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flux density, d is the distance to the source, and Bn is the blackbody
Planck intensity. We can improve on this estimate by using a
model14,15 in which radial disk temperature and density are allowed
to vary as power laws. The exponent, 0.61, of the radial profile in
disk temperature is obtained from a least-squares fit to the infrared
spectral energy distribution; the radial density exponent15 is set at 7/
4. Free parameters are disk mass, MD, and b. From model fits to our
1.3- and 2.7-mm flux densities measured with the millimetre-wave
array and to single-dish sub-millimetre flux densities (V. M. et al.,
manuscript in preparation), we derive best-fit values for MD and b
of (0:05 6 0:01ÞM( and 1:0 6 0:2, respectively. We conclude that
the true disk mass is a few per cent of a solar mass rather than the
very low value derived from the CO line intensity. The opacity
index, b, is significantly less than the value of 2 normally adopted16

for dust grains in the interstellar medium (ISM). This could be due
to a population of grains in the MWC480 disk that are larger than
1 mm in size17, that is, several orders of magnitude greater than the
sizes of ISM grains. Although this raises the possibility of grain
accumulation, perhaps associated with the formation of larger
bodies such as planetesimals, we note that opacity indices are also
sensitive to chemical composition8 and to grain morphology19.

At 2.3M(, the MWC480 stellar mass is a factor of 3 greater than
the typical value for T Tauri stars20 (TTs). The TTs are young pre-
main-sequence stars with later spectral types than the Herbig Ae
stars (typically Me and Ke) and concomitantly lower masses,
,0.7M( on average20. Millimetre-wave aperture synthesis images
and kinematic models21,22 confirm that, as suggested by photometric
observations20, many TTs are accompanied by circumstellar disks
that could be protoplanetary in nature23,24. Our new observations of
MWC480 provide the strongest evidence to date for a rotating disk
around a higher-mass counterpart to the TTs.

The mass of the MWC480 disk, (0.02–0.05)M(, is close to the
peak of the mass distribution measured for disks of TTs20. By
contrast, disks around Vega-like stars are much less massive, by
factors1 of 10−5 to 10−6. And, whereas the MWC480 and TT disks are
dominated by gas, the Vega-like disks appear to be composed
predominantly of grains25. Indeed, the ages of Vega-like stars greatly
exceed the timescales, in the absence of gas, for the removal of small
inner-disk grains via radiation pressure and Poynting–Robertson
drag. This has prompted suggestions1,26 that the grains are replen-
ished by debris from continuing collisions and/or disruption of
planetesimals. Could the MWC480 system represent the early stages
of such a debris disk? With an age of 6 Myr, the massive rotating disk
is a dense reservoir of orbiting material that could be sufficiently
long-lived to support the growth of planetesimals. In fact the age of
the disk exceeds, by two to three orders of magnitude, current
estimates of the mean formation timescale5,27 for kilometre-sized
planetesimals. Moreover, the mass of the MWC480 disk is greater
than the minimum5 required to build a planetary system with an
aggregate mass comparable to that of our Solar System. The disk
encircling MWC480 could well be a progenitor of a debris disk such
as that surrounding Pic, and provides an opportunity to examine
the processes by which planetary systems are created. M
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When a container of water is vibrated, its response can be
described in terms of large-scale standing waves—the eigen-
modes of the system. The belief that enclosed continuous media
always possess eigenmodes is deeply rooted. Internal gravity
waves in uniformly stratified fluids, however, present a counter-
example. Such waves propagate at a fixed angle to the vertical that
is determined solely by the forcing frequency, and a sloping side
wall of the container will therefore act as a lens, resulting in ray
convergence or divergence. An important consequence of this
geometric focusing is the prediction1 that, following multiple
reflections, these waves will evolve onto specific paths—or attrac-
tors—whose locations are determined only by the frequency.
Here we report the results of laboratory experiments that confirm
that internal-wave attractors, rather than eigenmodes, determine
the response of a confined, stably stratified fluid over a broad
range of vibration frequencies. The existence of such attractors
could be important for mixing processes in ocean basins and
lakes, and may be useful for analysing oscillations of the Earth’s
liquid core and the stability of spinning, fluid-filled spacecraft.

