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ABSTRACT

Persistent reports exist that the tides in coastal basins are often accompanied by regular or irregular oscillations
of periods ranging from minutes up to several hours. A conceptual model relating the two is proposed here. It
employs an almost-enclosed basin, connected to an open (tidal) sea by a narrow strait. Such a basin is a Helmholtz
resonator, which is dominated by the ‘‘pumping’’ mode. Its response is governed by an ordinary differential
equation that is forced by the tide, damped by friction and wave radiation, and whose restoring term is nonlinear
due to the sloping bottom. When forced resonantly by a single frequency tide, due to this nonlinearity, the basin
may exhibit multiple equilibria. Its response can either be amplified or choked, depending on the precise initial
conditions. The presence of a second forcing term may, on a slow timescale, kick the system irregularly from
the amplified into the choked regime, yielding a chaotic response. This may happen when either two nearby
frequencies, for example, a combination of semidiurnal lunar and solar tides, are near resonance (and the
frequency difference provides the beat), or when a small-amplitude, resonant perturbation is modulated by a
large-amplitude, low-frequency tide. The aforementioned observations of irregular tides are discussed in the
light of analytical and numerical results obtained with this model for these two regimes.

1. Introduction

‘‘Chaotic tides’’ sounds like an oxymoron. As the
etymology of the word ‘‘tide,’’ being time, season, or
period according to Webster’s (1913) Revised Un-
abridged Dictionary implies, it has, from ancient times
on (Pugh 1987), often been held to be synonymous with
periodicity. Indeed, this regularity made tidal heights
one of the earliest known and best predictable phenom-
ena in physical oceanography, with relative accuracies
of prediction often exceeding 90%. The predictive ca-
pacities of the corresponding tidal currents is, admit-
tedly, less impressive, but is still often in excess of 50%.
Less known, however, is the fact that spurious, but per-
sistent, reports on the irregularity of the tides exist for
over a century (Honda et al. 1908; Krümmel 1911). It
is this irregularity in the tide that we here aim to identify
as being possibly due to the chaotic response of certain
coastal basins to the tide at the open sea.

Tidal predictions have traditionally been made for
individual ports on the basis of previously observed tidal
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elevation records at those locations. Amplitudes and
phases of a number of precisely known ‘‘tidal frequen-
cies,’’ stemming from the gravitational potential deter-
mined by celestial mechanics, are estimated, which can
then be used to sum the corresponding harmonic series
and thus to predict the future occurrence of tides at that
location; see, for example, the review by Godin (1991).

Although the gravitational (or tidal) potential carries
only about 5 relevant, independent frequency compo-
nents, which, through an expansion of the tidal potential
in harmonic terms leads to perhaps 11 principal tidal
components (Platzman 1971), in the shallow, coastal
areas, local nonlinear effects lead to leakage of energy
to higher harmonics and sum and difference (combi-
nation) frequencies. In this way tidal energy fills in en-
tire spectral bands surrounding the principal compo-
nents (Pugh 1987, p. 188). As there are, in principle,
no difficulties in also resolving the amplitudes and phas-
es of these combination frequencies, running harmonic
analysis with 150 frequency components or more has
become routine procedure. This empirical local analy-
sis, however, does not automatically guarantee that the
amplitudes and phases of these independently deter-
mined frequencies also show a spatially coherent and
stationary picture. Quite the contrary.

A spatially coherent description of the tides can be
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obtained by solving the governing dynamical equations,
the Laplace tidal equations (see, e.g., Cartwright 1977).
In a realistic ocean domain this is achieved by numerical
methods (Schwiderski 1980). Outside continental mar-
gins, tidal predictions for these principal components,
particularly when constrained by observations from
deep-sea tidal stations, are in fair agreement with ob-
servations obtained at different seaports and deep sea
tidal stations (global root-mean-square difference be-
tween modeled and observed elevations of about 10
cm). With the advent of satellite altimetry providing
tidal observations, this agreement has in recent years
actually been dramatically improved (global root-mean-
square difference of about 3 cm); see Andersen et al.
(1995).

Except for these directly driven, principal compo-
nents, together perhaps with their first few harmonics
(Davies 1986; Lynch and Werner 1991), spatial coher-
ency is cumbersome and agreement with locally ob-
served tidal components poor, particularly in the shal-
low, coastal areas. Waves at combination frequencies
are generated locally, get amplified, or damped, to a
degree depending on the particular resonance properties
of that locality, and do not persist as free waves so that
they decorrelate quickly. Treating the nonlinearly gen-
erated compound waves locally as linearly independent
(as harmonic, or Fourier analysis wants it) is therefore
somewhat contorted but still defendable when the local
nonlinear transfer of energy is frozen so that harmonics
appear as the result of a stationary process. However,
when analyzing different, independent datasets from the
same location, variations in tidal amplitudes and phases
often still occur, to the extent that some of the minor
components appear, in fact, unresolvable (Gutiérrez et
al. 1981; Godin 1991). Although such variations in lo-
cally estimated tidal amplitudes and phases are usually
attributed to nonstationary effects due to wind (van Ette
and Schoemaker 1966; Gutiérrez et al. 1981), this need
not necessarily be its only source. Nonstationarity may
also be due to nonlinearity of the hydrodynamic system
itself (Pugh 1987), which may not only change the tidal
elevation profile, by giving rise to superharmonics (ov-
ertides, which stay fixed in time), but may also modulate
its amplitude, by giving rise to subharmonics. Finally,
strong nonlinearity may provoke a cascade of such sub-
harmonic bifurcations, giving rise to chaotic behavior.

Is there any observational basis for chaotic behavior
of the tides, other than the aforementioned unresolva-
bility, or noisiness, of tidal ‘‘constants’’? In an analysis
of the tides in Venice Lagoon, at the head of the Adriatic
Sea, where the tides seem to pick up because of near-
resonancy of the basin, Vittori (1992) observed that con-
secutive tidal maxima are highly irregular. She argued
this to be indicative of low-dimensional chaos. Whether
the low-order dynamics to which this is due is either
inherited from the dynamics of the local wind fields or
of a genuinely oceanographic nature is not clear. Similar
changes in consecutive maxima also appear in long-

term, tidal elevation records in the Wadden Sea basins
(J. T. F. Zimmerman 2000, personal communication),
which are again close to resonance (see Maas 1997,
hereafter referred to as M). Frison et al. (1999) find
evidence of nonlinear tides in U.S. coastal estuaries
from the nontrivial shape of the attractor obtained in a
diagram where observed elevation at some moment is
plotted against that observed at some previous instant.

Surprisingly, direct observations of irregular oscil-
lations, accompanying the tides, have been reported for
over a century (see Krümmel 1911, 157–185; Defant
1961, p. 187). The suggestion that these ‘‘secondary
oscillations’’ were actually related to the ‘‘primary,’’
tidal oscillation was firmly put forward in an impressive
study by Honda et al. (1908), who had intensively stud-
ied the seas around Japan. This study eventually led to
a complete classification of bays in terms of ‘‘periodic,’’
‘‘quasiperiodic,’’ etc. (Honda et al. 1908; Nakano,
1932). In the absence of a dynamical framework, such
as recently offered by the field of nonlinear dynamics,
this classification was, however, not further interpreted,
and these observations seem, if not completely forgot-
ten, neglected in contemporary tidal literature. One rea-
son for this might be that these secondary oscillations
generally seem inconspicuous, as they consist of high-
frequency, low-amplitude waves superimposed on a
low-frequency, high-amplitude (primary) tide. Typical
periods range from some minutes to several hours, and
amplitudes do not exceed a few percent of the tidal
range. However, an interesting twist is given to this
interpretation by recent observations of such irregular
tidal elevations in a Norwegian fjord (Golmen et al.
1994). By making simultaneous observations of the cur-
rents in the strait connecting the fjord to the sea they
found that these irregular small-amplitude elevations
were accompanied by irregular O(1) variations of the
tidal current (see Fig. 1). As velocities are determined
by elevation differences over the strait, by inference the
velocity field can be amplified when, at any moment,
the difference in tidal elevation also amounts to just a
few percent of the elevation itself, thereby becoming of
comparable magnitude to the difference between the
(small amplitude) high-frequency elevation that is res-
onantly excited within the basin but is practically absent
at sea. Such O(1) velocity variations are not only im-
portant for nautical reasons, but are clearly equally rel-
evant for the flushing of the fjord: the exchange of water,
sediments, and dissolved gases or nutrients with the
connected sea. It is believed (LeBlond 1991) that this
property will transcend the global relevance that both
dissipation as well as resonance of tides in the coastal
environment may have in setting the boundary condi-
tions for the global tide (Garrett 1975), although Munk
and Wunsch (1998) recently made the interesting sug-
gestion that tides might be playing a key role in ocean
circulation.

In order to illustrate these issues we will consider the
resonant response of a short, deep basin having a sloping
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FIG. 1. Observed sea level in Moldefjord and currents through connecting strait; from Golmen et al. (1994).

