
+
∂w

∂z
= 0. (2.1d)

Here t is time and u and w are the velocity components in horizontal (x) and vertical
(z) directions in a Cartesian frame of reference whose origin is located at the surface on
the basin centre line. The positive z-direction is antiparallel to gravity. Gravitational
acceleration is denoted as g. Perturbation density and pressure fields, ρ and p, are
expanded about a density field ρ∗ + ρ0(z) and a hydrostatically-related pressure field,
where ρ∗ >> ρ0(z) >> ρ(x, z, t), ∀{x, z, t}. Buoyancy b is defined in (1b) and N is the
Brunt-Väisälä frequency defined through N2(z) = −(g/ρ∗)(dρ0/dz), which acts as the
upper bound of internal wave frequencies (Groen, 1948).

Elimination of the buoyancy b between (2.1b) and (2.1c) yields

1
ρ∗

∂2p

∂z∂t
= −wN2, (2.2a)

while, with (2.1a), subsequent elimination of p/ρ∗ gives

∂3u

∂z∂t2
=
∂w

∂x
N2. (2.2b)

Equation (2.1d) suggests the use of a streamfunction Ψ(x, z, t) related to the velocities
by u = −∂Ψ/∂z, w = ∂Ψ/∂x, with which (2.2b) becomes

∂4Ψ
∂z2∂t2

+N2 ∂
2Ψ
∂x2

= 0. (2.3)

For monochromatic waves of frequency ω

Ψ(x, z, t) = ψ(x, z)e−iωt,

this reduces to
∂2ψ

∂x2
− ω2

N2

∂2ψ

∂z2
= 0. (2.4)

It will be assumed that the stratification is uniform, so that N is a constant. In an infinite
medium (2.3) is satisfied by planar waves (with horizontal and vertical wave numbers k
and m), which obey the dispersion relation

ω = ±N k

m
.

The frequency is therefore just a function of the angle that the wave vector makes with
the vertical. From the dispersion relation the perpendicular nature of internal wave
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propagation — group velocity vector normal to phase velocity vector — can be inferred
and is such that the vertical components of these two vectors are always in opposition
(Lighthill, 1978). Demonstrations of this type of internal wave propagation have been
given in the laboratory studies of Görtler (1943), Mowbray & Rarity (1967) and Thorpe
(1968), while ray-like propagation of internal waves was also observed in the ocean by
deWitt et al. (1986) and Pingree & New (1991).

By scaling x with the basin half-width L and z with ωL/N , (2.4) obtains the canonical
form of a second-order, hyperbolic equation:

∂2ψ

∂x2
− ∂2ψ

∂z2
= 0. (2.5a)

This is the ‘wave equation’ in spatial coordinates only. For a wide class of non-uniform,
ocean-like stratification profiles a coordinate and variable transformation exists for which
(2.4) can also be reduced to standard form (Magaard, 1962; Baines, 1973). This trans-
formation, however, also affects the description of the form of the boundary. For the sake
of simplicity, therefore, we will stick to the assumption of uniform stratification (N =
constant).

The boundary condition on the basin wall is one of vanishing streamfunction such that
the flow is parallel to it

ψ = 0 at z = 0, z = −τh(x). (2.5b)
Here

τ ≡ ND

ωL
, (2.6a)

which can be interpreted as the scaled period of the monochromatic internal wave (N/ω).
Alternatively τ can be viewed as the scaled aspect ratio (depth divided by half-width,
D/L) of the basin. Nondimensional topography is given by h(x), |x| ≤ 1, with h(±1) = 0,
and, for symmetric topographies, h(0) = 1. A scaling like this may seem inconvenient, as
for fixed geometry (D,L,N and h(x)) the ‘depth’, τ , changes with changing frequency
of the wave and one cannot draw rays of waves having different frequencies in one and
the same diagram. This is offset, however, by the advantage that for each frequency
wave-rays make one and the same angle of 45o with respect to the vertical, which allows
quick visual assessment of diagrams. Note that this angle also applies after reflection off
sloping boundaries. This makes internal wave reflection unusual when compared to, for
instance, the coastal reflection of obliquely incident surface gravity waves, which obey
the specular law of reflection in which the angle of incidence, measured with respect
to the coast’s normal, equals the angle of reflection. The peculiar nature of reflection
of internal gravity waves implies that there exists a critical slope of the topography, as
when it equals that of the characteristics. With the nondimensionalization employed
here these slopes are ±45o, below and above which the waves reflect along or against the
original x-direction. For these and other basic aspects of internal wave propagation see
e.g. Turner (1973) and Lighthill (1978).

For values of ω as low as 10−4s−1 — typical for semi-diurnal tides — the Coriolis
frequency f (twice the angular velocity of the earth multiplied by sine of latitude) can
no longer be neglected. Also, for high-frequency waves, non-hydrostatic effects are no
longer negligible. Both effects merely lead to a slight change in the definition of τ ,
(Baines, 1973):

τ =
(
N2 − ω2

ω2 − f2

)1/2
D

L
, (2.6b)

which provides a mapping of the internal wave band (f < ω < N) onto the positive real
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Figure 1. Sketch of a uniformly-stratified, parabolic basin with subcritical bottom slope,
showing the approach of the characteristics towards the corners of the basin for τ = 0.4.

axis of the scaled period τ . Lakes and oceans are characterized by values of τ ≈ (0.1 − 1),
based on f = 5 × 10−5s−1, ω = 10−4 − 10−3s−1, N = 10−2s−1, D = 102 − 5 × 103m,
L = 104 − 2.5 × 106m.

2.2. Solution with functional relation
Magaard’s (1962, 1968) work is succinctly presented in Sandstrom (1976) which will be
followed here. Equation (2.5a) is solved by arbitrary complex functions f−(x − z) and
f+(x+ z) of the real characteristic variables x− z and x+ z:

ψ(x, z) = f−(x− z) + f+(x+ z). (2.7)

Applying the surface boundary condition (2.5b) shows that the functional form of f± are
related,

f+(x) = −f−(x) ≡ −f(x),
on dropping the subscript. Hence,

ψ(x, z) = f(x− z) − f(x+ z). (2.8)

Let us denote the bottom as H(x) = τh(x). Then, application of the boundary condition
(2.5b) at the bottom z = −H(x) of the basin, yields

f(x+H(x)) = f(x−H(x)), (2.9)

a functional relation for f(x). If successive surface intersections are denoted as xn, xn+1, ...
(where n runs over all positive and negative integers), then, from figure 1, it is obvious
that

xn+1 − xn

2
= sH(x), (2.10a)

where

x =
xn+1 + xn

2
(2.10b)

and where sign s = +1,−1 determines the two modes of the map for rightward and
leftward moving characteristics respectively. Equation (2.9), applied at x, therefore, can
be interpreted as

f(xn+1) = f(xn), (2.11)
which states that the ‘field variable’ f is invariant under map (2.10a). In fact f is
unchanged along the entire trajectory of reflecting characteristics, such that at any point
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in the interior, the streamfunction value can be readily obtained as the difference of the
values of the field variable on the two characteristics that go through it, see (2.8). Its
validity is obvious for any topography that is entirely subcritical (a special case of which is
shown in figure 1), since neighbouring characteristics retain their ordering (i.e. for y0 > x0

one has y1 > x1). Equation (2.11) equally applies for topographies that are partially
supercritical, at least, when f is real, (see section 3), which is less obvious because the
ordering is destroyed due to back-reflection. The region between two successive surface
intersections will be referred to as a fundamental interval, since, when we prescribe the
field variable f(x) at the surface for x ∈ [xn, xn+1) then, because of (2.11), f(x) is
uniquely determined for all x ∈ [−1, 1]. This definition applies to the subcritical case
discussed above. Identification of the fundamental interval for supercritical cases will be
addressed in section 4.

The ‘solution’ thus consists of two parts that will be discussed separately in the next
two sections: 1) a geometric aspect, that may be captured in the set of successive surface
intersections, S(x0) = {..., x−2, x−1, x0, x1, x2, ..} and 2) the prescription of the field
variable f(x) in a fundamental interval x ∈ [xn, xn+1). The set S(x0), together with
connecting characteristics will be referred to as the web belonging to x0 —a name that is
more readily appreciated for the supercritical topographies, discussed in the next section.
The largest fundamental interval will be called the primary interval. For subcritical
topographies, like the one in figure 1, the limiting points of S(x0) are the corners of the
basin:

lim
n→±∞ xn = ±1,

these constitute the attractor of the rightward and leftward ‘moving’ characteristic re-
spectively. More complicated attractors will be obtained in the next section. Note that
in spite of the terminology no real movement towards the attractor can be meant here,
since time has been removed from the hyperbolic equation.

The generation of the ‘web’ is merely a part of constructing the spatial structure of
ψ(x, z). Nevertheless, Wunsch (1969), considering internal waves in a subcritical wedge,
concludes that the corner of a subcritical topography does act as a physical attractor of
the internal wave field. He does so on considering some laboratory experiments which led
him to re-interpret his earlier theoretical analysis of the problem in which he obtained
a standing internal wave pattern (Wunsch, 1968). He concludes that only the incoming
solution should be physically acceptable, since all of the energy of the internal wave field
will be absorbed, because of the intensification of the wave field and subsequent breaking
and mixing — and breakdown of the linear theory — that accompany the approach of
the corner. Similar results will occur for supercritical basins: a standing wave pattern
can in principle be constructed, but, again in view of the intensification of the internal
wave field, the energy of the incoming wave will be deposited near the physical location of
the attractor. Sandstrom (1976) obtained an explicit solution like that of Wunsch (1968)
for a particular closed, subcritical and symmetrical basin. Manton and Mysak (1971)
pointed out that the functional relation (2.9) can be used to construct internal wave
solutions for arbitrary topographies; a viewpoint that we share. The approach they take,
however, is different from that in the following and results should thus be considered to
be complementary.