The density gradient in a fluid is mainly determined by its
temperature and dissolved salts. When the density increases at a
constant rate in the direction of gravity the fluid, assumed to be
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incompressible, is stably stratified and is characterized by a constant
value of the stability frequency N. Regular perturbations of this
static equilibrium, of frequency q , N, lead to internal gravity
waves whose energy propagates obliquely2 along straight lines—the
rays, that make a fixed angle v ¼ arccosðq=NÞ with the vertical. In
our experiments, a uniformly stratified fluid is contained in a
narrow tank, confining the wave propagation to a vertical plane.
Tracing the rays that bounce back and forth between top and
bottom boundaries and side walls is like following a frictionless
ball on a billiard table, except that in this case the angle of reflection
no longer needs to equal the angle of incidence as the ‘ball’ can only
move in one of four directions, 6v (mod p), relative to the vertical.
In a rectangular domain, whose boundaries are horizontal and
vertical, there is no difference with the classical billiard table.
Provided the depth-to-width ratio is rational, any ray travels
along a closed path of finite length1 and two rays retain their
distance apart. In contrast, when one of the walls is sloping, two
incident rays get focused or defocused on reflection from it
(Fig. 1A). The case when these two processes offset each other,
and all orbits are again closed (a ‘global resonance’), is exceptional.
Also, chaotic rays, encountered in a variety of classical billiards3, are
never obtained. Instead, in most cases focusing dominates and
all ray paths become infinitely long, while approaching an
attractor1. An example is the (1,1)-attractor in Fig. 1A, the

square of heavy black lines, where an (m,n)-attractor is defined as
having m reflections at the surface and n reflections at the vertical
side-wall.

For a time-periodic disturbance, the spatial structure of the
internal waves is a solution of a linear, hyperbolic (wave) equation
in terms of the pressure and streamfunction fields2, which, in turn,
determine the velocity and density fields (Fig. 1B). This equation
has solutions that are constant along lines, so-called characteristics,
which coincide with the rays. Obtaining the ray paths—‘webs’ of
connected characteristics—is therefore the first, geometric step in
solving the hyperbolic equation. They span the fluid domain in a
complete, but non-uniform way, as each of the rays approaches the
attractor. Ray geometry shows that for any given frequency, the fluid
domain is endowed with a structure (ultimately characterized by the
shape of its attractor). The second step involved in solving this
equation is contained in a description of the ‘dynamics’ on these
webs, which visualizes (‘dresses’) this structure. Here, this amounts
to the prescription of a ‘partial pressure’ f on each web, a quantity
that is conserved along it. Pressure and streamfunction fields at an
arbitrary point are then simply given by the sum and differences of
the partial-pressure fields on the two characteristics that go through
that point, and have a geometrical pattern that reproduces itself at
smaller scales (Fig. 1B). The spatial structure is self-similar (fractal),
and so is the dependence of the solution on dimensionless depth t

Figure 1A, Sketch of basinwith sloping sidewall, varying in shape from triangular

(d ¼ 2 1) to rectangular (d ¼ þ1). Gravity acts vertically downwards. The general

shape (d Þ 0) is dash-dotted, whereas the case d ¼ 0, considered in the experi-

ments, is given by solid lines. Coordinates x and z are scaled with half-width L and

L/j tan vj respectively, so that true depth D is stretched to dimensionless depth

t ¼ tan v D=L ¼ ðN2=q2 2 1Þ1=2D=L
�

�

�

� (t ¼ 3=2 in this diagram). With this scaling,

waves always propagate with an apparent inclination of 458. Angle of reflection

r on a sloping wall (with respect to its normal) therefore differs from angle of

incidence i. When r . i, two parallel rays a and b, bouncing on a sloping wall,

remain parallel after reflection, but get focused to a9 and b9, eventually converging

on the attractor, the square of heavy black lines. Defocusing is obtained, when

i . r, as for rays a9 and b9 (reversing their direction), even though these rays

eventually also approach the attractor, as ray c (dotted line), initially in a direction

opposite to b, shows. Surface intersections x0, x1, … show convergence (to

x ¼ 2 0:25). B, The spatial part of the streamfunction w(x, z) exp(iq t), as governed

by the hyperbolic equation wxx 2 wzz ¼ 0, subject to the vanishing of w at the

boundary (the impermeability condition). Here subscripts denote partial deriva-

tives. A solution, vanishing at z ¼ 0, is wðx; zÞ ¼ fðx 2 zÞ 2 fðx þ zÞ. The solution

must also vanishat the other boundaries,which is satisfied when partial pressure

f is invariant on each web of characteristics (lines x 6 z ¼ constant)1,21. Then we

can find w(x, z) provided the value of f(x) is prescribed on some appropriate

intervals, as for the black line in the toppanelwithin x intervals [−1, −0.5] and [0.5,1].