FIG. 2. Sketch showing a side view of two basins that have a channel, connecting it to the
sea, at their right-hand sides (Maas 1998). It demonstrates that the elevation change brought
about by two equal, consecutively entering packages of water (see arrows) is the same when the
basin has a cross-sectional area that is independent of height above the bottom (left), while it
is different when this cross-sectional area increases with height (right). In the latter case, the
response depends on the preexisting water level and is thus nonlinearly related to the incoming
flux of water.

bottom, to the tide in the adjacent open sea to which it
is connected by a narrow strait—a nonlinear Helmholtz
resonator (see M). This choice of geometry differs from
the mostly wide bays with their quarter-wave reson-
ancies, encountered by Honda et al. (1908), but it en-
sures that the tide within the basin takes the simplest
form possible, as it is governed by the pumping, or
Helmholtz mode. This mode is the lowest and generally
also the most important frequency in the basin’s spec-
trum, and is characterized by a spatially uniform re-
sponse. It can thus be represented by a single state var-
iable (the excess volume of water, related to the free
surface elevation), whose evolution is therefore de-
scribed simply by an ordinary differential equation. Al-
though nonlinearity can also be present in the frictional
damping term (Zimmerman 1992), it is the nonlinearity
in the restoring term that gives rise to multiple equilibria
and chaos here. The latter nonlinearity is due to the
sloping bottom (Green 1992) and can be understood as
follows. The current through the strait is driven simply
by the elevation difference over the strait. However, the
elevation change within the basin, affected by the trans-
port through the strait, clearly depends on the surface
area that the incoming water has to cover, which is
nonuniform with depth when the walls of the basin are
not vertical. The time needed to produce a particular
elevation change therefore depends on the preexisting
sea level; see Fig. 2. In M its free, forced, and forced-
and-damped response was discussed in the case where

the tidal forcing is ‘‘pure,’’ that is, contains one fre-
quency component only. In inviscid circumstances, a
single frequency forcing can provoke a chaotic response
in a small parameter range. However, when damping is
added, the chaos fails to persist. Since the inclusion of
damping terms is mandatory in any realistic physical
context, this ‘‘Hamiltonian chaos’’ appears to have no
physical relevance. It is one of the goals of the present
paper to determine under what conditions tides, within
basins of the kind considered here, can become chaotic,
even in the presence of damping. Multiple frequency
forcing seems to be a prerequisite for this. Therefore,
in light of the observations discussed above, we will
consider forcing with either two nearby frequencies, as
is the case for a combination of lunar and solar tides,
a ‘‘mixed’’ type of tide (see Defant 1961), or with a
single low-frequency tide, accompanied by a small-am-
plitude, high-frequency, resonant perturbation, as is the
case in a fjord.

In section 2 the nonlinear tidal Helmholtz resonator
will be introduced. It represents the response of a bay
to tidal variations at the open sea, to which it is con-
nected by a narrow channel. Its governing ordinary dif-
ferential equation will be derived. This section also in-
troduces the Poincaré phase plane, which gives a more
comprehensive way to follow its evolution than that
obtained by direct numerical integration. The tidal re-
sponse of the bay typically shows a gradual modulation
of amplitude and phase, which can be captured by av-
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eraging the original governing equation (section 3). In
section 4 this modulation equation is applied to the case
that forcing is at two nearby frequencies. When these
are close to resonance, the response of the basin may,
under certain conditions, be chaotic. The case that a
single, low-frequency tide is accompanied by a small-
amplitude, high-frequency resonant perturbation is very
similar to this, and is discussed in section 5. In section
6 the results will be summarized.

2. Nonlinear Helmholtz resonator

An almost-enclosed, short basin, connected to a tidal
sea by a narrow strait (modeled here as a pipe), is gen-
erally governed by the pumping (Helmholtz) mode, in
which the water level within the basin rises and sinks
in unison. Elevation is scaled with (maximum) depth
H, volume with A0H (where A0 is the surface area of
the basin at rest), while time t is scaled with the Helm-
holtz frequency of the basin sH,

1/2s 5 (gHB/A L) ,H 0 (1)

with B and L denoting the strait’s width and length,
respectively, and g the acceleration of gravity. In M it
is shown that the evolution of the (nondimensional)
amount of water in excess of that present in the basin
in the absence of tides—the excess volume, y—is (ne-
glecting quadratic damping terms) governed by

2d y dy
1 z(y) 5 z (t) 2 c . (2)e2dt dt

Here z and ze denote the surface elevation within the
basin and in the exterior sea, respectively. The latter is
a prescribed function of time. At any time their differ-
ence provides the pressure difference that drives the flow
u along the connecting strait: du/dt 5 ze 2 z. This flow,
multiplied by the (unit) cross-sectional area of the strait,
equals the rate at which the volume within the basin
changes, u 5 dy/dt. From these two equations the in-
viscid form (c 5 0) of (2) follows. The basin hypsom-
etry (horizontal area A as a function of vertical coor-
dinate z) determines the excess volume within the basin.
With respect to mean sea level z 5 0, this is defined as

z

y [ A(z) dz. (3)E
0

The inverse of this relation, needed in (2), yields the
nonlinear restoring term z(y), which can be made ex-
plicit for some simple basin shapes. For a basin with
vertical sidewalls, A 5 1, for instance, it follows from
(3) that the restoring term is linear, z 5 y. However,
when the basin area increases linearly with depth, A 5
1 1 z (the deepest point of the basin being at z 5 21),
this restoring term is given by

1/2z(y) 5 (1 1 2y) 2 1. (4)

This shape of the basin is the only one addressed here

and its hypsometric behavior is thought to be charac-
teristic of a typical basin with shoaling sides (see M).
Other basin shapes and the effect of this shape on the
dynamics of the basin are addressed elsewhere (Doel-
man et al. 2001, submitted to Phys. D, hereafter DKM).
A nonempty basin (and analyticity of the solution) re-
quires y . 21/2. In the right hand of (2) we find forcing
by the prescribed external tide, ze(t), and damping, re-
spectively. Although this linear damping formally
stands for radiative damping only, we may also consider
it to incorporate a linearized version of bottom friction
and form drag (see M). For further analysis we treat (2)
as a dynamical system by writing for the basin’s excess
volume x 5 y, and for the strait’s flow rate y 5 dy/dt,
and obtain, with (4),

ẋ 5 y
(5)5ẏ 5 1 2 Ï1 1 2x 2 cy 1 z (t).e

As usual, a dot indicates a time derivative. Although
the emphasis will here be on the response to quasipe-
riodic (two frequency) forcing, some results obtained
without forcing and with ‘‘single frequency’’ forcing,
pertinent to the discussion to follow, will be recapitu-
lated first.

a. Poincaré plane, free response, and periodic
forcing

A numerical example of an integration of (5) is given
in Fig. 3a for the case without forcing. It presents the
evolution over two tidal periods of volume and current,
(x(t), y(t)), as a function of time, increasing upward.
Projections of this helical curve at the back (x–t) and
side (y–t) planes give the time evolution of volume and
current proper, such as they are commonly presented
(except that time now points upward). The third pro-
jection, on the bottom x–y plane, suppresses time, which
now acts as a parameter along such orbits, and is called
the phase plane. In this strongly viscous example time
can still be discerned in the gradual decay of the os-
cillations. However, when damping is also absent, so-
lution curves will ‘‘circle’’ around a common center
point, which is the only fixed point present in this case.
Each solution curve is egg shaped and is described by
elliptic functions in terms of which the inviscid, un-
forced version of (5) can be solved (M). Different curves
represent different initial conditions (volume and cur-
rent). The phase plane is limited by an outer boundary
(the limiting orbit) because the argument of the square
root in the restoring term of (5) needs to be nonnegative.
It can be found in parametric form as

2 2 2x(t) 5 (3 2 t )(15 2 t )/72, y(t) 5 t(t 2 9)/18,

for t ∈ (23, 3), which is periodic with period 6. Owing
to the nonlinearity of the oscillator, the period of such
a free, finite-amplitude oscillation is a function of its
amplitude. For the present geometry this period spans
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FIG. 3. (a) Example of time (t) evolution of volume (x) and current (y) over two tidal periods T, together
with three projections, of the unforced (ze 5 0), damped system (5). (b) Projection of helix in (a) on the x–
y plane (solid curve), and stroboscopic (tidal) sampling thereof (dots), representing intersections in (a) with
horizontal planes at t/T 5 0, 1, 2, · · · , 6.

just a narrow range, decreasing from 2p, at the center,
down to 6 at the outer boundary. The frequency range
of other geometries is considered in DKM.

A comprehensive way of monitoring gradual
changes of the tidal response due to forcing, damping,
or nonlinearity is obtained by determining subsequent
intersections of the helical curve with a sequence of
periodically placed, horizontal planes at t/T 5 0, 1,
2, . . . , with T indicating the forcing period (so-called
Poincaré planes of section). These subsequent inter-
sections define a map, called the Poincaré map, P .T

A strictly periodic signal (of period T ) thus yields the
same intersection. Compiling each of these subse-
quent intersections on one and the same horizontal
(phase) plane, a stroboscopic impression of the slow
evolution of the nearly periodic behavior is obtained.
An example of such a Poincaré plane is presented by
the dots in Fig. 3b. Here, the spiral is the projection
of the continuous helical curve of Fig. 3a on the bot-
tom plane. The phase at which the forcing is sampled
can still be varied but is in this study taken to cor-
respond to the moment that the external tide is at low
water. From here on we will mostly use this phase-
plane representation of the evolution, accepting the
suppression of time information. This is illustrated in
Fig. 4 with some stroboscopically sampled solutions
of (5). When forcing is absent, damping brings any

initial motion to rest, in this Poincaré plane repre-
sented by a sequence of points approaching the origin
(Fig. 4a). When damping is absent and a single forcing
component,

z 5 f cos(vt 1 u),e (6)

is near resonance (v ø 1), the amplitude of the basin
tide will grow because of the nonlinearity of the re-
storing term. However, doing so, it changes its period
so that the resonator is detuning itself, and the tide at
sea will actually damp the basin response. Once it is
small again, this process may start afresh, and the whole
cycle takes a time span, which one calls the modulation
period, that is large compared to the tidal period. This
slow growth and decay thus reveals itself in the Poincaré
plane as a single closed loop that is traversed in one
modulation period. Other confocal loops represent other
amplitudes of oscillation. However, when the forcing
period is close to resonance, it is clear from the three
curves of Fig. 4b that there may be different types of
responses, which will be discussed further in the next
section. With forcing and relatively strong damping, a
regular oscillation of definite amplitude and phase even-
tually results, so stroboscopic intersections will ap-
proach one single spot, away from the orgin (Fig. 4c).
When damping is weak and forcing is near resonance,
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FIG. 4. Stroboscopic plot at t/T 5 0, 1, 2, · · · , 0, where T 5 2p/v, and forcing ze 5 2 f cos(vt), v 5 1.01, and
forcing amplitude f and damping parameter C given by (a) f 5 0, C 5 0.01, (b) f 5 0.001, C 5 0, (c) f 5 0.001,
C 5 0.01, and (d) f 5 0.001, C 5 0.001.

depending on the precise initial state, the system may
lock into different states (Fig. 4d).