3. Explicit bi-modal map for a parabolic basin
For certain simple basin shapes, H(x), the implicit map, given by (2.10a) & (2.10b)

can be made explicit. In the following we will consider several such topographies taken
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as (piecewise) linear or quadratic polynomials. They can be classified according to the
number of parameters needed to specify them. One parameter (τ) is related to the prod-
uct of the ratio of the buoyancy frequency and wave frequency and the aspect ratio, see
(2.6a). Other parameters are sometimes needed to specify piecewise-defined topogra-
phies. Aside the rectangle and the ellipse (that will be discussed in section 5) only one
other one-parameter topography will be considered: the parabolic basin. This will be our
main example. To some extent the results obtained in that case are representative for
those found for multi-parameter topographies, like the bucket. This is a piecewise, linear
topography having sloping side walls and a flat bottom in between. However, since some
new features arise for these cases they will be given seperate attention in section 6.

3.1. Explicit bi-modal map
When the basin shape is parabolic, h(x) = 1 − x2,

H(x) = τ(1 − x2), (3.1)

map (2.10a)–(2.10b), with x ≡ xn and xr,l ≡ xn+1 for rightward (s = +1) and leftward
(s = −1) moving characteristics, becomes

xr = −x− 1
τ

+

√
4x
τ

+ 4 +
1
τ2

≡ X(x), (3.2a)

xl = −x+
1
τ
−

√
−4x
τ

+ 4 +
1
τ2

= −X(−x), (3.2b)

where signs, in front of the radicals, have been chosen such that xr > x and xl < x. It can
be verified that xr(xl(x)) = x and vice versa: the right and leftward maps are each other’s
inverse, x−1

r (x) = xl(x). Also, for a symmetrically-shaped topography, xl(x) = −xr(−x),
and hence xr(−xr(−x)) = x. Because of this we will also denote xr(x) just by X(x) and
xl(x) by −X(−x).

The topography has maximum slope at its corners, x = ±1, where it is ±2τ . It
is therefore everywhere subcritical (i.e., makes an angle with the horizontal which is
less than 45o), when τ < 1/2, and these two modes are detached. Rightward moving
characteristics end up in the right corner and vice versa (see figures 1 & 2a). These are
the fixed points (attractors) of the map.

When the topography is supercritical however, the two modes get connected as the
corners no longer act as fixed points. The naive map (3.2a)–(3.2b) formally computes, for
some range of x-values, a new surface intersection which lies outside the basin domain,
−1 ≤ x ≤ 1, see figure 2b. For a rightward ‘moving’ characteristic this happens for
x > xs, with

xs ≡ 2
τ
− 3,

being the point that is mapped onto the right corner (that can be obtained from xl(1)),
see figure 3. For values x < xs the simple forward map applies. For x > xs, however, the
new virtual value, X , not only lies outside the basin domain, but also has two pre-images,
x and Y say. The latter is in fact the true image of x (see figure 3). Neglecting the virtual
points that appear, the sequence {xn} can be constructed graphically as in figure 2b.
One often wants the explicit functional dependence, however. This can be obtained as
follows. The leftward map of X (the two roots of the quadratic that is obtained from
(2.10a) with H(x) given by (3.1)), gives the two pre-images x and Y :

x =
1
τ
−X +

√
−4X
τ

+ 4 +
1
τ2
, (3.3a)
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Figure 2. (a) subcritical (τ < 1/2) and (b) supercritical (τ > 1/2) map of successive surface
intersections of characteristics for rightward (upper curve, X(x)) and leftward (lower curve,
−X(−x)) ‘moving’ characteristics. Construction of successive surface intersections is shown for
one particular value of x0. The diagonal line is drawn for convenience.

Y =
1
τ
−X −

√
−4X
τ

+ 4 +
1
τ2
. (3.3b)

Adding these yields

Y =
2
τ
− x− 2X(x), (3.4)

where X(x), the inverse of (3.3a), is given by (3.2a). In figure 3, two regions in the
interval x ∈ [xs, 1] can be recognized which determine whether leftward reflection occurs
for a characteristic coming from below, or from above. The dividing line is the critical
characteristic (which intersects the bottom at the point where the bottom is critical).
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Figure 3. Sketch showing the construction of successive surface intersections of characteristics
for a super-critically reflecting bottom. The critical characteristic (surface intersection xc) and
characteristic going through the right-hand corner (intersecting at xs) are also shown.

Its intersection with the surface is at

xc ≡ 3
4τ

− τ.

Physically, internal waves propagating along that critical characteristic, tend to be mainly
dissipated (due to breaking resulting from strong amplification), see Cacchione & Wun-
sch (1974) and Ivey & Nokes (1989). The mathematical approach, pursued in this section
however, merely aims to construct webs of characteristics without implying anything for
the physical fields carried along them. It considers construction of the critical character-
istic as a limiting process. For characteristics approaching the critical characteristic the
reflected ray resides just at the other side of it. Thus reflection on the critical character-
istic itself should result in complete back-reflection along that same ray, from which xc

is obtained as fixed point of map Y (x), i.e. xc satisfies: Y (xc) = xc.
Leftward reflection of an initially rightward moving characteristic should be accompa-

nied by a sign change of s, indicating that one should shift to the leftward map. For a
supercritical topography then, the complete bi-modal map, T(x, s) ≡ (T1(x, s), T2(x, s)),
is specified by two parameters giving the new surface intersection, T1(x, s), as well as the
new sign, T2(x, s), where T2 ∈ {−1, 1}:

T(x, s) =




(X(x), s) if s = +1, −1 ≤ x ≤ xs

(Y (x),−s) if s = +1, xs ≤ x ≤ 1
(−X(−x), s) if s = −1, −xs ≤ x ≤ 1
(−Y (−x),−s) if s = −1, −1 ≤ x ≤ −xs

. (3.5)

Alternatively, the map can be written as (xn, sn) = T(n)(x0, s0), where x0 and s0 indicate
the initial position and direction of the ray and n > 0 (< 0) relates to s0 = +1 (−1).
The map is plotted for a particular value of τ in figure 4. The graphical construction
of successive surface intersections is a slight variation of the usual procedure in iterated
maps (e.g. Schuster, 1984) owing to the bi-modality of the map. For a given x0 one
might read off x1 from the graph and then read off x2 etcetera, a process that is reduced
by reflection in the diagonal. When an x ∈ [xs, 1) is obtained for initially rightward
motion (upper curve) one should shift to the leftward mode (lower curve), and vice versa
when x ∈ (−1,−xs]. This corresponds to the dashed parts of the map in figure 4 and
indicates that sign changes occur. The solid parts indicate that no sign change occurs.
In the remainder of this paper dashing of branches on which the map changes sign will
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Figure 4. Bi-modal map for τ = 0.7 with successive surface intersections xn, n ∈ {0, 1, 2, 3}.
The rightward (leftward) map is given by the upper (lower) curve; the solid (dashed) part of it
indicates that the sign is unchanged (changed). Short dashed lines give graphical construction
of successive surface intersections.

be suspended, on the understanding that sign changes will still occur according to the
definition above.

In this paper τ -values will be restricted by the arbitrary, additional requirement that
there is at least one point that is mapped simply forward, xs ≥ −1, or τ ≤ 1. This
restriction is made just for the sake of simplicity, since now characteristics reflect from
the bottom at most twice prior to reaching the surface. Construction of the map for
larger values of τ can be done along the lines indicated in the Appendix and is made
explicit there for 1 ≤ τ ≤ 3/2.

3.2. Construction of web by iteration of the map

Given a single position x0, the complete web, S(x0), can be constructed by forward and
backward iteration of the map, following the characteristics passing through that point
both in rightward and leftward direction. In this way, for a particular value of τ , the
web shown in figure 5 is constructed. It is observed that the rays are rapidly attracted
towards a limit cycle, that can be characterized by the number of surface intersections
it has. This number is referred to as the period of the attractor in accordance with the
usage in dynamical systems. There should be no confusion with the period of the wave
(which, in scaled form, appears here as the central parameter τ) in (2.6a). Thus, for this
particular example, the period of the attractor is two. Surprisingly, for this value of τ ,
this limit cycle is the only one present. Irrespective of the value x0 the same limit cycle
is reached. This applies both for characteristics ‘initially’ moving to the right as well
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Figure 5. Construction of web for τ = 0.9 and x0 = 0.15 by iterated mapping. Right and
leftward ‘moving’ characteristics are drawn as solid and dashed lines respectively. The final
sense in which the limit cycle is traversed has been indicated by arrows.

as for those moving to the left. This insensitivity to initial position and direction is a
consequence of the symmetry of the final attractor.

For odd-period attractors there are two separate limit cycles (which are each other’s
images when mirrored in the line x = 0). The limit cycle that will be reached depends
on starting position, x0, as well as on direction, s0. For the 3-cycle this relation of
initial values (x0, s0) to the ‘final state’ of the characteristics is illustrated in figure 6.
An arbitrary (but typical) value of the scaled period (τ = 0.72) within the period-
3 interval is sketched in figure 6a. The attractor with two negative and one positive
surface intersection will be called the positive attractor (solid line), since the product of
these three values is positive. Vice versa its mirror image is called the negative attractor
(dashed line). The bars in the upper part of figure 6a show whether the positive (black)
or negative (white) attractor is reached for different starting values x0. The upper (lower)
bar corresponds with rightward (leftward) starting characteristic, s0 = +1 (−1).

Due to the combination of starting value and rightward/leftward direction, there are
four possible final states:

(I) the positive attractor (solid line) is reached for both starting directions (both
bars black),

(II) the negative attractor (dashed line) is reached for both starting directions (both
bars white),

(III) the positive attractor is reached for a rightward (s0 = +1) start, while the nega-
tive attractor is reached for a leftward start (upper bar black, lower bar white),

(IV) the reverse of case III: upper (lower) bar is white (black).
In figure 6b the four defined regions are given for the whole 3-cycle interval.

The approach of the limit cycle can also be appreciated from successive iterations
directly in a graph of the map. Figures 7a and 7b give examples of a two and three cycle
respectively. In the latter figure the initial position is such that two different attractors
are reached for rightward (solid) and leftward (dashed) moving characteristics (state IV).