Starting, for instance, on the upper boundary at x0 in the interval [−1, −0.5],

following connected characteristics, we return to x1, in the neighbouring interval

[−0.5, −0.3], and infer fðx1Þ ¼ fðx0Þ. By iterating this process for all points within

these intervals we obtain f at each characteristic and hence the streamfunction.
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(related to the wave period) and on the geometric parameter d
(Fig. 2; these quantities are defined in Fig. 1).

The equation determining the spatial structure of the usual
standing waves (for example, surface, or interfacial waves) is elliptic
rather than hyperbolic and reduces to a standard eigenvalue
problem. Solutions—eigenmodes, or seiches4—are then obtained
only for a set of resonance frequencies, and they are smooth. These
modes also dominate the response for arbitrary forcing frequencies.
Here by contrast, we get solutions at any frequency below N and
solutions are not smooth along the attractor (they are singular). For
this reason the problem is often classified as ‘ill-posed’5. These
solutions are still quite relevant physically, as shown by the labora-
tory experiments below.

A rectangular plexiglass container was filled with an exponen-
tially stratified salt solution, such that the stability frequency was
constant at N ¼ 1:89 s2 1. The container (shown in Fig. 3a) had a
sloping side wall, extending from bottom centre to top right-hand
corner yielding d ¼ 0. Overall dimensions were: width (W) 96 mm;
depth (D) 261 mm; and length (2L) 261 mm. Internal waves are
visualized by the displacement of dye bands. These bands are
produced by periodic dye injection into the brine entering the
bottom of the tank, marking fluid parcels of given density. The
deformation of the dye strips is visualized by the fluorescence
excited by a vertical laser sheet.

The tank oscillates vertically with frequency 2q (and amplitude
Z), so as to produce a modulation of gravity (with amplitude 4Zq2).
Any wave with frequency q is then parametrically amplified, as for a
pendulum. The waves are everywhere excited with the same phase,
set by the forcing. The temporal evolution is therefore separable
from the spatial structure, described by the hyperbolic equation.
However, the amplitude is now growing exponentially in time,
according to the canonical Mathieu equation, describing parametric
excitation6.

Because of viscous effects, small-scale attractors are likely to be
more suppressed, so our attempts were directed towards observing
large-scale attractors. For the geometry described above, one
expects to find a (1,1)-attractor in the interval of periods
1 < t < 2, or, for the adopted aspect ratio D=L ¼ 2, in the frequency
interval 1=

���

2
p

, q=N , 2=
���

5
p

.
We therefore explore this frequency range (keeping a constant

excitation amplitude Z ¼ 10 cm). Approximately five minutes after
the oscillation is started, a two-dimensional oscillatory motion of
the dye lines with frequency q becomes visible. This oscillation is
localized, takes on a box-shaped form, and appears most pro-
nounced around the predicted location of the (1,1)-attractor (Fig.
3a). In this initial growth phase, the oscillation has a standing
nature: all points move up and down at the same time, while
gradually growing in amplitude. Traces of strong shearing motion

Figure 2 Convergence rate of neighbouring wave rays in parameter plane

spanned by non-dimensional depth t (related to internal wave period) and

geometric parameterd (see definitions in Fig.1A). As wave rays eventually almost

always converge, the Lyapunov exponent l, measuring this convergence, is

generally negative and log10(−l) is therefore displayed. Light (dark) regions are

strongly (weakly) convergent. Regions and lines are labelled with integer pairs (m,

n), which describe the number of reflections at the surface (m) and vertical side

wall (n) of the attractor, or global resonance. For an (m, n)-attractor only one ray

(the attractor) is truly periodic, for a global resonance every ray is. Continuous,

light-coloured regions, identifying large-scale attractors (low m and n), are

separated by darker regions where fine-scale attractors reign. Within these

ranges still finer-scale attractors reside, ultimately approaching the black lines for

which there is no convergence at all (zero Lyapunov exponent): the set of global

resonances. Wave rays may also be attracted to the right-hand upper corner of

the basin in Fig.1A, but this occurs only when the bottom slope is less steep than

the rays (a subcritical slope)22, below the dashed line t ¼ 1 2 d. Above the critical

curve, (m, n)-attractors can be identified. Remarkably, only attractors with an odd

number of ‘vertical’ cells n, appear. The ‘missing’, even-numbered cells, corre-

spond to the (m, n)-global resonances. The first of these, the (1, 2)-global

resonance, is clearly identified by the black line t ¼ 3 þ d. Note that (m, n)-

attractors, as well as (m, n)-global resonances, approach the classical (m, n)-

cellular solutions of the form w ¼ sin½mpðx þ 1Þ=2ÿsin½npz=tÿ of the rectangle,

which are found at t ¼ 2n=m, as d → 1. Filled and open circles at d ¼ 0 indicate

laboratory experiments in which ‘focusing modes’ were, or were not observed.
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can be detected by the occurrence of sharp gradients in dye
concentrations, especially near the part of the attractor closest to
the sloping side wall (where the focusing takes place). Dye mixing is
later observed in this zone.