To summarize, in this Poincaré plane, a strictly pe-
riodic oscillation will be represented by a single (fixed)
point, a quasiperiodic oscillation by multiple points ly-
ing on a closed curve (limit cycle), and an aperiodic
state (encountered in later sections) by an irregularly
located set of points (strange attractor).

b. Qualitative effect of quasiperiodic forcing

The multiple equilibria near the Helmholtz resonance
correspond to an amplified and a choked tidal response
(see the two centers in Fig. 4d, at large and small vol-
umes | x | , respectively). These states are stable and at-
tracting when damping is present (Fig. 4d). Without

damping, however, these states would retain their orig-
inal distances to the fixed points (as the curves in Fig.
4b), and each state can be characterized by its energy
level and period (with which it is traversed). The qual-
itatively different regimes, recognizable in Fig. 4b, are
separated from each other by particular special orbits,
the separatrices. One outer separatrix separates the out-
ermost orbit from the other two, and one inner separatrix
separates the banana-shaped orbit and small circular or-
bit. The period needed to traverse these separatrices
approaches infinity, as the intersection of the two se-
paratrices acts like a saddle. A state can creep up to this
relative maximum in potential energy by exchanging
some of its ‘‘kinetic’’ energy, allowing it to move for-
ward along its orbit, in favor of ‘‘potential’’ energy.

When friction is introduced, it pulls the state down
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into one of the equilibria, except for the odd point sitting
right at the saddle and the two orbits that limit exactly
on the saddle point in forward time. Note that these
orbits merge with the aforementioned separatrices as the
friction decreases to 0. Apart from these exceptions, all
initial states thus belong to one of two domains of at-
traction (amplification or choking). When one starts to
weakly and slowly ‘‘shake’’ the system (i.e., the saddle
and the separatrices) by introducing a large-period per-
turbation, a new ‘‘equilibrium’’ may arise. This happens
because it is clearly quite a sensitive matter near the
separatrices to which equilibrium their state will recede.
Therefore, when, due to shaking, the separatrices move
a little, while the state is slowly receding to one equi-
librium, it may find itself a little later in the attraction
domain of the other. Making again its way to the other
equilibrium, something similar may happen, and, in ef-
fect, the neighborhoods of the separatrices may trap the
state.

This new ‘‘steady’’ state might turn out, however, to
be chaotic. This is because, close to the separatrices,
the period of the inviscid orbits (the modulation period
of the Helmholtz oscillator) varies greatly, and thus,
when the state of the system varies due to the weak
forcing, neighboring states fastly diverge from each oth-
er.

The way to verify that such a new dynamical equi-
librium state turns into existence under the addition of
perturbative damping and extra forcing is by performing
an energy budget study. For this, one picks one of the
original inviscid orbits, characterized by a particular pe-
riod, and one then evaluates, along that orbit, the net
increase or decrease of energy over one period due to
both the work done by the perturbative forcing as well
as the energy dissipation by the perturbative damping
term. Only when these two are in balance (and there is
thus no net energy increase or decrease) will the point
on average stay near the original, unperturbed orbit. The
single orbits considered in the present study are the
previously introduced separatrices (homoclinic orbits),
along which the period turns to infinity. The function
determining the net energy change on the homoclinic
orbits is called the Melnikov function. This function is
usually given the alternative interpretation of measuring
the distance of the perturbed orbits leaving and ap-
proaching the saddle. A (traditional) search for its ze-
ros—implying intersections of the two perturbed orbits
so that points both belong to the sets of points ap-
proaching and leaving the (perturbed) saddle, and are
therefore ‘‘stuck’’—is thus equivalent to the require-
ment that there is no net change in energy content along
its trajectory. Mathematically, all we can show for the
moment is that certain points (that belong to this in-
variant set) get trapped near the unperturbed separatri-
ces, and that they traverse that region in an unpredict-
able, chaotic way (section 4a). However, we lack the
ability to rigorously show that this set is actually at-

tracting (Wiggins 1990): Suggestions that it is follow
from numerical analysis (section 4b).

Similar such phenomena appear at other resonances,
like near v ø 1/2 1 «, and in particular near v ø 2 6
« (see M).

3. Modulation equations

Much of the behavior obtained by numerically inte-
grating the exact equation can, to a remarkable degree,
also be found analytically in the solutions of the mod-
ulation equations that will be considered now. The ad-
vantage of using modulation equations is that fixed
points, homoclinic orbits, Melnikov functions, etc. can
be obtained explicitly, which is very helpful in address-
ing the main issue, namely, whether (and under what
conditions) chaos can occur in the nonlinear Helmholtz
resonator in the presence of damping. The stroboscopic
intersections in Fig. 4 trace out continuous curves,
whose locations can be obtained approximately when
averaging the governing equations over the forcing pe-
riod. Doing so, one obtains modulation equations that
govern the amplitude dynamics on a slow timescale,
which reveal where and under what conditions the dy-
namical response can become ‘‘complex.’’ When the
excess-volume fluctuation y(t) is of small amplitude
(and when also the forcing and frictional parameters are
small), (2) can be approximated by rescaling y 5 «V,
c 5 «2C, f 5 «3F (with « K 1). With sinusoidal forcing
(6), this leads to

2 2d V « «
2 3 21 V 5 V 2 V 1 « F cos(vt 1 u)

2dt 2 2

dV
2 32 « C 1 O(« ). (7)

dt

This equation is solved by a multiple-scale perturbation
expansion and has an amplified response at rational
values of v (Nayfeh and Mook 1979, p. 196). By re-
quiring the absence of secular terms in the equations
governing the subsequent orders of the perturbation
expansion near the primary resonance (which, for con-
sistency, requires v 5 1 1 « 2s) the solution is, up to
second order, given by

1 1
2V 5 R cos(vt 2 F) 1 «R 1 2 cos2(vt 2 F)[ ]4 3

21 O(« ). (8)

The response is thus frequency locked to the forcing and
exhibits a ‘‘drift’’ term (the constant term), providing a
net displacement of the mean state. Amplitude R and
phase F vary on a slow timescale and are governed by

C F
Ṙ 5 2 R 1 sin(F 1 u) (9)

2 2

1 F
3˙RF 5 sR 2 R 1 cos(F 1 u), (10)

12 2
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FIG. 5. Amplitude response R against detuned frequency s. Near
resonancy, 1 , s , 5, it has a bent ‘‘resonance horn,’’ indicating
multiple equilibria and an increased response. Here forcing F 5 3
and frictional parameter C 5 0.4. Near s ø 1.5 (vertical line) three
equilibria, A, B, and C, are obtained. Two of these are stable and
correspond to a choked (C) and amplified (A) regime.

where a dot indicates differentiating with respect to the
slow time variable T 5 «2t. Equating the right-hand
sides to zero determines the steady states and allows
one to obtain the frequency response curve for these
equations s(R; F, C); see Fig. 5. However, by rescaling
t → t/s, R → s1/2R, C → sC, and F → s3/2F, the
detuning frequency s can be scaled out and can, there-
fore, without loss of generality, be set equal to one. We
may use this property to argue that the actual detuning
defines the small parameter « [ (v 2 1)1/2, which would
otherwise be left arbitrary. This is consistent with the
two rescalings, employed previously. In Cartesian co-
ordinates, X 5 R cosF and Y 5 R sinF, these modu-
lation equations read

2C R F
Ẋ 5 2 X 1 2 1 Y 1 sinu, (11)1 22 12 2

2C R F
Ẏ 5 2 Y 2 2 1 X 1 cosu, (12)1 22 12 2

where R2 5 X 2 1 Y 2.
For the single-frequency forcing one can assume,

without loss of generality, u 5 0 (which amounts to a
rotation of our coordinate system). Its explicit presence
is retained here however for later use, when, in the
double-frequency forcing case, both F and u will be
varying on the slow timescale. Note that these modu-
lation equations are the same as those found for the
Duffing equation [in polar coordinates by the method
of multiple scales, see Nayfeh and Mook (1979), and
in both polar and Cartesian coordinates by the averaging
method, see Guckenheimer and Holmes (1983)]. The
extension to two forcing frequencies, discussed later,
should thus have relevance to the quasiperiodically
forced Duffing equation (Wiggins 1990; Yagasaki 1990,

1993), and extends it to the ‘‘double resonant’’ case of
two nearby frequencies, both approximately equal to the
natural frequency.

a. Comparison of exact and modulated systems

It is useful to understand the system of modulation
equations because this local approximation has a strong
correspondence with the Poincaré plot of the exact equa-
tion. To appreciate this, compare some of its numerically
obtained solution curves with Poincaré plots of the exact
equation (Fig. 6). Not only is the topology of fixed
points and separatrices preserved but, indeed, so is much
of their location (when giving proper notice to the re-
scaling factor «, which is present in between these two
systems). The modulation equations, however, have no
restrictions on the region attainable in X–Y phase space,
while the exact equations do. It is probably this re-
stricted access of the original phase plane that makes a
(formally) local solution perform so well in approxi-
mating its ‘‘global’’ dynamics. We will find that all of
the behavior found near resonance in the original phase
space is mimicked in the phase plane of the modulation
equations (including, as we will see, the occurrence of
chaos), which therefore forms a useful substitute.

b. Hamiltonian description

In the next section, particular attention will be given
to the inviscid (C 5 0) limit of (11)–(12) since these
equations then turn into Hamiltonian form:

]H
Ẋ 5 (13)

]Y

]H
Ẏ 5 2 (14)

]X

with (for u 5 0) Hamiltonian

22R FX
H(X, Y ) 5 3 2 1 2 . (15)1 2[ ]12 6

Here a constant has arbitrarily been included to simplify
the expression. Multiple equilibria, in this case, exist
for | F | , 8/3. Because of the symmetry of the mod-
ulation equations (11)–(12), X → 2X, when F → 2F,
it is sufficient to consider F to be single signed only.
From here on we take this to be the interval: 28/3 ,
F , 0. Equilibria are, of course, more readily identified
from (11)–(12). With u [ 0, they have Y 5 0, while
X(X 2/12 2 1) 5 F/2. With auxiliary variable a ∈ (2p/
2, p/2), defined through F 5 28 sin(a)/3, these steady
states are in this case given by