It has been mentioned that the web is to be considered a spatial structure and that,
in spite of the terminology used, the iterative procedure, by which it is constructed,
should not be viewed as a temporal process. The global convergence of all webs towards
a limit cycle for sufficiently often iterated maps suggests, however, that when the field
variable that is ‘advected’ along the characteristic is complex, this may nevertheless be
interpreted as propagation along the characteristic. In particular this then implies that
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Figure 6. The two possible attractors are shown (a) for a typical period (‘depth’) τ in the
3-cycle interval (τ = 0.72). In the horizontal bars on top of the figure one can see as well which
final state is reached for all possible initial values x0 and directions s0. The upper (lower) bar
corresponds to rightward (leftward) initial direction, s0 = +1 (−1). Black (white) bars denote
the solid (dashed) attractor as final state. The four possible combinations of the attractors
reached (both bars black/white and two combinations) are denoted as regions I—IV, and are
explained in detail in the text. In (b) the location of these regions are given for the whole 3-cycle

interval 0.715.. < τ <
√

5 − 3/2 = 0.736...

distributed fields tend to get focused along the limit cycle. This focusing process appears
to be generic, and happens irrespective of the precise value of the field variable itself.
This geometric effect, therefore, seems to be the most important factor determining the
complete solution.

3.3. Asymptotic state(s) as a function of τ

The limiting characteristics (limit cycles) can succinctly be summarized by their surface
intersections (limit points): a Poincaré section. Recall that for τ < 1/2 the two corners
x = ±1 are the two limit points. In figure 8 Poincaré sections have been plotted for
a sequence of τ -values by taking one particular x0, iterating that along the initially
rightward direction, s0 = +1, for a large number of times (here 1100) and plotting the
last few hundred (here 200) iterates. This plot will be referred to as a Poincaré plot.
This figure shows that there is a complicated dependence of the period of the attractor
on the map parameter τ — the scaled period of the internal wave. Regular windows, in
which the attractor-period stays constant and the limit points gradually move out, are
interrupted by high-period regions. These high-period windows, in turn, appear to have,
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Figure 7. Successive mappings in the case of a) a two-cycle, x0 = 0.15 for τ = 0.9 and b) a
three-cycle, x0 = 0, τ = 0.72. Solid (dashed) lines are used for initially rightward (leftward)
moving characteristics.

at a finer scale, a similar fractal-like division in high and relatively low-period windows
(figure 9). None of these windows contains chaos, however, as will become clear when
one considers Lyapunov exponents (see below). For increasing values of τ each of these
windows undergoes a kind of bifurcations towards a point where the period increases
indefinitely. No regular, period-doubling bifurcation is obtained in this case though.
Because only the rightward direction has been traced here, asymmetric structures appear
for odd-period attractors, their mirrored parts being obtained for other initial values
and/or direction.
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Figure 8. Poincaré plot of x900 − x1100 of map (3.5) for x0 = 0.123456789 and s0 = +1 in the
interval 1/2 ≤ τ ≤ 1 where τ is incremented with 1/1600 of this interval. Indicated at the top
are some special values of the map parameter that can be computed algebraically from the lines

in figure 10: τ1 = (9 −√
41)/5, τ2 = (

√
17 − 3)/2, τ3 =

√
3/8, τ4 = 2/3, τ5 =

√
5 − 3/2,

τ6 = 2(
√

137 − 9)/7, τ7 =
√

3/2.

3.3.1. Skeleton of Poincaré plot
Some of the ‘lines’ that can be discerned in figure 8 can, in fact, be related to the two

‘special points’, xc(τ) and xs(τ), defined previously. The latter one itself is the leftward
image of the corner point x = 1, i.e. −X(−1). Likewise, some of the other lines in
figure 8 consist of points that are pre-images of the corner points. This is shown in
the skeleton of the Poincaré plot, figure 10. From the intersections of these lines, the
τ -values that specify the borders of some of the windows can be calculated algebraically
(see caption of figure 8). The functions appearing in figure 10 are given in table 1, along
with some other frequently used functions.

The distances of the successive windows, converging at
√

3/2, do not seem to converge
at the Feigenbaum rate (Schuster, 1984), as might be expected at first. This has not
been further elaborated yet.

3.3.2. Lyapunov exponents
Even though the windows in figure 8 are reminiscent of the chaotic regions in the

logistic map (Schuster, 1984), they are nevertheless very different. Chaos is associated
with divergence of nearby trajectories characterized by positive Lyapunov exponents.
Lyapunov exponents for the bi-modal map in a parabolic basin, however, are always less
then zero (within numerical precision).

In figure 11 the convergence rate with which the limiting characteristics are approached
has been quantified by calculating Lyapunov exponents. The Lyapunov exponent, λ+,
is defined as:

λ+ = lim
N→∞

1
N

N−1∑
n=0

ln|dT1(xn, sn)
dx

|,

where, T1(x, s) is the first part of map (3.5) and xn and sn denote the nth iterates,
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Figure 9. Expansion of figure 8 by employing 1600 points to cover the interval
2/3 ≤ τ ≤ √

5 − 3/2 using the same initial value x0.

Figure 10. ‘Skeleton’ of figure 8. The labels on the lines refer to those in table 1.

starting from x0 and s0 = +1. The associated Lyapunov exponent, λ−, can be obtained
by starting with s0 = −1. The Lyapunov exponent is, in principle, a function of the
starting position x0. But, typically, the same λ+ is obtained for almost any x0. Also, the
degree to which the true Lyapunov exponent is approximated depends on N in a non-
monotonic (typically oscillatory) way. Therefore some averaging should, in principle, be
performed, although for N large this can be safely ignored.

The Lyapunov exponent measures the total convergence or divergence along a char-
acteristic. It is observed that figure 11a mimics certain aspects of the Poincaré plot
(figure 8). The latter figure is summarized by calculating the period of the attractor,
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function definition expression τ -interval

xs −X(−1) 2
τ
− 3 ( 1

2
, 1)

xc Y (xc) − xc = 0 3
4τ

− τ ( 1
2
, 1)

xl Y (−Y (−xl)) − xl = 0 ±
√

4 − 3
τ2 (

√
3

2
, 1)

xm Y (X(xm)) + xm = 0 ±[ 3
5
(τ − 1

τ
) ±

√
8
5
− 3

5τ2 ] ( 1
2

√
3
2
, 2

3
)

q X(−xc(τ ))
√

8 − 2
τ2 − 1

4 τ
− τ ( 1

2
,
√

5 − 3
2
)

l2 −X(−xs) 3 − 1
τ
−

√
4 − 7

τ2 + 12
τ

( 1
2
, 2

3
)

l′2 −Y (−xs) −3 − 2
τ

+ 2
√

4 − 7
τ2 + 12

τ
( 2
3
, 1)

l3 −X(−l2) −3 + 2
τ

+
√

4 − 7
τ2 + 12

τ
+

−
√

4 + 5
τ2 − 12

τ
+ 4

√
4− 7

τ2 + 12
τ

τ
( 1
2
,
√

17−3
2

)

l′3 −Y (−l2) . . . (
√

17−3
2

, 2
3

l′′3 X(l′2) . . . ( 2
3
,
√

5 − 3
2
)

l′′′3 Y (l′2) . . . (
√

5 − 3
2
, 1)

xt X(xt) + xt = 0 τ ( 1
2
, 1)

X(x) (X − x)/2 = τ (1 − (X + x)2/4) − 1
τ
− x+

√
4 + 1

τ2 + 4 x
τ

Y (x) 2
τ
− x− 2X(x)

Table 1. Definition and expressions of lines indicated in figure 10.

P say, by determining the number of iterations for which asymptotically (N large) a
certain xN recurs with sufficient accuracy, ε, i.e. the smallest integer P ∈ IN for which
|xN+P − xN | < ε. Here N = 900 and ε = 10−7 have been used. For visual similarity
with figure 11a,

ν ≡ −1/P,

is plotted, see figure 12. The graph of the Lyapunov exponent shows that the map is
strongly attracting for regular (low-period) regions of the Poincaré plot like in the regions
with period 2, 3 and 4. In between, the curve is less negative and in particular seems to
reach zero at some discrete set of points. A blow-up (figure 11b,c) demonstrates that self-
similarity also appears in the Lyapunov exponent, a self-similarity that can be discerned
in the (inverse) period, figure 12b,c, too.

Vanishing of the Lyapunov exponent means that all points retain their mutual dis-
tances. This can either happen when neighbouring points are all situated at distinct
limit-cycles of the same finite period (a situation encountered in the rectangle, consid-
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Figure 11. a) Lyapunov exponent, λ+, as a function of τ , with b,c) two successive
enlargements. For each graph 1200 τ -values have been used.

ered in section 5), or when they migrate in unison. In the latter case, however, it implies
that the attractor has infinite period. This is the situation occurring in the parabolic
basin.

Note that overall negativeness of Lyapunov exponents implies that the bi-modal map
is, in the terminology of dynamical systems, dissipative. This happens despite the fact
that the physical model is inviscid.

3.4. Integral quantification of webs
Figures 8 and 9 are unsatisfactory as a classification of entire webs as they concentrate
on just the asymptotic part of them, corresponding to the limit-cycle.