This structure contrasts strongly with the resonance modes
previously observed with the same apparatus7 in a rectangular
geometry (Fig. 3b). Moreover, the wave attractor changes smoothly
with frequency, whereas the resonance mode was obtained only in a
narrow frequency range (depending on the forcing amplitude, as an
instability ‘tongue’). Instead, the attractor is observed in the whole
predicted frequency interval, as indicated by filled circles in Fig. 2.
Outside this interval (open circles), we observe no wave excitation,
or complex (unidentified) three-dimensional modes.

Visualization of the attractor can be improved by subtracting the
initial state (where dye lines are flat), as in Fig. 4a for the standing

phase. After about two minutes, the standing wave gives way to the
permanent regime, in which the amplitude of the internal wave
saturates. The wave then takes on a propagating character (Fig. 4b),
while it displays some chaotic particle motion. Phase propagation is
perpendicular to the attractor, as clearly observed by tracking a wave
nodal line (having zero elevation); this is consistent with an energy
flux directed parallel to the attractor, in the clockwise (focusing)
direction.

The concurrently observed irregular behaviour near the slope
could be related to chaotic particle transport8 by the propagating
wave. The standing-wave regime by contrast is very regular. Particle
motion is then periodic, the streamfunction acting like the hamil-
tonian of a system with one degree of freedom.

A stratified fluid in a non-trivially shaped container possesses
inviscid modes of oscillation which are singular along a wave

Figure 3 a, Side view of laboratory tank, showing a maximum displacement of

(initially horizontal) dye lines during the growth phase (standing wave), 9 minutes

after the oscillation of the table was started. As expected, the displacement is

strongest along the attractor, represented by the solid line (tank oscillation

amplitude Z ¼ 10 cm, t ¼ 1:71). Note that the bottom of the tank is located slightly

below the lower edge of the figure. The occurrence of wave growth depends on

the frequency and amplitude of excitation and is apparently inhibited by viscous

effects when the attractor shape becomes either too complicated, or too narrow,

as when the box-shaped attractor degenerates into a line. Thus for this tank

(d ¼ 0), in the frequency interval for which the (1, 1)-attractor is obtained, the

instability threshold is close to Z < 15 cm near the bounds of the interval, but is

lower, Z < 8 cm at its middle. b, As a, but with a square domain (from ref. 7), for

which an eigenmode structure is obtained, in sharp contrast with the attractor

observed in the present study.

Figure 4 a, Side view of tank showing the difference between (maximally)

displaced dye lines and their horizontal initial state (using computer processing)

in the standing phase, 9 minutes after oscillation of the tank was started

(Z ¼ 10 cm, t ¼ 1:74). b, As a, but in the permanent regime (10 minutes after the

start of oscillation) showing a propagating wave. Energy propagation of internal

gravity waves is perpendicular to phase propagation (such that their vertical

components are opposite). Thus, in Fig.1A, when phase propagates from b to a,

energy propagates along these phase-lines, in the direction of the arrows. In the

permanent regime, phase propagation perpendicular to the attractor is observed

on each of the four sides of the box-shaped attractor in a manner consistent with

clockwise energy propagation around it. This is seen by tracking (black) nodal

lines on successive views (indicated by arrows on one side of the box). Integer

labels n (where n ¼ 1, 2 and 3) refer to relative time T 3 n=12, where T ¼ 4:37s is

the wave period. Propagating waves are theoretically obtained for complex f. For

each solution, there is also a complex conjugate solution, representing a wave

propagating in the opposite direction. Each wave has an infinite path, and can be

likened to waves on an infinite string. But both waves approach the same

attractor, as illustrated by rays b and c in Fig. 1A. In the growth phase these

oppositely propagating waves combine to form a standing wave, whose uniform

phase allows effective growth by parametric instability. Once these waves reach

the vicinity of the attractor they transfer energy to smaller scales where it is

selectively withdrawn by nonlinear and viscous processes. This provides the

additional damping required for saturationof the parametric instability and breaks

the symmetric propagation of energy through the ‘string’, thus giving the final

wave pattern its propagating character.
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attractor. Our experiments confirm the physical relevance of this
attractor, in spite of viscous and nonlinear effects. A standing wave
is initially excited by the parametric instability, turning into a
propagating wave in the permanent regime. A usual boundary
forcing should only produce the latter regime, with permanent
excitation at large scale, and energy transfers towards small scales
along the attractor9. The system also has a broad-band response in
frequency, set by the interval of existence of the attractor. This
behaviour contrasts dramatically with the narrow peaks of usual
resonances, whose width is set by dissipative effects.