X 5 4 sinn , (16)k k

n 5 (a 1 2pk)/3, (17)k

and k ∈ {21, 0, 1}, which implies X21 , X0 , X1.
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FIG. 6. (a) Poincaré plot of numerical integration of the inviscid (c 5 0) evolution equation (5) for forcing
frequency v 5 1.01, close to resonance. Forcing f 5 21023, u 5 0, and initial conditions are y 5 0, x ∈ {20.3,
20.25, 20.2, 0.05, 0.2, 0.3, 0.35, 0.4}, as well as y 5 0.01, x 5 0.3185, which is close to the saddle point. (b)
Trajectories of modulation equations (11) and (12) for the corresponding parameters and initial conditions, with «
5 (v 2 1)1/2 5 0.1 (and, hence, s 5 1), after a rescaling x 5 «X, and employing a rescaled forcing F 5 21, which
is «3 times the original f in (a). The two figures are comparable, taking into account the scale factor « 5 0.1.

c. Homoclinic orbits

The motivation for studying the inviscid case (C 5
0) is related to the fact that the modulation equations
can then be solved explicitly. This offers the means to
calculate Melnikov functions explicitly, once, at a later
stage, weak (slow timescale) forcing and damping are
added to the modulation equations. Zeros of the Mel-
nikov functions determine the presence of invariant cha-
otic sets and suggest the presence of chaotic solutions.
The conditions under which zeros of these functions
appear will map out regions in parameter space where
one may find ‘‘chaotic tides.’’

In the inviscid case (C 5 0) explicit solutions of (11)–
(12) are obtained by introducing

2S [ R /12 2 1, (18)

which measures the radial ‘‘distance’’ to the ‘‘special’’
radius Rs 5 2 . Note that it obeys the equationÏ3

dS FY
5 , (19)

dT 12

where we have used u [ 0. Hence, by multiplying (11)
by F/6 one obtains, upon integration,

XF
25 S 2 K, (20)

6

where K is an integration constant related to the energy
level. By using Y 5 6(R2 2 X 2)1/2 in (19) and then
eliminating X from (20), and R2 from (18), one obtains

1/2
2dS F 1

2 25 6 (S 1 1) 2 (S 2 K )[ ]dT 12 4

1
1/2[ 6 (S 2 S )[(S 2 S )(S 2 S)]1 2 32

1/2[ 6P (S) , (21)4

where explicit expressions for S1,2,3, in terms of F and
K, are found by identification of both expressions (see
appendix A). Plots of the graphic P4(S) appearing in
(21) are given in Fig. 7a. These correspond, for any
given energy level, to the orbits in the X–Y phase plane,
given in Fig. 7b. Of particular interest is the case that
the central zeros of the quartic coalesce, and the cor-
responding orbits represent the homoclinic orbits g in,out.
These homoclinic orbits correspond to the separatrices
described in section 2b. Equation (21) can be integrated
and its solutions can be expressed in terms of elliptic
functions. However, we will have no need here for the
general expressions and will only describe the homo-
clinic orbits coming from the saddle point (X1, 0), which
will be used in section 5a to explicitly calculate Mel-
nikov functions.

The solution of (21) for the outer homoclinic orbit,
gout, for which S2 , S , S1 and K 5 24S1 2 3 , is2S1

obtained in appendix A as
21

2 2cosh (nT ) sinh (nT )
S 5 S 1 2 , (22)1 [ ]S9 S92 3

where 5 S2,3 2 S1. This shows that S → S1 as T →S92,3

6` and S 5 S2 for T 5 0. Similarly an expression for
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FIG. 7. (a) The quartic P4(S), Eq. (21), as a function of S 5 [(X 2 1 Y 2)/12 2 1], for F 5 21/2 and three ‘‘energy’’ levels K 5 0.2,
0.2832, · · · , 0.4. The central K value corresponds to the presence of a double zero at S1, which, in the X–Y phase-plane is related to the
homoclinic orbits (separatrices) g in,out emanating from the saddle at (X1, 0). (b) X–Y phase plane of modulation equations (11)–(12), for F
5 21/2 and energy levels as in (a). The three zeros in (a), Sk for k ∈ {1, 2, 3}, in this plane correspond to circles that intersect the Y 5 0
axis at Xk, and are related by Sk 5 /12 2 1. These circles correspond to the maximum and minimum distances that points on the two2X k

homoclinic orbits, g in,out, have with respect to the ‘‘special’’ radius Rs 5 2 .Ï3

the inner separatrix can be obtained by simply interchang-
ing S2 and S3, which has S 5 S3 for T 5 0 and which
also approaches the saddle point S → S1 as T → 6`. With
these expressions for S(T), the trajectories g(T) 5 (X(T),
Y(T)) of the inner and outer homoclinic orbits follow from
(20) and Y(T) 5 6(R2 2 X2)1/2; see Fig. 7b.

4. Forcing at two nearly resonant frequencies

The tidal forcing term ze(t) is of course not a perfect
cosine. Here we consider a somewhat more realistic
double-frequency forcing:

z (t) 5 f cos(v t 1 u ) 1 f cos(v t 1 u ).e 1 1 1 2 2 2 (23)

The first component of this external tidal forcing might
represent the semidiurnal lunar M2 tide (dimensionally,
v1 5 1.4056 3 1024 s21); the second component the
semidiurnal solar S2 tide (v2 5 1.4544 3 1024 s21). Of
course this means that | v1 2 v2 | /v1 5 3.47 3 1022

K 1. As a consequence we cannot apply the ideas for
the analysis of weakly, quasiperiodically forced oscil-
lators, developed in, for instance, Beigie et al. (1991).
However, we will see that the closeness of the two fre-
quencies v1 and v2 can provide an additional periodic
forcing term in the modulation equations, on the slow
timescale. This periodic forcing term will break up the
homoclinic orbits of the modulation equations (in the
integrable limit) and thus might lead to (transversely)
intersecting stable and unstable manifolds for the Poin-
caré map associated to this new forcing term.

Thus, taking into account an additional solar, and
therefore almost resonant, tidal forcing term gives a

mechanism for the construction of chaotic solutions (see
also Yagasaki 1990, 1993).

In section 3 we defined the small parameter « as a
detuning. Analogously, we set here (now again em-
ploying nondimensional frequencies),

2« 5 v 2 1.1 (24)

The above-described mechanism can be constructed if
we assume that v1 2 v2 5 O(«2); that is, if

2Dv 5 v 2 v [ « DV2 1 (25)

and DV 5 O(1). The forcing amplitude and the phase
now vary on the slow timescale T 5 «2t:

z 5 f (T) cos[v t 1 u(T)],e 1 (26)

where the combined amplitude and phase are defined by
2 2 2f (T ) 5 f 1 f 1 2 f f cos(DVT 1 Du) and (27)1 2 1 2

f sin(DVT 1 Du)221u(T ) 5 u 1 tan (28)1 [ ]f 1 f cos(DVT 1 Du)1 2

with

Du 5 u 2 u . (29)2 1

The derivation of the modulation equations is now
identical to the derivation given for the single-frequency
case in section 3 (now one averages over 2p/v1 instead
of 2p/v) and the modulation equations are again of the
form (9)–(10), or, in Cartesian coordinates, (11)–(12),
but now with slowly modulating forcing F(T) 5 f (T)/
«3 and phase u(T), Eqs. (27) and (28) replacing their
constant counterparts (see Nayfeh and Mook 1979, sec-
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tion 4.4). The right-hand sides of the modulation equa-
tions (11)–(12) now depend on the slow time explicitly,
and, in principle, this offers the opportunity for the oc-
currence of aperiodic solutions.

When the two components are of equal magnitude,
f 2 5 f 1, the phase is simply u 5 (DV T 1 u1 1 u2)/
2, which redefines the effective frequency to be equal
to the average frequency. The amplitude gradually
changes sign over a long timescale f 5 2 f 1 cos[(DV T
1 Du)/2]. The block version of this, f 5 4 f 1(1/2 2
Q{cos[(DV T 1 Du)/2]}, is piecewise integrable. Here
Q(x) 5 0 (1) for x , 0 (.0) denotes the Heaviside
function. It has a saddle point on the X axis, whose
position alternates with respect to the center of the X–
Y phase plane with subsequent phases of the forcing. It
is thus reminiscent of Aref’s (1984) blinking vortex with
its ensuing chaos. This suggests similar results for a
sinusoidal forcing, which is confirmed by numerical
analysis (see section 4b), although this cannot be sub-
stantiated analytically.

When the second component is but a small pertur-
bation with respect to the first one f 2/ f 1 [ d K 1, then
f ø f 1[1 1 d cos(DV T 1 Du)] and u ø u1 1 d sin(DV
T 1 Du). Note that this occurs quite naturally in the
context of M2 and S2 tides. In contrast to the previous
case, this limit is more amendable to further analysis
and will be addressed now. Without loss of generality
we set u1 5 0, fixing the origin of the ‘‘fast’’ time t,
and Du 5 2p/2, fixing the origin of the ‘‘slow’’ time
T, whence the amplitude f 5 f 1[1 1 d sin(DV T)] and
phase u 5 2d cos(DV T), so that, with f 5 «3F, for
small values of d, apart from a factor 2, the forcing
terms in (11) and (12) are approximated as F sinu ø
2dF cos(DV T) and F cosu ø F[1 1 d sin(DV T)],
respectively.

a. Perturbative second forcing component and
Melnikov analysis

With a weak perturbative second forcing component
(d K 1) and weak damping (C → dC) the averaged
Eqs. (11) and (12) become, after an appropriate shift in
the origin of the slow and fast time,


]H C F

Ẋ 5 1 d 2 X 2 cosDVT ,1 2 ]Y 2 2
 (30)

]H C F
Ẏ 5 2 1 d 2 Y 2 sinDVT , 1 2]X 2 2

with H as in (15). These equations can be written sym-
bolically as

Ẋ 5 g(X) 1 dh(X, T). (31)

Here a dot denotes differentiation with respect to the
slow time T. Note that it is assumed implicitly that 0
, « K d. One has to include higher-order terms in «
and perform a much more detailed perturbation analysis

when d 5 O(«) [see Guckenheimer and Holmes (1983);
one has to be careful with applying Melnikovs method
in the averaged system in that case; see also DKM for
a detailed discussion]. System (31) has a hyperbolic
periodic orbit, with period 2p/DV, that is O(d) close to
the saddle point P0 5 (X1, 0) of the unperturbed (d 5
0) problem (see Fig. 7b), or, equivalently, the strobo-
scopic or Poincaré map associated with (31) has aT0P
fixed point of saddle type O(d) close to P0 (see alsoT0Pd

Guckenheimer and Holmes 1983, chapter 4, for more
details). Time T0 defines which section is taken to con-
struct this map. The stable and unstable manifolds of

are also O(d) close to those of P0 in the unperturbedT0Pd

system. Thus, the perturbation will in general break
open both homoclinic loops of the unperturbed system.