Also, in figures 11 and 12 the Lyapunov exponent as well as the period of the web
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Figure 12. ν = −1/P , related to the period of the attractor,P , for N = 1200 arbitrarily
truncated when the period is in excess of 400, as a function of τ with b,c) two successive
enlargements. Figure 12c suffers from numerical convergence problems, though.

have been given for one particular starting value x0, i.e. for one single web. To do more
‘justice’ to each complete web one needs integral measures to characterize them (as a
function of x0). One such measure, the sum of iterates

µN (x0) =
N∑

n=−N

xn, (3.6)

has been employed here, see figure 13. This is similar to the Poincaré plot, figure 8,
except that it contains ‘information’ about the whole parameter plane. For most values
in the x0–τ plane this quantity is independent of N (for large values of it) due to the



Geometric focusing of internal waves 19

−399 −1.5 −1 −0.5 0 0.5 1 1.5 399
Nµ

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

τ

xo

Figure 13. Sum of iterates, µN for map (3.5) as a function of τ (601 points) and initial position
of web, x0 (601 points). Number of iterates is 2N +1 = 399. Values of µN reside for about 95%
in the -1 (bright blue) to +1 (bright red) range. White indicates a zero value of µN .

existence of symmetric limit cycles. Particularly if, for n large, x−n = −xn, this sum of
iterates stabilizes. For other values of τ and x0 this antisymmetry of the iterates does
not exist and a stable value of the sum in (3.6) would be obtained only after averaging
over the period, M say, of this cycle. Such an averaging has not been done in figure 13,
though. Similarly, for odd-period attractors that have their x0-values in intervals for
which forward and backward iteration leads to different (mirrored) limit-cycles (figures 6
and 7b), cancellation occurs between terms with index n and −n. The only contribution
to the sum in (3.6) thus comes from small (absolute) values of the index n and stays
approximately in the range (−1, 1), see figure 13. Only for τ -intervals with odd-period
attractors, which have x0-regions that reach the same asymmetric attractor for rightward
and leftward iteration, there is a net ‘drift’ (N -dependence) of µN (the dark regions in
figure 13). The sum of iterates is an odd function of x0 due to the symmetry of the
topography.

3.4.1. Conjecture: two-parameter independence of infinite sum of iterates

There exist regions where µN is constant to within round-off error. These are par-
ticularly visible as the white regions in figure 13 (where µN ≈ 0). This allows us to
conjecture the following, surprising two-parameter independence of an ‘infinite’ sum of
iterates:

∞∑
n=−∞

xn(x0, τ) = 0 {∀x0, τ | |x0| ≤
√

4 − 3
τ2
, τ ∈ (

√
3

2
, 1)}.
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Since, for the region indicated, sign changes occur at every reflection from the bottom
(see figure 7), just the second and fourth alternatives of (3.5) apply. Hence this can also
be rewritten as:

lim
N→∞

TN (x, τ) = 0, {∀x, τ | |x| ≤
√

4 − 3
τ2
, τ ∈ (

√
3

2
, 1)},

where

TN(x, τ) = x+
N∑

n=1

(−1)n(g(n)(x, τ) − g(n)(−x, τ)),

with a recursively defined g(n)(x, τ):

g(n+1)(x, τ) = g(g(n)(x, τ), τ),

and

g(1)(x, τ) = g(x, τ) ≡ −4
τ
− x+ 2

√
4 +

1
τ2

+
4 x
τ
.

No rigorous proof for the validity of this conjecture has been obtained as yet, however.
Figure 13 suggests that similar algorithms should exist in other regions of the parameter
plane where µ∞ approaches a constant. No formulation of these have been attempted,
though.

3.5. Relation to a billiard
The construction of the web of reflecting characteristics can be viewed as an alternative
to the classical billiard problem (Berry, 1981). A ‘billiard’ is defined as a closed region
of the plane for which the trajectory of a point particle is studied. The particle reflects
elastically according to the law that the angle of reflection equals that of incidence with
respect to the normal to the boundary at the point of incidence. Successive bounces label
the orbit of the particle and can be described by the distance along the boundary and the
angle of incidence. This constitutes a mapping of a (related) two-dimensional parameter
space onto itself. Three types of behaviour are encountered. First, periodic motion when
an orbit closes onto itself. Second, motion in parameter space along an invariant curve
and third, chaotic motion in which part of the parameter plane is traversed. The actual
behaviour depends on the shape of the boundary and the particular aspect ratio it has.

For acoustic waves, the spatial structure is determined by an (elliptic) Helmholtz
equation. For a monochromatic wave in WKB-approximation, there exists a one–to–
one correspondence with the billiard problem (Abdullaev, 1993), in which the wave rays
obey the specular law of reflection. In particular this implies the possibility of chaos
in ray dynamics. The internal wave rays, determined by the map in (3.5), however,
are more constrained, since a different reflection law operates: motion can occur only
in two directions (labeled by s). Thus we are dealing with a reduced parameter space.
Apparently, as a consequence, a different type of behaviour — focusing of trajectories —
is observed. Negative Lyapunov exponents have not been encountered in the standard
billiard. Conversely, in the internal wave problem, no positive Lyapunov exponents —
the hall mark of chaos — have been observed. The two types of billiard thus seem to
have complementary features.

4. Standing internal wave patterns
Having obtained the geometrical structure of the rays we are now in a position to

specify the field variable f(x) on one or more independent fundamental intervals at
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the surface. Having specified this the function can be determined completely at each
point of the surface domain. With this specification, according to (2.8), the value of
the streamfunction field at any point within the basin can be readily obtained as the
difference of the f -values carried along the characteristics which intersect in this point.

The first question we have to address is whether we can specify non-overlapping funda-
mental intervals. This question has here been solved by inspection in two simple cases: in
τ -intervals with asymptotic cycles of period 2 and 4. Consider in figure 14a the vertical
line at the right, in the region with asymptotic two-cycles. The two hatched parts of that
line indicate the two independent intervals on which f(x) can be arbitrarily specified.
Figures 14b and 14c show that rays coming from these regions are mutually exclusive
and plane filling. These constitute two separate domains of attraction even though the
attractor itself is the same. The ‘inner’ domain, figure 14b, is seen to be affected by just
a particular part of the bottom and it is independent of any deviations that the bottom
might exhibit in the outer (or central) region, like a flattening of the bottom, character-
istic of near-shore shoaling. Similarly, the ‘outer’ domain, figure 14c, is unaffected by
the shape of the bottom in the intermediate regions (that is, as long as the bottom does
not intersect any of the wave rays above it). Notice that there are regions in which the
orthogonal rays come from both domains. Conversely there are complementary regions
for which one ray comes from the inner and one from the outer domain. It is also remark-
able that the critical characteristics, situated in the inner domain, act as repellors, thus
downplaying the relevance of the failure of linear, inviscid theory in that case (Cacchione
and Wunsch, 1974; Ivey and Nokes, 1989). Consistent with existing theory, however, it
is observed that downward reflection from the supercritical part of the sloping bottom
always leads to convergence of wave rays (focusing of characteristics), a focusing which
is partly offset by subsequent reflection from the bottom leading to divergence of wave
rays. The net effect of focusing and defocusing is, owing to a larger ‘scattering cross
section’ — the interval-size over which focusing/defocusing extends — necessarily won
by the former, so that net convergence of wave-rays is the rule. This will be more explicit
for the ‘bucket’-topography, considered in section 6.

In figure 15a an example is given in which f(x) is specified to be a sine with an off-set
in the two fundamental intervals. The off-set has been chosen of a different sign in the
two regions. Based on their prescribed values in the primary fundamental intervals f(x)
has been determined for all x ∈ (−1, 1) with the aid of (3.5), see figure 14b,c. From this
graph the standing wave pattern ψ(x, z) has been obtained, figure 15b.

On the vertical line at the left in figure 14a the regions have been indicated where
primary fundamental intervals reside in the case of a four-cycle. Again, just two in-
dependent intervals arise, suggesting this to be true for each even-period attractor. In
contrast, preliminary analysis shows that for odd-period attractors three such regions
exist.

Because of the fact that the fundamental intervals constitute finite-sized domains an
arbitrary function f(x) can be specified on these intervals by a Fourier series, which,
depending on the symmetry or antisymmetry of this function, is given by a cosine or sine
series. The two classes of ‘solution’ constructed in this way are similar and comparable to
(though not as explicit as) those obtained by Wunsch (1968) for a wedge. That is, they
represent ‘blinking’, standing internal-wave patterns. Wunsch (1969) argued, however,
that laboratory observations, as well as field experiments, showed that internal wave
energy (for the subcritical wedge) only approaches the wedge and does not return to form
a standing pattern. This is more adequately described by a field of waves whose phase
and group velocity have a component in the direction of the corner, such as obtained
by a linear combination of the two standing wave solutions. In a similar vein, here too
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Figure 14. a) Selection of the ‘skeleton’, figure 10, of the Poincaré plot for the parabolic
basin with two vertical lines in the regions where 2- and 4-cycles exist. Hatched parts of these
lines indicate primary (fundamental) intervals for this τ , where function f(x) can be arbitrarily
specified. b) Rays coming from the inner and c) outer primary fundamental intervals in the
specific 2-cycle case. The location of the primary intervals has been indicated at the top of
these last two figures. In the latter case this is ambiguous as the mirrored interval might also
be adopted as the primary interval.

it is unlikely that standing wave patterns are obtained as there will be no ‘reflection’
from the attractor. It is therefore in this case too necessary to construct a propagating
wave pattern that has phase and group velocity which have components approaching the
attractor. Propagating wave solutions have not been addressed in this study though.

The solutions discussed above are in a sense ‘free’ or unforced solutions. Forcing of
internal waves can be due to a variety of mechanisms, see Krauss (1973). In this study
we will, for the sake of simplicity, restrict ourselves to forcing by pressure variations
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Figure 15. a) Function f(x), specified in the two primary fundamental intervals (hatched parts
of x-axis indicated at the top, corresponding to those indicated on the right-hand dashed line of
figure 14a), and subsequently calculated values of f(x) in remaining parts of domain for τ = 0.9.
b) Spatial structure of streamfunction field, ψ(x, z), obtained from f(x) with (2.8). Zero value
of the streamfunction field is indicated with green. Values range from -2 (dark blue) to +2 (dark
red).

at the surface, because a specification of the pressure means a direct specification of
f(x). From the description of u by means of a streamfunction we find, nondimensionally,
u(x, 0, t) = 2f ′(x)exp(−it). Vanishing of the horizontal velocity field in the corners
therefore requires f ′(±1) = 0. With (2.1a), applied at the surface, z = 0, we find that
f(x) is directly related to the pressure which is supposed to be given by the air-pressure,
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pa(x):

f(x) = − i

2
pa(x). (4.1)

Note that the imaginary unit implies an out-of-phase relationship of pressure and f .
This, however, demonstrates the paradoxical nature of this kind of specification, be-
cause, apparently, one is free to specify surface pressure only in one, or two disconnected
fundamental intervals. Specifying the pressure, proportional to f(x), over the whole in-
terval must inevitably lead to inconsistencies. The paradox is resolved by concluding that
only when such inconsistencies do not arise one is able to construct stationary solution-
patterns for the frequency under consideration, but that otherwise, one necessarily has
to employ internal wave solutions that propagate away from the forcing area. This still
assumes the forcing to be stationary. The solution of a true initial value problem for
closed basins is further complicated by the fact that the wave field has to satisfy a radi-
ation condition to guarantee causality (Baines, 1971a), a problem which indeed has, to
our knowledge, not even been solved for the rectangle.