Similar internal wave attractors could be predicted, by ray
tracing, in ocean basins or lakes. Waves must be amplified by
focusing at their contact with the sloping bottom. This should
determine zones of intense mixing, favouring life, by providing a
pathway for the transport of nutrients and rare metals from the
bottom to the photic zone10,11. This focusing process has often been
invoked12–14, but without considering its localization on a global
attractor. Such localization depends of course on the wave fre-
quency. In the ocean, important contributions at the tidal frequency
should be expected, but, unlike our experiments, wind-related
frequencies are simultaneously excited, and the widest frequency
‘windows’, corresponding to an attractor related to the particular
geometry, may show up. The dressing of the attractor by the wave
solution is clearly understood in our two-dimensional case, but a
(non-trivial) three-dimensional generalization must be sought for
natural basins.

Our results could also be relevant to an experiment15 that showed
inertial oscillations in a fluid contained in a truncated cone rotating
around its axis (where axisymmetric modes are excited by a
sinusoidal modulation of the rotation rate). The spectral response
was in this case interpreted in terms of resonance peaks of standing
waves (presumably broadened by viscous effects). We note, how-
ever, that the spectral ‘peaks’ and ‘valleys’ coincide remarkably well
with the regions of strong and weak convergence rates (obtained as
an appropriate cross-section in Fig. 2 for d ¼ 2 0:478): so we are
led to conclude that the broadness of these response ‘peaks’ may well
reflect a genuine, finite bandwidth of the response rather than a
viscously spread-out resonance spike.

The problem of confined inviscid inertial oscillations, as occur in
a spherical shell, is also ill-posed16 (unlike in a sphere). Smooth
eigenmodes can be computed by introducing a small viscosity17, but
better physical insight is expected in terms of wave attractors. The
simplest attractors would again show up as wide resonance bands,
whose width is independent of dissipative effects. This may be
relevant to analysing inertial oscillations of the Earth core18,19 and to
the stability of liquid-filled, rotating spacecraft20. M
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Mixtures are azeotropic if they can be distilled (or condensed)
without a change of composition1. The existence of azeotropes in
multicomponent mixtures in the absence of chemical reactions is
well understood phenomenologically2,3 and theoretically4,5. Azeo-
tropes place a fundamental limit on the compositions attainable
in mixtures by fractional distillation, but they can in some cases
be ‘broken’ by carrying out chemical reaction and separation
simultaneously rather than sequentially6–9. Here we report the
discovery of a boiling state of constant composition and tempera-
ture in a mixture of acetic acid, isopropanol, isopropyl acetate and
water that is simultaneously in both reaction and phase equilibrium.
These states, which we call reactive azeotropes, were predicted
recently10,11. Without reaction, the mixture exhibits three two-
component azeotropes, one three-component azeotrope but no
four-component azeotrope; the last appears only under equilibrium
reaction conditions. These findings may constrain technologies in
which reaction and separation are conducted simultaneously, for
example by limiting the conditions under which an azeotrope can
be broken by chemical reactions to yield a high-purity product.
In other cases the presence of a reactive azeotrope may be
advantageous9.

Without chemical reaction, a mixture of acetic acid, isopropanol,
isopropyl acetate and water has three binary azeotropes and a
ternary azeotrope as listed in Table 1. There is no four-component
azeotrope in this mixture. An acid-catalysed esterification reaction
occurs in this mixture:

CH3COOH þ iso-C3H7OH ↔ CH3COOC3H7 þ H2O ð1Þ

This reaction occurs slowly; the rate can be increased substantially
by the addition of a strong acid catalyst. The non-reactive binary
azeotropes between water and isopropanol and between isopropyl
acetate and isopropanol will also exist in the reacting mixture.
However, a binary mixture of isopropyl acetate and water, as well as
any mixture containing three of the components, will react and the
corresponding azeotropes are absent.

A recent and general theory for mixtures in simultaneous
vapour–liquid and chemical reaction equilibrium revealed the
possibility of a state with a constant boiling temperature and
constant, though not equal, vapour and liquid compositions10,11.
In a reacting, boiling liquid each component has a rate of vaporiza-
tion and a rate of creation or loss due to reaction. When the net rate
for each component is zero, an azeotrope occurs. However, the
existence of a reactive azeotrope has not been confirmed
experimentally.

The theory10,11 provides a general transformation of variables