Neglecting for the moment the additional forcing term
[last term in Eq. (30)], the effect of the damping is to
draw trajectories inward across separatrices. Multiply-
ing (30) with =H, the rate of change of the Hamiltonian
is then obtained, on the separatrix (where K 5 23 22S1

4S1), as dH/dt 5 23C(S 2 S1)(3(S 1 S1) 1 4)/2. Since
on gout, S $ S1, it has dH/dt # 0, while on g in , the inner
separatrix, dH/dt $ 0, because S3 # S # S1 and 3(S3

1 S1) 1 4 5 4 2 3[28S1(1 1 S1)]1/2 $ 0, for 22/3 #
S1 # 0. Since outside gout the Hamiltonian has relatively
large (K) values (see Fig. 7b) and since its variation is
strictly negative (dH/dt , 0), this implies that all states
outside it are drawn inward. Since the Hamiltonian is
again relatively large inside g in, any trajectories that
reach up to that separatrix are further drawn inward, to
the choked state. All other states end up in the banana-
shaped area in between g in and gout , approaching the
amplified state (with relatively low values of the Ham-
iltonian K). With the additional forcing term, multipli-
cation of (30) with =H gives the general expression for
the rate of change of the energy (i.e., that of the per-
turbed Hamiltonian, dH/dt). If we evaluate that at the
separatrices, we specify X(T) and Y(T) to satisfy the
parametric relation corresponding to the particular se-
paratrix (section 3c). The net change of the Hamiltonian,
following this trajectory over one period (which is in-
finite on the separatrices), then amounts to the integral
given below. Its vanishing would imply that the net
change in energy is zero, and hence forcing and damping
are in equilibrium and the state does not drift, repre-
senting a new, dynamic equilibrium.

A geometric interpretation of the Melnikov method
is that it measures the splitting distance between the
stable and unstable manifolds of that used to be partT0Pd

of a homoclinic loop to P0 in the unperturbed case. In
this case there are two Melnikov functions: one that
measures the splitting distance in the perturbed, outer
loop, Mout(T0), and one for the inner loop, Min(T0). In
both situations this distance is for instance measured at
the intersections of the stable/unstable manifolds with
the Y 5 0 axis; Fig. 7b. Following, once again Guck-
enheimer and Holmes (1983, chapter 4) we see that
Mout,in(T0) are, at leading order, given by
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FIG. 8. Surfaces of critical damping as a function of frequency difference DV and forcing amplitude F ∈ (28/3, 0)
along (a) the outer and (b) the inner homoclinic orbit. For damping values below these surfaces, chaotic states exist in
the modulation equations.

`

M (T ) 5 {g [g (T 2 T )]h [g (T 2 T )]out,in 0 E 1 0 0 2 0 0

2`

2 g [g (T 2 T )]h [g (T 2 T )]} dT,2 0 0 1 0 0

(32)

where g 0(T) 5 (X0(T), Y0(T)) is either the outer or the
inner homoclinic orbit of the unperturbed system (see
section 3c); g 5 (g1, g2) and h 5 (h1, h2) are defined
by (30) and (31).

A (nondegenerate) zero of, for example, Mout(T0) cor-
responds to a transversal intersection of the ‘‘outer’’
stable and unstable manifolds of for the map . ItT T0 0P Pd

is a standard procedure to associate a Smale horseshoe
map to this situation (Guckenheimer and Holmes 1983).
Thus, it follows that system (31) has chaotic solutions
when either Mout(T0) or Min(T0) has zeros. Note, how-
ever, that the existence of chaotic solutions does not
automatically imply the existence of a chaotic attractor;
see section 4b.

In this paper we only consider the ‘‘classical way’’
to construct chaotic solutions, namely due to intersec-
tions of either the inner stable and unstable homoclinic
orbits, or the outer ones. Other possibilities, like the
intersection of the outer unstable manifold of withT0Pd

its inner stable manifold, are discussed elsewhere
(DKM).

For the outer homoclinic orbit, Eqs. (30), (31), and
the definition of the unperturbed homoclinic orbit g 0(T)
5 (X0(T), Y0(T)), the Melnikov function (32) is cal-
culated in appendix B. It is obtained as

3 tanc
M (T ) 5 224 C c 2out 0 21 2[ 3 1 tan c

cke
21 p(DV) cos(DVT ) , (33)0 ]sinhpk

where auxiliary variables c and k are related to forcing
F and frequency difference DV by F 5 28 cos2c/Ï3

(1 1 2 cos2c)3/2 and k 5 2DV(3 1 tan2c)/2 tan2c,
where F ∈ (28/3, 0) for c ∈ (p/2, p). The derivation
of the equivalent of Mout(T0) for the inner homoclinic
orbit, Min(T0), is completely similar (see appendix B).
There is a critical value of the damping C 5 Cout 5
Cout(DV, c) 5 Cout(DV, F) for which the Melnikov
function (33) vanishes, thus implying that there will be
transverse homoclinic intersections for the outer orbit
and chaotic solutions, when

21cke 3 tanc
2C # C 5 p(DV) c 2 , (34)out 2) 1 2 )sinhpk 3 1 tan c

depicted in parameter space in Fig. 8a. A similar critical
surface Cin is obtained in appendix B for the inner orbit;
see Fig. 8b.

Note that both Cout and Cin vanish when the two basic
frequencies are equal (i.e., DV 5 0). In this case both
Mout(T0) and Min(T0) are equal to M1 (for definition of
M1,2,3 see appendix B), which does not depend on T0, and
thus, in this case there can be no (transversal) intersec-
tions of the stable and unstable manifolds for the Poincaré
map . As a consequence there can also be no chaoticT0P
solutions. This has been observed earlier in the monof-
requency case to which it reduces. The same is true for
tidal frequencies that are not both close to the same res-
onance or, in other words, when | DV | is too large. This
follows from (34) and its inner equivalent since the de-
nominator sinhpk 5 sinh[pDV/(2n)] dominates the nu-
merator when | DV | k 1 (the decay rate decreases to
zero when c ↑ p (F → 28/3 and DV . 0; see Fig. 8a
and below). Here an upward (downward) directed arrow
implies the limit is approached from below (above). For
DV , 0 the critical damping curve of the outer orbit is
very small, O(0.01), and hence not visibly different from
zero on the left-hand side of Fig. 8a.

There are two other physically relevant limits: F ↑ 0
(i.e., c ↓ p/2 and f ↑ p/2) and F ↓ 28/3 (c ↑ p and
f ↓ 0). In the first case (’’no forcing’’) one expects once
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FIG. 9. Numerical integration of modulation equations (11)–(12) when dC 5 0.1 gives an indication of chaos
as observed here in current velocity Y vs (a) slow time T and (b) vs excess volume X. The integration is started
from the origin (X(0) 5 Y(0) 5 0) for forcing F 5 2 cosV9t, and frequency V9 5 DV/2 5 0.5.

again the disappearance of (possibly) chaotic solutions.
Indeed we find that

M (T ) → 212Cp and M (T ) → 12Cp,out 0 in 0

when F ↑ 0 [by (B9) and (B11): M2 and M3 vanish ex-
ponentially fast]. In a sense Mout(T0) and Min(T0) measure
the same splitting distance in this case since the outer and
inner homoclinic orbits merge in this limit. The difference
in sign is explained by the fact that the stable manifold
of the inner orbit merges with the unstable manifold of
the outer orbit (and vice versa). A similar geometrical point
of view gives insight in the limit F ↓ 28/3. In that case
the inner homoclinic orbit shrinks to a point, while the
outer orbit reaches a well-defined limit. Thus, nothing
‘‘singular’’ will happen to the outer orbit in this limit (see
Fig. 8a). However, for the inner orbit, all components M1,2,3

will approach 0 as f ↓ 0. The behavior of M1 is quite
degenerate: M1 5 O(f5) for small f, but both M2 and M3

will approach 0 with an exponential decay rate, for a fixed
value of DV. Thus, we conclude that Cin ↓ 0 for F ↓ 28/
3. However, the situation changes if we take the limit f
↓ 0 differently, namely along any straight oblique line
through the ‘‘origin’’ (DV, f) 5 (0, 0): DV 5 qf, (q ±
0, `), as the exponentially fast decay is then absent and
the behavior of Cin is dominated by the singularity in it
due to the f-dependent factor in M1. This implies that the
critical damping magnitude may increase indefinitely in
this limit. This singularity also dominates the magnitude
of Cin farther away from the origin, in the interior of the
DV–f plane, and explains the two lobes visible in Fig.
8b on either side of the line DV 5 0. It may be the reason
why chaos can become important, even in quite strongly
damped, realistic circumstances.

b. Numerical solutions of modulation and exact
equations

Proving that the modulation equations possess a cha-
otic invariant set in the case when the Melnikov function

vanishes is as far as we go analytically. As for the (close-
ly related) Duffing equation, more work is needed to
show that this set becomes attractive in some parameter
range (Wiggins 1990, 612–613). In the following we
will only give some numerical support that the (peri-
odically forced) modulation equations possess such a
chaotic (strange) attractor. This, in turn, suggests that
the original, quasiperiodically forced Helmholtz oscil-
lator should likewise have a strange attractor in the cor-
responding parameter regime; a result that we confirm
by numerical integration below.