5. Explicit solutions: the rectangle and semi-ellipse
Having obtained a solution of the spatial hyperbolic equation (2.5a), with boundary

conditions (2.5b), in the parabolic domain by solving the functional equation (2.10a)–
(2.10b) makes one wonder what the ray method yields in a geometry for which solutions
can also be obtained by another method. Two such geometries, the rectangle and the
semi-ellipse will be discussed now. Solutions for the first are well-known from literature,
those for the second geometry are derived below.

5.1. The rectangular basin
It is well-known that in the case of a rectangle (2.5a)–(2.5b) can also be solved by
separation of variables and yields

ψ(x, z) ≡ a1 sinmπx′ sinnπz′, (5.1)

where x′ ≡ (x + 1)/2 and z′ ≡ z/τ , provided nondimensional depth (τ) is a rational
number: τ = 2n/m, with mutual prime numbers m,n ∈ IN. Here a1 is an undetermined
amplitude of the mode (suppressing the dependence on the mode numbers). This (m,n)-
mode is not unique for the frequency ω (map parameter τ , see (2.6a)) under consideration,
since, as Münnich (1994) remarks, any multiple — a (jm, jn)-mode, with j ∈ IN — equally
satisfies the hyperbolic equation while vanishing at the boundary. In this terminology,
used in Münnich (1994), an (m,n)-mode describes a cellular pattern with m horizontal
and n vertical cells. This non-uniqueness can be employed to directly solve the forced
problem, when the forcing is by pressure variations imposed at the top in a fundamental
interval. A fundamental interval at the surface is, in this case, recognized below as an
interval in between two zero’s of the gravest-mode streamfunction field (see figure 16).
The response to an arbitrarily shaped, oscillatory pressure field in that interval is directly
obtained as the sum over the Fourier modes of that function, which act as the amplitudes
of the gravest and higher-order streamfunction modes.

5.1.1. The map
The characteristic theory applied to the rectangle has been discussed in Magaard

(1968). He also included the effect of sheared mean currents, which gives an asymmetry
in the leftward and rightward sloping characteristics. In the absence of sheared currents,
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Figure 16. a) Definition sketch for the (3,1)-mode (τ = 2/3) of the rectangle. There are three
fundamental intervals at the surface, in between successive zero’s of the streamfunction field.
Specifying the surface pressure in one of these intervals allows one to determine the amplitudes
of the higher harmonic structures — (3j, j)-mode, j ∈ IN — as the Fourier amplitudes of the
specified spatial pressure structure in that interval. Two closed rays have been drawn. b)
Streamfunction field ψ = sin 3πx′ sin πz′ for τ = 2/3, corresponding to c) f(x) = (cos 3πx′)/2.
In c) the solid part of f(x) has been specified, while the dashed part has been inferred.

map T(x, s), for a rectangle of depth τ , has the same form as (3.5), where, in this case,

xs = 1 − 2τ (5.2)

and

X(x) = x+ 2τ, (5.3a)

Y (x) = 2(1 − τ) − x = 2 −X(x). (5.3b)

The behaviour is strikingly different for rational and irrational values of τ . In the former
case the map has a periodic structure such that each x0, after a fixed, finite number of
iterations, turns exactly back to its starting value. In stark contrast, for irrational values
of the map parameter (which, recall, may alternatively be interpreted as the period of
the wave, or the depth of the basin) the trajectory of each x0 comes arbitrarily close to
any point in the domain. Remarkably, this difference in behaviour is not signalized by
the Lyapunov exponent which, being the sum of the logarithm of the absolute value of
the derivative of the map, identically vanishes for all values of τ , as inspection of (5.3a)–
(5.3b) tells us. The map thus is neutrally stable, but may either have an infinite set of
closed orbits (on which the field variable, f(x), can be freely specified), or just one single
orbit, such that only one value of f(x) can be specified, which leads, according to (2.8),
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to an everywhere-vanishing streamfunction field. The artificial restriction used in the
discussion of the parabola to values of τ for which there is at least one x for which just the
forward map, X(x), applies (τ ≤ 1) limits our solutions to those which have at least two
fundamental intervals in x-direction. This restriction can, of course, easily be eliminated.
In particular the square domain (τ = 2), also discussed by Magaard (1968), has a single
fundamental interval stretching out over the entire x-domain, for which each surface-
point lies on a period-one characteristic. The rays in the basin corresponding to the
example in figure 16 illustrate that the fundamental interval in this case is 1/3 of the size
of the x-domain and also that each x0 lies on a 3-cycle. That is, x3 = x0, ∀x0 ∈ (−1, 1).
Compilation of a figure with the asymptotic state of the trajectories, like figure 8, shows
a heavily dotted, structureless set due to the fact that the adopted discretised values of
τ , employed in the construction of that figure, correspond to very high period cycles,
owing to the fact that the numerator of the rational number, going with those τ -values,
is very large.

5.1.2. Determination of streamfunction field by characteristic method
For f(x), given in a fundamental interval, this function can be determined over the

whole x-range (figure 16c). From this, the streamfunction field is directly determined by
(2.8) for z + 1 > |x|. Near the vertical boundaries rays are reflected and the complete
description of the streamfunction is given by

ψ(x, z) =



f(x− z) − f(x+ z) for z + 1 > |x| −τ ≤ z ≤ 0
f(2 − x+ z) − f(x+ z) for z + 1 < x −τ ≤ z ≤ 0
f(x− z) − f(−2 − x− z) for z + 1 < −x −τ ≤ z ≤ 0.

Although f(x) can be specified at will in any of the fundamental intervals it is now
clear that the same streamfunction field can also be obtained from the modal solutions
(5.1) as

ψ(x, z) =
∞∑

j=1

aj sin jmπx′ sin jnπz′, (5.4a)

with x′ and z′ again as defined below (5.1), and where

aj = 4
∫ 1

0

f(2ξ/m− 1) cos jπξ dξ, (5.4b)

(with ξ ≡ mx′) are the Fourier components of f(x) on the first fundamental interval
x ∈ (−1,−1 + 2/m). The two methods thus yield the same results and the indeter-
minacy is in both cases resolved by specifying the ‘pressure’, f(x), in one fundamental
interval only. The characteristic method, however, is more direct and enjoys slight pref-
erence over the modal method as no Fourier decomposition is needed. The superiority of
the characteristic method becomes more evident, however, in the case that ‘non-trivial’
topographies are taken into consideration (sections 4 and 6).

5.2. The semi-elliptic basin

There is at least one other class of ‘bottom’ profiles for which the solution of the hyper-
bolic equation can be obtained in terms of modes: the ellipse. Since this equation is to
be solved in cases where there exists a flat surface this is here further restricted to the
semi-ellipse. As for the rectangle the trajectories are either periodic, or of infinite period.
No previous derivation of this set of solutions exists as far as the authors are aware of,
but it can be readily derived by a variation of complex function theory.
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p (m,n) τ ψ(x, z)

3 (1, 1)
√

3 z(z2 + 3x2 − 3)
4 (2, 1) 1 xz(x2 + z2 − 1)

5 (3, 1)
√

5 − 2
√

5 z(z2 + (5 − 2
√

5)(x2 − 1))(z2 + (5 + 2
√

5)x2 + (
√

5 − 5)/2)

5 (1, 2)
√

5 + 2
√

5 z(z2 + (5 + 2
√

5)(x2 − 1))(z2 + (5 − 2
√

5)x2 − (
√

5 + 5)/2)
6 (4, 1) 1/

√
3 xz(z2 + 3x2 − 1)(x2 + 3z2 − 1)

6 (2, 2)
√

3 xz(z2 + 3x2 − 3)(x2 + 3z2 − 3)

Table 2. Expressions of the streamfunction field satisfying the hyperbolic equation and vanish-
ing at the surface, z = 0, and semi-ellipse, z = −τ√1 − x2. Columns give respectively: power
of polynomial p, modal structure (m,n) denoting the number of horizontal and vertical cells
respectively, τ , related to the eigenfrequency and streamfunction field ψ(x, z).

It is well known that the Laplace equation,

∂2ψ

∂x2
+
∂2ψ

∂y2
= 0,

is solved by the real and imaginary parts of arbitrary functions F (x+ iy). In particular,
the polynomials (x+ iy)p, with p ∈ IN, have simple expressions. For instance, for a cubic
(p = 3) one finds that both x3−3xy2, as well as y3−3yx2 satisfy the Laplace equation. By
simply replacing y = iz in both the Laplace equation, as well as its solutions, functions
satisfying the hyperbolic equation (2.5a) are obtained. From the example of the cubic
we find, by adding a linear term, that we thus obtain an explicit solution satisfying also
the boundary condition (2.5b) at z = −τ√1 − x2:

ψ = z(z2 + 3(x2 − 1)),

provided the ‘depth’ τ =
√

3. Since this consists of just one circulation cell we might
consider this as the (1, 1)-mode of a semi-ellipse. It appears that more complicated modes
are obtained by considering higher-degree polynomials (in general, a particular combina-
tion of either even or odd polynomials). In this way the first few cellular modes, listed in
table 2, have been obtained (see also figure 17). For the rectangular basin it was argued
that any frequency that is a rational number is an eigenfrequency and, moreover, that
each frequency is infinitely degenerate, because of the existence of multiples of the modal
structure: modes (jm, jn), j ∈ IN. For the (semi) ellipse this happens too, except that
the eigenfrequencies are now no longer rational, but rather a subset of the real numbers.
The infinite set of eigenfrequencies for the ellipse can be ordered (and be made denu-
merable) by the modal structure of the related streamfunction field. Also, by association
of the modal structure with the corresponding structure in the rectangle one finds a
one-to-one correspondence between both infinite sets of accompanying eigenfrequencies.
The enumeration of successively more complicated modes proceeds on the (m,n)-lattice
along lines m+ 2n = p, where p ∈ IN denotes the highest power of the polynomial under
consideration. Thus for p = 3 and 4 we find just the (1, 1) and (2, 1)-mode, respectively.
For p = 5, however, there are two modes satisfying this constraint, which provides us
both with the (3, 1) and (1, 2)-mode. Algebraic computation of the eigenfrequencies gets
increasingly more complicated, although one should not have difficulty finding a good
numerical approximation to the eigenfrequencies along these lines.

Not only do we find a denumerable, infinite set of eigenfrequencies, but also each
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Figure 17. Nodal lines (ψ = 0, thick solid) and streamlines (positive: thin solid, and negative:
dashed) for the exact modal solutions of the hyperbolic equation, within a semi-ellipse of ‘depth’

τ equal to a)
√

3, b) 1, c)
√

5 − 2
√

5, d)
√

5 + 2
√

5, e) 1/
√

3, f)
√

3. For visualization purposes
the z-coordinate has been rescaled such that the basin acquires one and the same semi-elliptical
shape which implies that the characteristics in this representation have a direction related to
the period of the wave (as given by the above values of τ ).

eigenfrequency is degenerate. For the same frequency, multiples of fundamental modes
exist (for which m and n do not have a common divisor), as the first and last row of
table 2 indicate. The last mode (p = 6) has the same eigenperiod as the first mode
(p = 3), but has twice the number of cells in horizontal and vertical direction.

As for the rectangle it can be verified that xm = x0 for each x0 in the interval x0 ∈
(−1, 1), for some m ∈ IN. There are thus infinitely many, closed m-periodic orbits. In
contrast, for the parabolic basin, periodicity of the map was obtained only asymptotically
and then approaches just one or two closed orbits, which are reached irrespective of the
starting value of x0. There thus appear two types of internal wave solutions, which
strongly depend upon the shape of the boundary.

In the case of the semi-ellipse the streamfunction field can also (and more readily)
be constructed by means of the characteristic method along the lines indicated above.
This has not been elaborated here. For completeness we give the bi-modal map, T(x, s),
which is defined by (3.5), with

xs = (µ− 3)/(µ+ 1) (5.5)

with µ ≡ 1/τ2 (assumed to be larger than one, to restrict oneself again to at most two
reflections at the bottom) and

X(x) =
(µ− 1)x+ 2

√
1 + µ(1 − x2)

1 + µ
, (5.6a)
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Y (x) = −x+
2(µ− 1)X(x)

µ+ 1
. (5.6b)

As for the rectangle the Poincaré plot of successive reflections of a ray yields a feature-
less dotted figure, while also the Lyapunov exponents are zero to within the numerical
accuracy of its computation.

6. The ‘bucket’ and other basin shapes
The rectangular and semi-elliptic basins have nice, cellular patterns of the streamfunc-

tion field as solutions of the hyperbolic equation. Since these modal structures are to be
multiplied with a sinusoidal temporal variation these have traditionally been interpreted
as the internal, seiching modes of the basin (Defant, 1941). It appears, however, that
this behaviour is not generic, as the example of the parabolic basin, sections 3 and 4, has
shown. On the contrary, from a number of examples considered we get the impression
that these two cases are exceptional. Instead, in general, seiching modes are either absent
and focusing of the internal wave field to a well-defined attractor appears to be the rule,
or, as we will try to demonstrate with the following example, hybrid situations may arise
that exhibit the existence of both regular (neutrally stable) modes, as well as focusing
(with, as its limiting case, infinite-period, plane-filling) orbits.

6.1. Bucket-shaped basin
Consider a bucket-shaped basin given by

H(x) =



µ(1 − x) x ∈ (d, 1)
µ(1 − d) x ∈ (−d, d)
µ(1 + x) x ∈ (−1,−d)

. (6.1)

This ‘bucket’ is a two-parameter topography, with d the relative size of the interval
where the bottom is flat compared to the width of the basin. This geometric quantity
is normally regarded fixed. The second parameter, µ, the tangent of the angle of the
sloping side wall, is, by our convention to put the frequency of the internal wave into the
apparent depth, a variable quantity. The dimensionless depth is given by τ = µ(1 − d).
The bi-modal map corresponding to this case is given by (3.5) with

xs = 1 − 2µ(1 − d) (6.2a)

and
X(x) = x+ 2µ(1 − d), (6.2b)

Y (x) =

{
1+µ
1−µx+ 2µd−µ+dµ

µ−1 x ∈ (xs, d(1 + µ) − µ),
1−µ
1+µx− 2µ(1 − d) + 2 µ

1+µ x ∈ (d(1 + µ) − µ, 1)
(6.2c)

For d = 4/5 a Poincaré plot of the asymptotic values of the surface intersections is given
in figure 18a. The upper bound of µ = 1/(1 − d) has again been chosen to restrict the
mapping to a regime where bottom reflections occur at most twice. It demonstrates
that there are a number of windows with low-period attractors accompanied by other
windows of very high-period attractors. This figure looks like an incomplete version of
figure 8. In fact it has features in between those of the parabola as well as those displayed
in the rectangle to which it approaches for d → 1. In the latter limit the compact, low-
period windows vanish. If d drops below a half (d ≤ 1/2), however, the ‘noisy’ windows
disappear and we are just left with a period-two window for all frequencies in this band!
[The latter configuration is presumably the easiest case for testing the occurrence of
focusing in a laboratory experiment].
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Figure 18. a) Poincaré plot, b) Lyapunov exponents, λ+ and c) ν = −1/P , where P is the
period of the attractor for a bucket with d = 4/5 as a function of µ. The dashed lines in b),
referred to in the text, are given by ln[(µ− 1)/(µ+ 1)]/k, for given k.

6.1.1. Lyapunov exponents
It is worthwhile to notice that the Lyapunov exponent in the case of the bucket is

particularly easy to determine. If we look at map (6.2a)–(6.2c) it is obvious that the
only contribution comes from parts where the slope is not equal to one. The slopes
of the map for the remaining two cases, see (6.2c), however, are reciprocal and the
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logarithm of its value, ln[(µ − 1)/(µ + 1)], can thus be factored out. The remaining
determination of the Lyapunov exponent, then, reduces to simple bookkeeping of the
number of times for which the ‘divergent’ (steeply sloping), ‘neutral’ (slope equal to one)
and ‘convergent’ (weakly sloping) parts of the map are reached by a particular ray. This
factor can be recognized in the generally increasing form of the Lyapunov exponent. In
fact, the dashed curves in figure 18b, related to this function, match exactly for the
low-period attractors. This is because, e.g. for the two-cycle, for the particular starting
position adopted, points successively sample only the convergent branches of the forward
and backward map (which have the same slope). Indeed, normalizing the Lyapunov
exponent with this logarithmic curve would enable us to calculate (twice) the period,
figure 18c, rather than determining the latter (or, its related value, ν) numerically.

6.1.2. Resonance

In figure 18a we clearly recognize the 2, 4, 6 and 8-cycles. Suspiciously lacking, how-
ever, are the odd-period attractors, with, most notably, the period-3 attractor. Closer
inspection of this figure, however, shows that this interval has not vanished altogether,
but rather has shrunken to the size of a point (located at µ = 3 for this value of d). Sur-
prisingly, as a phoenix rising from its ashes of almost-zero (infinite-period) Lyapunov-
exponents, we recover a neutrally-stable, period-three mode (see figure 18b,c)! Each
initial value returns to that same value after three mappings. A global attractor no
longer exists. Other stable, periodic modes are obtained in the Lyapunov-diagram when-
ever the Lyapunov exponent approaches zero both for µ coming from above as well as
from below the point where it exactly vanishes. For instance, at µ = 9/5 we find a
period-five mode. These periods have also been captured in figure 18c, and appear there
as spikes. Higher-period stable modes have not been resolved, however, and can only be
detected by the above formulated rule-of-thumb.

The stable 3-mode appears to be present for every value of d > 1/2. Its µ-location in
figure 18a can be obtained from the observation in figure 19a that it occurs when the ray
stemming from the upper corner reaches the opposite corner at the bottom (that now
contains the critical characteristic):

xs + xc = 0.

Figure 19a shows a sketch demonstrating the configuration of these rays for this (3, 1)-
mode. Generalising this to arbitrary d one may obtain this mode at a value of µ de-
termined by the requirement that 3µ(1 − d) + 1 − d = 2, or µ = (1 + d)/3(1 − d), as
inspection of this figure shows. Likewise, for mode (m, 1), µ = (1 + d)/m(1 − d) yields
the ‘eigenperiods’ τ = (1+d)/m for which neutrally stable modes exist. Since we require
µ > 1, in order for the bucket topography to be supercritical, this implies that a finite
number mµ exists, where mµ equals the largest integer smaller than (1+d)/(1−d), such
that m ≤ mµ.

Of course, there also exists a (1, 1)-mode for which a ray emanating from the corner
directly intersects the opposing bottom corner, but that has been excluded from consid-
eration by our artificial requirement that reflection at the bottom should occur at most
twice prior to the surfacing of the ray. This led us to require µ < 1/(1 − d), or τ < 1.
The above criterion, applied to n = 1, would yield µ = 9 for d = 4/5 and is therefore
formally outside the range of figure 18. Extension of the algorithm that computes succes-
sive surface intersections when the rays make multiple reflections at the side walls does
not cause any difficulties in principle though. In particular the (1, 1)-mode is computed
below, albeit for a different value of d.



32 L. R. M. Maas and F.-P. A. Lam

Figure 19. a) Ray configuration in the case d = 4/5 and µ = 3. Also indicated are intervals
at the surface, used in the text, relating to these two parameters. b) Definition of regions for a
bucket with d = 1/2. Here y = z + 1.