Numerical integration of the modulation equations,
(11)–(12), with a fourth-order Runge–Kutta scheme,
employing a double-frequency forcing (23), shows that
for two nearby frequencies within the frequency range
over which multiple equilibria exist, the solution curves
appear to be chaotic (Fig. 9). This is suggested both in
the (slow) time domain T, by the strait’s current speed
Y (Fig. 9a), as well as in the phase space of current
velocity Y versus excess volume X (Fig. 9b). (Recall
that the original x and averaged quantities X are related
by x } «X, while the fast t and slow T timescales are
related by t 5 «22T.) Here we take forcing amplitudes
of the two external tidal components to be equal. One
of these components is supposed to be at the (linear)
resonance frequency, 1 (the Helmholtz frequency),
while the second is at a slightly higher frequency (1.01).
The latter frequency is setting the small parameter « 5
0.1. Within the resonance band the theory requires the
forcing amplitudes to be small, O(«3), so that we take
them f 1 5 f 2 5 1023. This leads, from (27), to F(t) 5
f /«3 5 2 cos[(DV T 1 Du)/2] in the modulation equa-
tions (12). In striking contrast to the monofrequency
case, where the Hamiltonian chaos disappears with the
introduction of even the smallest amount of damping
(see M), the present calculations show that chaos sur-
vives the addition of damping. Commensurate with the
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FIG. 10. Stroboscopic (Poincaré) plot of numerically integrated
orbit of modulation equations, calculated as in Fig. 9, here extended
to an integration over 3000 dimensionless units in time. Sampling is
at the long period rate 2p/V9, where V9 5 DV/2.

FIG. 11. Poincaré plot of numerically integrated exact equations (5) in case c 5 0.001 gives an indication of
chaos as observed here in current velocity y vs time t (a) and versus excess volume x (b). Integration is started
from the origin (x(0) 5 y(0) 5 0) for forcing values f 1 5 f 2 5 0.001, and frequencies v1 5 1 and v2 5 1.01.
Sampling is at the average forcing period 2p/ .v

theoretical requirements we need to take c # O(«2) and,
in fact, take c 5 «3 here. This amounts to dC 5 0.1.
The erratic solution curves suggest that the modulation
equations may possess a strange attractor, which is in-
deed revealed by making a Poincaré plot, by sampling
at the modulation period (Fig. 10). Its shape is very
similar to the ‘‘Japanese attractor’’ (see Ruelle 1980),
which has been encountered for the forced and damped
Duffing equation. Notice, in particular, the familiar Can-
tor-like division of the attractor’s branches.

Chaos in the modulation equations suggests the oc-
currence of chaos in the original equations (5) under
double-frequency forcing (23). In the following nu-
merical experiments, the same values for forcing am-
plitudes and frequencies, as well as damping, were taken
as were used in the previous numerical integration of
the modulation equations. In order to compare the slow
modulation of the numerically computed orbits directly
to those obtained from the modulation equations, we
sample the former at the tidal period. So, in Fig. 11
Poincaré plots of damped (c 5 0.001) flow rate y versus
time t (panel a) and versus excess volume x (panel b)
are shown. Sampling is done once every average period
2p/ , where 5 (v1 1 v2)/2. Both figures suggestv v
that chaos is also present in the exact equations. Indeed,
this is again made manifest by making a Poincaré plot,
but now by sampling at the long-period timescale, 2p/
Dv. Figure 12 shows that it reveals the presence of a
strange attractor, not unlike that encountered for the
modulation equations; Fig. 10.

5. Forcing at two widely separate frequencies

Estimating the natural frequency of a number of ba-
sins occurring in nature leads to a wide range of periods
varying from a few minutes to several hours, up to
periods of the tides, with a predominancy in the range
of several tens of minutes (Honda et al. 1908). For this
reason it is useful to consider here the response of the
nonlinear Helmholtz resonator to a forcing of the form

2z 5 a cos« t 1 b cos(vt 1 u)e

def
25 Z(« t) 1 b cos(vt 1 u), (35)

with 0 , b K a: the first term represents the dominant,
low-frequency tidal component and the second term a
relatively weak perturbation that is almost in resonance
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FIG. 12. Stroboscopic (Poincaré) plot of numerically integrated
exact orbit calculated as in Fig. 11, here extended to an integration
over 3000 dimensionless units. Sampling is at the (long) modulation
period 2p/Dv.

with the Helmholtz frequency of the basin (v ø 1).
Thus, in this setting, «2 K 1 measures the ratio of tidal
to Helmholtz frequency. Note that we have for sim-
plicity neglected all ‘‘intermediate’’ Fourier components
of the external tide: the main purpose of this section is
to show that chaos can occur in basins with a high
Helmholtz frequency. The mechanism is quite similar
to the one described and studied in the previous sections.
We will first discuss the effect of such a forcing in
qualitative terms and continue this with a more detailed
treatment.

Consider first the case in which the perturbation is
absent altogether, b 5 0. Then, when damping is rela-
tively weak because the frequency of the tide «2 K 1,
the elevation within the basin will be able to follow the
external tide: z ø Z. Therefore, in the presence of a
high-frequency perturbation (0 ± b K a), on the fast
timescale the dominant component of the tide, Z, acts
as a slow, quasi-adiabatic change of the mean depth of
the basin. However, the basin depth (among other pa-
rameters) determines the Helmholtz frequency; see (1).
Therefore, the frequency of the perturbation, assumed
to be fixed in absolute measure, is slowly varying when
scaled with this Helmholtz frequency. This will provoke
the quasi-stationary response to drift along the response
curve (see Fig. 5). When this frequency drift, induced
by the apparent modulation of water depth, is large
enough—covering the frequency range over which mul-
tiple equilibria exist, this will lead to a sequence of
‘‘catastrophes’’: rapid changes in the range of the (near)
resonant, high-frequency response, which is subject to

periodical collapse and expansion. There will thus be a
hysteretic change in the amplitude of the basin elevation.
This change may, however, be chaotic because the mo-
ments in time at which the amplitude jumps can become
randomized. This is perhaps so because the high-fre-
quency response, if not rapidly constrained to a partic-
ular phase by strong damping, will still be in a transient
adapting phase, recovering from the previous catastro-
phe, when it undergoes the next one.

It is ironic that this explanation, based on the pos-
sibility of undergoing a hysteretic curve requires fairly
large, but not too large, damping magnitudes: if damp-
ing gets too small, the frequency range over which mul-
tiple equilibria exist becomes broader than the range of
the modulating, detuned frequency, and the response is
‘‘stuck’’ to a particular branch; if, on the other hand,
damping is too strong, the response curve has no mul-
tiple equilibria at all, again lacking the ability to shift
branches.

In practice, the conditions under which chaos appears
may become weaker because not only will equilibria
shift location under slow variation of the mean depth,
but so, and probably more importantly, will the corre-
sponding domains of attraction. This is perhaps the rea-
son for the apparently chaotic behavior found in Fig.
13 under a mild modulation of the forcing frequency.
This figure shows the result of a numerical integration
of (2) in phase space with a forcing of type (35). Both
results of direct integration (Fig. 13a), as well as a sam-
pling of these on the long, tidal timescale (Fig. 13b) are
shown. The direct integration shows that the dominant
resonant response on the short Helmholtz timescale vac-
cilates on the long timescale, between a small- and large-
scale response. These small- and large-scale responses
correspond to the amplified and choked regimes in the
amplitude response diagram of Fig. 5 to which these
solutions would tend in the absence of the tide (a 5 0).
Under modulation with a tide of amplitude a 5 3«2 this
provokes a modulation in apparent frequency s, of ap-
proximately 1.5 dimensionless units, which is not big
enough to span the entire frequency range over which
multiple equilibria exist. Both this figure, as well as the
tidally subsampled version in Fig. 13b (with period 2p/
«2), however, testify about the irregular nature of the
response, the latter figure in particular bearing some
resemblance to the earlier Poincaré plots. In order to
verify these qualitative ideas one may proceed with a
more quantitative analysis. For the sake of brievity, this
will however just be sketched here.

Again consider a basin in which the area increases
linearly with the depth so that, with (4) and (35), the
evolution of the excess volume y is described by

2d y
21 Ï1 1 2y 2 [1 1 Z(« t)]

2dt

dy
5 b cos(vt 1 u) 2 c (36)

dt
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FIG. 13. Numerical integration of (2) for a forcing (35) that consists of a low-frequency tide and a resonant
perturbation. (a) A trajectory in x–y phase space and (b) the corresponding Poincaré plot, subsampled on the tidal
period. Parameters read « 5 0.1, a 5 3«2, b 5 3«3, c 5 0.4«2, and v 5 1 1 1.5«2 (and u 5 0).

[see (2)]. The homogeneous problem (b 5 c 5 0) has a
‘‘quasi-stationary’’ equilibium at y(«2t) 5 Z(«2t) 1
Z(«2t)2, so it is natural to make the following shift in y:1

2

1
2 2y 5 Z 1 Z 1 (1 1 Z ) ỹ , (37)

2

which yields
2d ỹ 1

1 (Ï1 1 2ỹ 2 1)
2dt 1 1 Z

b dỹ
5 cos(vt 1 u) 2 c

2(1 1 Z ) dt

2« Z9 dỹ
42 c 1 4 1 2cỹ 1 O(« ), (38)1 21 1 Z dt

where dZ/dt 5 «2dZ/dT 5 «2Z9. As in section 3 we
rescale 5 «V, c 5 «2C, and b 5 «3B so that we canỹ
start the derivation of a modulation equation for V:

2d V 1
1 V

2dt 1 1 Z
2« « B

2 35 (V 2 «V ) 1 cos(vt 1 u)
22(1 1 Z ) (1 1 Z )

4Z9 dV
2 32 « C 1 1 O(« ) (39)1 21 1 Z dt

[see (7)]. Thus, as predicted by the above qualitative
arguments, the leading-order Helmholtz frequency 1/

varies slowly and periodically in time «2t2Ï1 1 Z(« t)
5 T. Since we intend to proceed along the lines of the
preceeding sections, we need to assume that the per-
turbation b cos(vt 1 u) is almost in resonance with the
Helmholtz frequency of the basin. Hence we write
(again) v 5 1 1 «2s and assume that Z 5 a cos«2t 5
«2A cos«2t, so that 1/ 5 1 2 «2A cos«2t 11Ï1 1 Z 2

O(«4). This last assumption is especially motivated by
the mathematical approach, but may be quite realistic
in the case of the tides in fjords too. Note that the scal-
ings of a 5 «2A and b 5 «3B are consistent with the
assumption b K a.