6.1.3. Analytical solution

An analytical solution for the (1, 1)-mode for d = 1/2 has been reported on by
Cushman-Roisin, Tverberg & Pavia (1989) modeling a fjord environment. They con-
sidered a continuously-stratified fluid within a bucket-shaped trench at the bottom of a
broader, otherwise flat basin. The (oscillatory) flow in the main basin being prescribed
(having a spatial part of the horizontal velocity field u = x − 1, corresponding to a
stagnation flow) a solution in the bucket is sought that has no slip at the interface (the
top of the bucket). With this prescribed velocity field at the top and the subsequent
requirement that the streamfunction field vanishes at all the boundaries they obtained,
apparently by inspection, an exact solution of the hyperbolic equation describing a sta-
tionary wave pattern of the internal wave field in the trench. With a displaced vertical
coordinate, y = z + 1, it is given, in terms of the streamfunction, by

ψ =




(y − 1)(x− 1) x, y ∈ I
(y − x)2 − (y + x− 2)2/4 x, y ∈ II
(x− y)2/4 − (1 + x+ y)2 x, y ∈ III
−(1 + 2x)(1 + 2y) x, y ∈ IV

, (6.3)

where the four regions have been indicated in figure 19b. This solution for the stream-
function is depicted in the lower panel of figure 20a. It is characterized by the existence
of a vortex sheet (along y = −x) due to the fact that the prescribed horizontal velocity
field does not vanish in the left hand corner, f ′(−1) 	= 0. The occurrence of a vortex-
sheet is typical in the generation of internal tides as observed in theoretical (Wunsch,
1968, 1969; Robinson, 1969; Larsen, 1969) and experimental (Sandstrom, 1969; Baines
and Fang, 1985) models, as well as, to some extent, in numerical models and nature
(deWitt et al., 1986). Cushman-Roisin et al. (1989) used this solution to validate their
numerical model. They remark that “notwithstanding the authors’ effort no other non-
trivial analytical solution has been found”. However, we may recognize their solution as
a particular case of the general solution obtained with the characteristic method, which
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Figure 20. Plots of f(x) (upper part) and corresponding streamfunction field (lower part) for a
bucket with ‘depth’ 3/2 (d = 1/2, µ = 3) for f(x) given by a) (x− 1)2/4, b) x3/3−x, c) x3 −x,
d) exp[−(5x/2 − 3/4)2].

would read:

ψ =



f(x− y + 1) − f(x+ y − 1) x, y ∈ I
f(1 − 2x+ 2y) − f(x+ y − 1) x, y ∈ II
f(x− y + 1) − f(−1 − 2(x+ y)) x, y ∈ III
f(1 − 2x+ 2y) − f(−1 − 2(x+ y)) x, y ∈ IV

, (6.4)

where f(x) can be specified at will along the surface domain (the entire domain now
being a fundamental interval). This function, f(x), has the same meaning as before,
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being related to the surface pressure, equation (4.1), while its derivative relates to the
horizontal, surface velocity field. Streamfunction field (6.3) is obtained with f(x) =
(x − 1)2/4. This function has been displayed in the upper panel of figure 20a. A few
other choices of f(x) and their corresponding streamfunction fields, obtained from (6.4),
are shown in the other panels of that figure. In particular, we note the absence of
free shear-layers in case the derivative of the prescribed function f(x) — the horizontal
component of the velocity field — vanishes at the corners, f ′(±1) = 0, (figure 20b).

The (1, 1) and (3, 1)-modes, determined above, are characterized by the fact that a ray
connects the surface corner with the opposing bottom corner. It is natural to inquire what
happens when corner points are connected differently. Thus when a surface-corner point
is connected with an adjacent bottom-corner we obtain for instance the (1, 2) and (3, 2)-
modes, the latter occurring when µ = (1 + d+ 2

√
1 − d+ d2)/3(1 − d). Connecting two

surface, or two bottom corner points (for the situation depicted in figure 18 occurring at
µ = 5 and 4 respectively), however, does not yield us the missing even horizontal modes,
since these are clearly observed to have negative Lyapunov exponents and thus to consist
of focusing modes. Physically this is obvious, since, following a ray, in this case the
sloping side walls are always approached from above, which leads to convergence of wave
rays. In contrast, for odd modes (in the case that there is a ray connecting surface and
bottom corner) the left and right sloping walls are approached successively from above
and from below, so that convergence is exactly offset by subsequent divergence.

Resuming, the ‘bucket’ is a truly hybrid geometry, showing both focusing as well as
neutrally stable (‘seiching’) modes. Of the latter, the modes with an even number of cells
in the (x) direction are entirely absent, while also only a finite number of odd modes
appear. Although it is nice to have explicit solutions in those cases where the rays are
strictly periodic (neutrally stable — folding back upon themselves), it is necessary to
emphasize that these form a very restricted class amongst all possible solutions, see fig-
ure 18b,c. It is just for the particular frequencies corresponding to these cases that such
a solution (a ‘resonance’ in the terminology of Cushman-Roisin et al., 1989) exists. [Cu-
riously, these authors fail to identify their example of the (1,1)-mode, discussed above, in
terms of a resonance, even though it is the prototype example in which each character-
istic returns to its original position in one iteration: x1 = x0.] For all other frequencies
rays are attracted to a particular limit-cycle and focusing should thus be considered as
the generic behaviour.

6.2. Other basin geometries and artificial maps
A basin with a flat bottom, τ , for x ∈ [−d, d] with convex side walls which are segments
of a hyperbola τ(1 − √

(x2 − d2)/(1 − d2)), for |x| ∈ (d, 1] has also been analysed. Here
central depth is defined as τ = b

√
d−2 − 1, with b ∈ (d/

√
1 − d2, d

√
1 − d2), in order

for the side walls to be supercritical and restricting the number of bottom-reflections to
at most two. For given value of length scale d, the Poincaré plot, Lyapunov exponent
and period of the asymptotic state have been computed as a function of b. The results
are qualitatively similar to those obtained for the parabolically shaped basin. Upon
cursory inspection no neutrally stable mode is obtained; all asymptotic states are globally
attracting. The result does, of course, depend upon the particular value of d, but this
does not invoke a qualitative change.

Each of the maps considered so far have two lines of symmetry, viz the lines y = ±x
(if we designate the successor of x momentarily as y), see figure 4. To examine the effect
of asymmetries in these maps various other topographies and also artificial bi-modal
maps have been considered. For instance, a skew parabolic basin, which matches two
parabola’s at a trough which is located off-centre (see Münnich, 1994), has a map for



Geometric focusing of internal waves 35

which the symmetry in the line y = −x is broken. As a result the corresponding Poincaré
plot is also no longer symmetric, due to an asymmetry in the attractors. However,
qualitatively, nothing happens: the same alternation of low and high-period attracting
regions, with changing values of τ , is obtained as for the symmetric case. Artificially
breaking the second symmetry, by adding linear terms to the map under the restriction
that the position and height of the map’s maximum stay fixed, also does not yield very
different results.

Finally, an abstraction of the bi-modal map has been considered. Each of the forward
parts (upper curve) of the ‘realistic’ maps considered (like in figure 4) has a single maxi-
mum, to the left (right) of which the sign is invariant (changes). Also, the backward map
(lower curve) is a point-mirrored version of the forward map (upper curve). Adopting a
simple parabola, 1 − (x − b)2/(1 + b2), with b ∈ (−1, 1) as forward map, a completely
artificial bi-modal map is examined. It turns out to have features in common with the
‘bucket’: firstly, it has both low and high-period windows, secondly it has Lyapunov
exponents which are always less or equal to zero, and thirdly, it has particular values of
b for which resonances exist (exact vanishing of the Lyapunov exponent and, as a con-
sequence, each point lies on its own stable orbit). It is thus expected that these features
are quite common and should be expected to occur in more realistic circumstances too.
Further examination of these and other cases is necessary, though.

7. Discussion and Conclusions
7.1. Focusing

It is well known that internal waves are fundamentally different from surface waves. This
is because in the former case the phase propagates in a direction perpendicular to the
energy-propagation direction (as given by the group velocity vector), rather than along
it. Nevertheless, one would like to interpret stationary, internal-wave patterns in terms
of seiching modes — a resonance, familiar from oscillating, surface-gravity waves in an
enclosed basin (Münnich, 1993). It is shown in this study that such an interpretation
is only occasionally justified. In general, internal waves are focused towards a limiting
attractor, while increasing their amplitude and reducing their wavelength and group
velocity. Its position depends on parameters characterizing the geometry. For the simple
topographies (and stratification) considered here this attractor consists of one or two,
fixed sets of lines in the basin, whose locations depend on only one parameter, τ : the
product of the buoyancy and wave frequency ratio and the aspect ratio of the basin. The
attractor can be classified by the number and location of reflections of the asymptotic ray
with the surface. This is a fractal function of the scaled period of the internal wave field,
τ : it can change very rapidly in certain intervals, while remaining qualitatively similar
(characterized by the same period of the attractor) in other intervals.

The attractor is the limiting trajectory of a ray’s orbit. The ray path itself is con-
structed, following Magaard (1962, 1968), by means of an iterated map. This map can
be made explicit for piecewise linear, or quadratic shapes of the topography. The map
consists of a rightward and leftward mode that get coupled for two-sided, supercritically-
sloping basins. This bi-modal map has the property that Lyapunov exponents are less
or equal to zero, corresponding to focusing or neutrally stable modes (resonances), re-
spectively. The solution of the canonical, hyperbolic equation which the streamfunction
satisfies, is completed by finding regions (the fundamental intervals) over which rays can
be uniquely identified. By specifying the value of a field variable, related to the surface
pressure, within these fundamental intervals, the streamfunction in the entire basin can
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be computed. With this procedure, formally, only standing wave patterns have been
obtained. Therefore, it is assumed that internal waves manage to ‘bounce back’ from the
attractor. This is unlikely to happen in reality, though, since amplification of the internal
wave amplitude will inevitably lead to viscous decay (neglected so far) and ‘deposition
of energy’ near the attractor. A proper description of a stationary (and modulated)
propagating internal wave field is currently being studied.