As motivated by the above arguments we now intro-
duce a new timescale t̃ 5 t/ 5 t(1 2 «2A cos«2t1Ï1 1 Z 2

1 O(«4)), so that (39) indeed reduces to (7) with t
replaced by t̃ and

def
2 2v 5 v(t̃ ) 5 1 1 « sa(« t̃ )

A
2 25 1 1 « s cos« t̃ (40)1 22s

at leading order on a timescale of O(1/«2). The deri-
vation of the modulation equations is now completely
similar to that of (9)–(10) in section 3 (as in section 4)
and results in (9)–(10) with s replaced by the period-
ically varying function sa(T). As in section 3 we set
u 5 0 and scale s to 1 so that the modulation equations
are now given by

 2R C
Ẋ 5 2 1 Y 2 X 1 a(T )Y1 2 [ ] 12 2

 (41)
2R F C

Ẏ 5 2 2 1 X 1 2 Y 2 a(T )X . 1 2 [ ]12 2 2

The presence of the periodically oscillating term can
indeed be interpreted as a drift along the response curve
of Fig. 5. This system can again be analyzed by the
Melnikov approach of section 4a if we assume that C,
a 5 O(d) with 0 , « K d K 1. Note that in this case
the drift along the response curve is also only of order
d. The earlier described emergence of chaos, qualita-
tively attributed to hysteretic changes, which can only
exist for d 5 O(1), is apparently overrestrictive, as a



886 VOLUME 32J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

simple ‘‘jitter’’ of the saddle point seems to be sufficient
for the emergence of crossing of stable and unstable
homoclinic orbits, and thus for the presence of a chaotic
invariant set. For small d the Melnikov analysis pro-
ceeds along the lines of section 4a. The only difference
is that the perturbation term h(X, T) in (31) has changed.
It is a straightforward procedure to write down the
equivalents of (B1) and redo the calculations of section
4b for the ‘‘new’’ inner and outer Melnikov functions,
by which equivalents of (33) can be obtained. Note that
(by construction) the structures of Mout,in(T0) will be the
same as in section 4a: C 3 (a constant term M1) 1 (a
T0 periodic term); M1 will even be exactly as in (33)
and its inner equivalent. We do not present the details
of the computations here. Our main observation is that
one can thus again show the existence of a Smale horse-
shoe: it is the same mechanism as that of the quasiper-
iodically forced case of sections 3 and 4, which creates
chaotic solutions to systems with two widely separated
frequencies.

Several aspects of the numerical integration in Fig.
13 are still unrealistic. First, the response is dominated
by the local resonance and thus the elevation shows a
nearly periodic change on the fast timescale, instead of
on the (long) tidal timescale. Second, the response is
much too big, covering (almost) the entire basin depth.
More work is therefore needed to bring the response
closer to the ordering observed in nature, as for example,
in Moldefjord (see Fig. 1), where Helmholtz response,
O(0.1 m) K tidal range, O(1 m) K total depth, O(80
m), while currents on the fast Helmholtz timescale are
comparable to tidal currents. It should be noticed that
the correct ordering can partly be obtained quite simply
by choosing model parameters such that all fixed points
of the modulation equations are close to the origin. With
this choice the homoclinic orbits, and therefore the ac-
tual state of the oscillator, are close to the origin of the
phase space. Hence, corresponding elevations will be
small compared to water depth. Notwithstanding the
remaining issues that need clarification, it is believed
that the mechanism described in this section may act as
a ‘‘building block’’ for the explanation of the appearance
of chaotic tides in basins with high Helmholtz frequen-
cy, particularly when the tide is extended with additional
tidal components and harmonics.

From a practical point of view, any observed persis-
tence of observed secondary oscillations might point at
a non-meteorological origin. When their (average) pe-
riod compares to estimates of the Helmholtz frequency,
the model advanced here may be appropriate. Additional
support may be obtained by plotting observed elevation
(volume) against a strait current. Particularly, a stro-
boscopic sampling thereof (at the Helmholtz and tidal
periods) may elucidate the structure of the underlying
attractor. By comparison to predictions from the present
model, an estimate of the most elusive factor, the damp-
ing, may perhaps be inferred.

6. Summary

Bays and estuaries may co-oscillate with the tides in
the adjacent seas (Defant 1961). The extent to which
they do generally depends on the geometry of the basin.
Two competing mechanisms exist that mainly determine
the final state of the coastal tides: the proximity of one
of the more prolific tidal frequencies to basin resonances
and the amount of friction. Depending on the balance
between forcing and damping the coastal tide may be
amplified or choked. This twofold nature of the response
may actually occur for one and the same set of geometric
and frictional parameters, as was shown in the case of
the Helmholtz resonator for an almost-enclosed, rela-
tively deep tidal basin with sloping bottom (see M). The
slope in the bottom provokes a nonlinear restoring term
(Green 1992) that, in turn, is responsible for the oc-
currence of multiple (stable) equilibria near the (linear)
resonance frequency. When forced at the entrance by a
singlefrequency tide (located within the resonance
band), depending on the initial state, the tide within the
basin may either have a small or large range that, after
the decay of transients, is stationary.

Here we have shown that the presence of a second
tidal frequency component, also within (or near to) the
resonance band, may, in contrast, lead to the occurrence
of a strange (chaotic) attractor, even with relatively
strong damping. The basin tide may thus exhibit a per-
petual change, manifested by unstable estimates of the
tidal ‘‘constants’’ (amplitude and phase), when based
on the analysis of a finite length time series, which may
be of relevance to the observation by Gutiérrez et al.
(1981) that some tidal components appear ‘‘unresolv-
able.’’ It may also be relevant to chaos in consecutive
tidal maxima, observed in Venice Lagoon (Vittori 1992)
or in coastal tides (Frison et al. 1999).

Surprisingly, there have been many observations of
‘‘irregular’’ secondary oscillations, accompanying the
tide, which date back long before the notion of chaos
appeared in the literature. Already in 1908, Honda et
al. devoted an extensive study to ascertain the presence
of both regular and irregular secondary oscillations in
vertical elevation records in some 50, mostly Japanese,
basins, usually based on observations covering just a
few days. The nature of the basin response is typically,
however, a superposition of the tide and a high-fre-
quency oscillation, rendering the previous model, which
predicts secondary oscillations on the tidal timescale,
less applicable. Periods of these oscillations are ob-
served to be in the range from several minutes up to
several hours, depending on the size of the basin. De-
pending on the basin shape, this high-frequency oscil-
lation can either be identified as the Helmholtz or quar-
ter-wave resonance. The amplitude of the secondary os-
cillations in vertical elevation is, as the name suggests,
observed to be an order of magnitude less than that of
the (primary) tide. This may probably explain why, until
fairly recently, the interest in secondary oscillations
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seems to have waned, and why the topic is held as a
curiosity. A recent observation by Golmen et al. (1994),
in a Norwegian fjord connected to the sea by a narrow
strait, has, however, put the possible relevance of sec-
ondary oscillations into a new perspective by noticing
that the associated secondary, irregular currents through
the connecting strait reach a magnitude comparable to
that of the tidal current. The reason for this is that,
whereas the tide is present both outside and (with some
delay) inside of the strait, the secondary elevation is
present basically only within the fjord. The elevation
differences, responsible for the associated currents, may
therefore, at any time be of similar magnitude when
comparing tidal and secondary oscillations. Hence, also
the corresponding currents may be expected to be equal-
ly important. The same process may perhaps explain
similar highly irregular current observations through la-
goon entrances by Kjerfve and Knoppers (1991) and by
Smith (1994), and the observed preferential enhance-
ment of current harmonics (relative to that in the ele-
vation field) by Seim and Sneed (1988). The relevance
of this observation is that secondary oscillations may
greatly alter the corresponding currents and therefore
seriously modify the transfer of matter and dissolved
substances (the ‘‘flushing’’ of the bay or fjord).

As remarked, these observations require a different
kind of model in which tidal and resonance frequency—
in our present model the Helmholtz frequency—are
widely disparate. By adding a perturbative, but resonant,
second forcing term to the primary tidal forcing it was
shown that modulation equations are obtained that, to
some extent, mimic those derived for the previous case
with two tidal frequencies. In both cases, the modulation
equations are driven at the long timescale. In the case
of two nearby and resonant tidal frequencies this forcing
stems from the beat (difference) frequency. In the case
when the tidal frequency is much less than that of the
resonant perturbative forcing term the tide itself is di-
rectly providing a modulation on the long timescale.
The presence of a chaotic invariant set that could be
ascertained analytically in these case, unfortunately does
not guarantee that this set is also attractive. Therefore
further support for the presence of a strange attractor
was offered by (stroboscopic) Poincaré plots stemming
from the numerical integration of the nonlinear Helm-
holtz resonator, when appropriately forced. The pres-
ence of a chaotic response may show up in a numerical
simulation (in a basin with sloping shoreline) in much
the same way as it reveals itself in nature: by irregularity
in the elevation and, particularly, current fields (either
within one tidal period, or in between subsequent tidal
periods), by broadening of spectral peaks (with poorly
resolved phases), and by showing a sensitive depen-
dence on the initial tidal phase (neighboring orbits
evolving to different states). The implication is that ir-
regularity in the current and elevation fields is predict-
able as a phenomenon, but not its exact development.

It requires further effort to quantify the resulting en-
hanced exchange between sea and basin.

Thus, despite the fact that, with the introduction of
satellite-altimetry-derived tidal observations, tidal pre-
dictions have reached new unprecedented accuracies, it
now seems that, at the same time, the tides may to some
extent and in certain locations be intrinsically unpre-
dictable, an unpredictability that reflects the nonlinear
nature of the response of such locations.
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APPENDIX A

Integrating Eq. (21)

In order for the right-hand of (21) to be real, the
argument of the square root, the quartic

2F 1
2 2P (S) [ (S 1 1) 2 (S 2 K ) , (A1)4 12 4

needs to be positive somewhere, which sets a bound on
K, whose particular value is of no relevance here. Then,
there can either be one or two intervals over which the
quartic is positive, corresponding to the cases that the
quartic has two or four real zeros, respectively; see the
upper and lower curves in Fig. 7a. For fixed forcing F,
these curves have differing values of K. In the former
case this value is relatively low; hence the correspond-
ing region in the X–Y parameter plane, in between g in

and gout, is labeled with a minus sign; see Fig. 7b. In
the latter case, it has a relatively high value of K, and
there are two corresponding curves in the X–Y plane,
one inside g in and one outside gout , which regions are
therefore labeled with a plus sign. These regions are
separated from each other by separatrices g in,out that em-
anate from the third fixed point: the saddle. These se-
paratrices, or homoclinic orbits, are characterized by the
fact that the two central zeros of the quartic coalesce,
in which case (21) can be solved algebraically. Equating
(A1) to the quartic 2(S 2 S1)2(S 2 S2)(S 2 S3)/4, and
requiring equivalence of each of the coefficients of the
fourth-degree polynomial, leads to four equations from
which S1,2,3 and K can be determined. Because in the
X–Y plane the central, double zero of the quartic cor-
responds with the saddle point (X1; 0), whose position
is already determined [see (16)–(17)], we find that one
of these equations is redundant. The remaining equa-
tions yield the two other zeros,

1/22F
S 5 2S 6 2 , (A2)2,3 1 1 26S1

and the energy level of the separatrix
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2F
2 2K 5 S 2 5 24S 2 3S , (A3)1 1 112S1

where

2S 5 X /12 2 11 1 (A4)

(Y1 5 0) and X1 5 4 sinn1, where n1 5 (a 1 2p)/3 and
a 5 2sin21(3F/8). Over the range of F values consid-
ered, 28/3 , F , 0, one finds 22/3 , S1 , 0.

Replacing the quartic in (21) with its expression in
terms of zeros requires the solution of

dS (S 2 S )1 1/25 6 [(S 2 S )(S 2 S)] , (A5)3 2dT 2

where we have assumed S3 , S , S2. Now S can still
be on either side of S1, which itself lies in between the
lower and upper limits S3 and S2, respectively. By taking
S either smaller or larger than S1 we obtain the inner or
outer separatrix, respectively.

For definiteness assume S1 # S # S2 so that we are
constructing the outer separatrix. Introducing

S9 5 S 2 S . 0,1 (A6)

and similarly 5 S2 2 S1 . 0 and 5 S3 2 S1 ,S9 S92 3

0, then

dS9 S9
1/25 6 [(S9 2 S9)(S9 2 S9)] . (A7)3 2dT 2

Introducing s 5 1/S9 . 0 yields

ds 1
1/25 7 [(1 2 S9s)(S9s 2 1)] . (A8)3 2dT 2

Multiplying by and defining s9 5 s . 1 and hS9 S92 2

5 2 / . 0 givesS9 S92 3

1/2ds9 (2S9S9)2 3 1/25 7 [(h 1 s9)(s9 2 1)] . (A9)
dT 2

Let s9 5 1 1 P2 and h 5 Q2 2 1 (with Q2 . 1), then

dP
2 2 1/25 7n(P 1 Q ) , (A10)

dT

with n [ (2 )1/2/4. Hence, P 5 6Q sinhnT, or,S9S92 3

following back the substitutions, we find that (21) is
solved by (22).

APPENDIX B

Computing the Melnikov Function

With g, h from (30) and (31), the Melnikov function
(32) is, for the outer homoclinic orbit, defined as

` ` `2 2C R FC F R0 02M (T ) 5 2 R 2 1 dT 1 X dT 1 Y 2 1 sinDV(T 1 T ) dTout 0 E 0 E 0 E 0 01 2 1 22 12 4 2 12
2` 2` 2`

` 2 2F FX R0 01 2 2 1 cosDV(T 1 T ) dT, (B1)E 01 2[ ]4 2 12
2`

with a suffix 0 referring to spatial coordinates along an unperturbed homoclinic orbit. Since (18)–(20) apply in
general, S0 5 /12 2 1, FX0/6 5 2 K, and FY0/12 5 dS0/dT. Thus, along these orbits, the Melnikov function2 2R S0 0

simplifies to
` ` 23C dS02M (T ) 5 2 (3S 1 4S 1 K ) dT 1 3 sin[DV(T 1 T )] dTout 0 E 0 0 E 02 dT

2` 2`

` 2d S01 6 cos[DV(T 1 T )] dT. (B2)E 02dT
2`

We will denote the three integrals in (B2) as M1(T0),
M2(T0), and M3(T0), respectively. Note that S0 ap-
proaches the saddle S1 for T → 6` along the separa-
trices, so that the integrands vanish in these limits (recall
that K 5 23 2 4S1). We now define2S1

`

nJ (DV) 5 cos(DVT )[S (T ) 2 S ] dT, (B3)n E 0 1

2`

so that we can rewrite the Mi(T0):

3
M (T ) 5 C[(4 1 6S )J (0) 1 3J (0)]1 0 1 1 22

M (T ) 5 23DV cos(DVT )[2S J (DV) 1 J (DV)]2 0 0 1 1 2

2M (T ) 5 26(DV) cos(DVT )J (DV). (B4)3 0 0 1

The expressions for M2,3(T0) were obtained by expand-
ing cosDV(T 1 T0) and sinDV(T 1 T0) and by partial
integration; all integrands involving sin(DVT0) ‘‘aver-
age out’’ due to the odd/even symmetries of S0(T) and
its derivative. The Jn integrals can be computed explic-
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itly by expressing them in an integral I(a, k) that can
be evaluated by a contour integral in the complex plane
(see appendix C):

` coskx p sinhkf
I(a, k) 5 dx 5 , (B5)E a 1 coshx sinf sinhkp0

where a 5 cosf. For J1(DV) this is a rather straight-
forward procedure, since, by section 3c

1
S (T ) 2 S 50 1 2 2cosh nT /S9 2 sinh nT /S92 3

Adef
5 , (B6)

a 1 cosh2nT

where A, a, and n can be expressed, in terms of andS92
, asS93

1/22S9S9 S9 1 S9 (2S9S9)2 3 3 2 2 3A 5 , a 5 , n 5 .
S9 2 S9 S9 2 S9 43 2 3 2

(B7)

It follows that 21 , a , 0, and therefore we introduce
c by

p
a 5 cosc with c ∈ , p (B8)1 22

and hence, from (43),

2 tanc
S 5 2 , n 5 2 ,1 2 23 1 tan c 3 1 tan c

2A 5 4nÏ1 2 a (B9)

so that

sinhck
2J (DV) 5 4Ï1 2 a I(a, k) 5 4p , (B10)1 sinhpk

where

DVdef
k 5 . (B11)

2n

Note that the limit DV → 0, or k → 0, is well defined.
Integral J2(DV) can be obtained by taking the a deriv-
ative of I(a, k):

]I(a, k)
2J (DV) 5 216n(1 2 a )2 ]a

sinhck k 1
5 16pn 2 . (B12)1 2sinhpk tanhck tanc

Once again, the limit k → 0 is well defined. Compiling
expressions, the Melnikov function for the outer hom-
oclinic orbit, Mout(T0) 5 M1 1 M2 1 M3, is given by
(33). The derivation of the equivalent of Mout(T0) for
the inner homoclinic orbit, Min(T0), is similar to the
above analysis. The main difference is that the roles of
indices 2 and 3 in the description of the homoclinic

orbit [(B6) and section 3c] are exchanged and thus that
S0 , S1. This amounts to a replacement in all formulas
of c → 2f, where f ∈ (0, p/2), which is significant,
because it now opens the possibility of a singularity in
the surface of critical damping; Fig. 8b.

APPENDIX C

Evaluation of an Integral

In order to evaluate Melnikov’s distance function, in-
tegral I(a, k), Eq. (B5), needs to be obtained for 0 ,
| a | , 1. Although this integral can be found in the
literature (Prudnikov et al. 1986, p. 470) we here give
a short sketch of its derivation by writing it as

` ikxe
I(a, k) 5 dxE x 2xe 1 2a 1 e

2`

` ikp
5 dp (C1)E 2p 1 2ap 1 10

for p 5 exp(x). Hence, by separating the denominator,

`1 1 1
ikI(a, k) 5 2 p dp,E 1 2p 2 p p 1 p p 1 p1 2 2 10

(C2)

where, with a [ cosf, p6 5 exp(6if). Recasting the
integration in terms of x, the integral reads

` ikx1 e
I(f, k) 5 dxE 2if2x12i sinf 1 1 e

2`

` ikxe
2 dx . (C3)E if2x 21 1 e

2`

For definiteness assume k . 0. Then, by extending the
integral over the real axis to a complex integration in
the upper half-plane over a region enclosed also by a
semicircle of infinite radius, this integral can be eval-
uated by means of Cauchy’s theorem. It determines it
as 2pi times the sum of the residues at the poles x6 5
6if 1 (2n 1 1)pi, for n 5 0, 1, 2, · · · . Here, minus
and plus signs refer to the poles appearing in the first
and second integral, respectively. This yields

p
kf 2kfI(f, k) 5 (e S 2 e S ), (C4)` `sinf

where SN 5 q2n11 with q [ exp(2pk), whence S`
NSn50

5 q/(1 2 q2) 5 1/(2 sinhpk), as 0 , q , 1. Therefore
the expression in (B5) follows. Note that this expression
holds also when k 5 0.
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