7.2. Resonance
In some cases a resonance does occur. Here we like to use the word resonance in a slightly
broader sense than that introduced by Cushman-Roisin et al. (1989). They refer to each
ray that returns to itself as a separate resonance. This is perhaps appropriate in their
finite difference approach where this number, because of the discretization employed, is
necessarily denumerable. Neglecting the attractors in the focusing cases (which in their
terminology would, formally, also be regarded a resonance), we define a resonance as a
situation when on one interval each point taken from that interval acts as starting point
of a ray that eventually returns to its position after crisscrossing the basin for a finite
number of times. Perhaps more appropriately this should be referred to as a seiching
mode. A necessary condition for seiching to occur apparently is that the wave ray
stemming from the surface corner ends up in the critical characteristic. This condition is
fulfilled by the classical, separable solutions in the rectangle, as well as by the resonant
cases found for a bucket-shaped basin. We observed that it also applies to the separable
solutions constructed for a (semi) elliptic basin, but not for a parabolic basin (see below).
Physically, the relevance of resonant modes comes from the fact that, in principle, they
lack the presence of vortex sheets, along which incoming internal wave energy will be
degraded by viscous effects. These modes are therefore able to store more energy and
will stand out globally. In practice, vortex sheets may still occur in these resonant cases
too, as when there is a non-vanishing, surface pressure-gradient in the corners of the
basin, but they are of a different nature than those related to the attractors.

Cushman-Roisin et al. (1989) argue that the existence of closed ray paths is supposedly
the rule rather than the exception. We feel that this may in part be due to their approx-
imation of true topography by horizontal and vertical line segments, which precludes the
possibility of obtaining focusing with the numerical algorithm. Besides this there is a
semantic difference. Our statement that closed ray paths are exceptional means that in
the focusing (resonant) cases there is a set of x0-values of measure zero (one) for which
ray paths are closed. Hence, since focusing is more common, this allows us to use this
phrase. Conversely, Cushman-Roisin et al. (1989) stress that both in focusing as well
as resonant cases there exists at least one closed ray and contrast this with the (excep-
tional) ergodic cases for which no ray ever closes on itself. This allows them to state that
ray-closing is generic. There is thus no contradiction between these two viewpoints.

Now, Münnich (1993, 1994) also obtains resonances (seiches) for the parabolic basin,
a geometry where no such solutions exist according to the characteristic method. In
particular he found the (1,1)-mode (consisting of one vertical and one horizontal cell)
for aspect ratio τ =

√
2. We believe that this mode was forcefully obtained because

his numerical procedure was formulated such that it defined a (1,1)-mode as one that
minimizes the basin-averaged shear of the ‘solution’. In this way, we think that his
numerical procedure trades off accuracy in favor of finding a minimally-sheared, modal
solution. This value of τ is interesting though, because it is the only value for which a
period-one attractor exists for 1 ≤ τ ≤ 3/2. This attractor consists of the ray starting
at the surface from the centre of the basin (x = 0, z = 0), which exactly returns to itself
after traversing a square-shaped ray path in the interior. All other starting positions
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lead to focusing towards this attractor, though. One may check in particular that rays
starting in the corner do not coalesce with the critical characteristic (see Appendix), thus
denying the existence of a resonance.

From a numerical point of view too there are some advantages for using the character-
istic method. First, the solution is exact along the characteristics and second, in regions
of high shear, a higher accuracy is automatically obtained, because more rays are present
there. This is not surprising, because discretization along characteristics (which includes
information on the topography used; e.g. figure 14b,c) is better suited to the problem
than discretization on a ‘random’ grid.

Notwithstanding the difference in interpretation of ‘resonance’, one of the reasons for
Cushman-Roisin et al. (1989) to introduce this concept was that it illuminates the fact
that a complete specification of the internal wave field is not always given in terms of
its prescription at a particular part of the boundary. In their case it was a connecting
shelf on which the internal wave field was prescribed. As in the laboratory studies of
Robinson (1969) and Sandstrom (1969) and in the field studies of Cushman-Roisin and
Svendsen (1983) and deWitt et al. (1986), this left certain ‘shadow zones’ where the
characteristics, emanating from the shelf, did not reach and which, as Cushman-Roisin
et al. (1989) argue, are determined by diffusion. The question whether a problem is
ill-posed, or well-posed is here resolved by identifying, so called, primary (fundamental)
intervals on which the solution can be independently specified. This applies both to
focusing, as well as to resonant cases. In particular it implies that in case the size of the
fundamental intervals shrink to the size of a point, no stationary solution pattern exists
at all, because there is apparently just one ray on which the solution can be specified and
that ray is ‘plane-filling’. Physically the function that leads to the specification within the
primary intervals has been shown to be related to the pressure. What happens when the
solution is over-specified is not clear yet and awaits a consideration of truly propagating
solutions to the problem at hand.

7.3. Relevance to field observations
The implications of focusing of an internal wave field for nature are not clear yet. Oceans,
or smaller-scale basins, are not two-dimensional, their boundaries are not smooth, the
fluid is not uniformly-stratified and the forcing field is not monochromatic. However, re-
fraction of incoming waves orients them preferentially in a cross-isobath direction (Wun-
sch, 1969). Also, the large-scale internal waves are presumably not very sensitive to
the details of the topography. Nonuniform stratification (neglecting reflection on this
nonuniformity) only leads to curved ray paths (Cushman-Roisin and Svendsen, 1983).
Finally, the theory has been developed with just one single frequency in mind, whereas
in reality internal waves are forced over the whole internal-wave band. However, in view
of the linearity of the problem, these solutions can all be superposed. Probably, internal
waves of tidal origin will be most important due to the ubiquitous nature of the forcing.

When internal waves do not loose their energy very rapidly by reflection at boundaries
and are able to cross the basin back and forth geometric focusing should, in principle,
occur. The eventual implication is that it offers a mechanism by which ‘mixing at a
distance’ (along the attractor) can occur directly within the interior of the stratified
ocean basin (and subsequently diffuse through the entire ocean along isopycnal surfaces).
In this way it may perhaps contribute to mixing, leading to mid-depth ocean diapycnal
diffusivities of 10−4m2s−1 required by global budget studies (Munk, 1966) and offer
an alternative to boundary mixing (Garrett, 1991). In order to quantify the proposed
mechanism we need to estimate the amount of energy lost after reflection off a non-
critically sloping bottom —the most common situation— and ‘surface’, and thus assess
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Figure 21. Definition sketch of parabolic basin with 1 ≤ τ ≤ 3/2.

the number of bounces an internal wave may go through before it is being focused to the
extent that the Richardson number becomes subcritical and mixing ensues. Alternatively,
the smallest observable scale to which focusing proceeds may be set by the irregularities
of smaller-scale topography by which the internal wave field becomes diffusively scattered
(Longuet-Higgins, 1969). [The phenomenon of split-reflection (Baines, 1971b), which this
small-scale process entails, has here in fact been disregarded altogether and needs to be
addressed in future studies.]

Admittedly, focusing, and therefore mixing, will first take place near the bottom bound-
ary, but, rather than being an isotropic process along the boundary, the above mechanism
suggests there to be specific locations where mixing occurs first (and preferentially): i.e.
near places where the attractor intersects the bottom. Near-bottom, intermittent, inter-
mediate turbid layers have recently been observed in Emerald Basin on the Scotian Shelf
by Azetsu-Scott, Johnson & Petrie (1995) who attribute this to anisotropic mixing due
to (near) critical reflection (and amplification) of internal tides (presumably originating
at the opposing break in topography). It is intriguing to speculate that the observed
layers and inferred anisotropic mixing may, alternatively, be due to geometric focusing
of internal tides.

We are indebted to Peter Beerens for help with the numerical formulation of the algo-
rithm, to Erwin Embsen for computer support, to Taco de Bruin for help with preparation
of figure 13 and to Huib de Swart, Henk Dijkstra, Kees Vreugdenhil, Ferdinand Verhulst
and Matthias Münnich for enlightning conversations. During the course of the referee-
ing process it appeared that some of the work presented here has been anticipated by
Cushman-Roisin (1993), who had presented it at the 1991 IUGG-meeting in Vienna.
Also, Dr. V. Shrira pointed out that related work has been done by Bunimovich (1980).

Appendix A
An explicit map for a basin with parabolic cross-section can be constructed for 1 ≤

τ ≤ 3/2. For this interval each characteristic reflects either two or three times from
the bottom prior to reaching the surface. These two regions are separated by x(2)

s (τ) ≡
x∗l (xr(−1)) = 6/τ − 5, a generalisation of xs(τ). Here x∗l,r(x) denote the conjugate
mappings of those defined in (3.2a)&(3.2b), obtained by changing the signs in front of
the radicals appearing in those expressions. For −1 ≤ x ≤ x

(2)
s the rightward map is

given by (3.4). For x(2)
s ≤ x ≤ 1 the image is obtained with the aid of figure 21. Let
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y denote the true image of x after a rightward mapping. Two virtual auxiliary points,
denoted X and Y , are related to x and y in the following way. A leftward map (3.2b),
and its conjugate, applied to X yield x and Y :

x =
1
τ
−X +

√
−4X
τ

+ 4 +
1
τ2
, (A 1a)

Y =
1
τ
−X −

√
−4X
τ

+ 4 +
1
τ2
. (A 1b)

A rightward map of Y , equation (3.2a), and its conjugate, give y and X .

y = −1
τ
− Y −

√
4Y
τ

+ 4 +
1
τ2
, (A 2a)

X = −1
τ
− Y +

√
4Y
τ

+ 4 +
1
τ2
. (A 2b)

Combining this information leads to an explicit dependence y(x). Adding (A 1a) and
(A 1b) yields:

Y =
2
τ
− x− 2X(x), (A 3a)

whereas adding the other two gives

y = −2
τ
−X(x) − 2Y (x,X(x)). (A 3b)

Inserting (A 3a) into this finally leads to

y = −6
τ

+ 2x+ 3X(x), (A 4)

where X(x), the inverse of (A 1a) is given by xr(x) in (3.3a). Sign changes of s should,
of course, again be accounted for. The new sign is given by s(n−1), where n signifies the
number of times the characteristic has hit the bottom prior to reaching the surface.
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