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Wave attractors in a smooth convex enclosed geometry
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Abstract

The equations governing monochromatic internal or inertial waves in an enclosed two-dimensional basin lead in two di-
mensions to a hyperbolic equation in spatial dimensions. The wave rays have a fixed slope with respect to gravity or the
rotation axis, depending on the frequency of the wave as compared to the strength of the stratification and the rotation rate of
the fluid. This angle is conserved on the wave’s reflection at the boundary. The slope of the rays is denoted byκ. Depending
on κ and the geometry, either all wave rays are periodic (standing wave), no characteristic is periodic, or there is a limited
number of periodic orbits to which wave rays are ‘attracted’. In this study, the boundary is formed by the convex part of
a third degree curve. Depending on a parameterε, this curve varies between a circle (ε = 0) and a triangle (ε = 2), for
ε < 2 it is completely smooth. The axis of symmetry (z-axis) is parallel to the direction of gravity/rotation axis, which
are taken antiparallel. For the triangle and the circle the behaviour is well known: the corners of the triangle can attract
wave rays, for the circle either all wave rays are periodic, or no wave ray is periodic, so that attractors do not exist. In the
(κ, ε)-parameter space, investigation of the strength of convergence of characteristics yields Arnol’d tongues, stemming from
ε = 0, broadening for increasingε and finally all converging toκ = √

3 for ε = 2. Tongues with attractors are bounded
by values ofκ for which wave rays either connect the top and bottom of the boundary or connect its critical points, where
the wave ray is directly reflected back onto itself. As compared to nonsmooth geometries, corners are a degenerate form of
critical points. Only forκ = √

3 all wave rays return back onto themselves for all values ofε due to an additional symmetry,
resulting in standing wave behaviour. If the symmetry of the curve with respect to thez-axis is removed by rotating it, the
ordering of the periods of successive attractors changes and there is no standing wave mode. A general criterion, based on
first order perturbation theory, is derived that states whether attractors exist for geometries that are small perturbations of
the circle. For the geometry under consideration, first order perturbation theory is inconclusive and second order pertur-
bation theory is used to verify the existence of the strongest attractor and to describe the Arnol’d tongue for small values
of ε.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Stably stratified fluids can carry waves that travel obliquely through the fluid. For density-stratified fluids they
are called internal waves, owing their existence to a balance between the pressure gradient force and buoyancy.
For a uniformly rotating fluid they are called inertial or gyroscopic waves and the radial stratification in angu-
lar momentum provides elasticity to the fluid. For a rotating fluid that is also density-stratified these effects are
combined into inertio-gravity waves. The rotation axis is taken antiparallel to the direction of gravity for conve-
nience in this study, parallel to thez-axis. The slope of the wave rays depends solely on the wave frequency, the
strength of the density stratification and the rotation rate and cannot be altered due to reflection. We will restrict
ourselves to uniformly stratified, uniformly rotating fluids so that the wave energy travels along straight lines (wave
rays).

If the basin, in which the fluid is contained, is uniform in one of the horizontal coordinates, it is justified to consider
two-dimensional plane waves. The behaviour of monochromatic waves is then governed by a hyperbolic equation
in spatial coordinates in the vertical plane[1,2]. For an enclosed basin, this is an ill-posed problem: solutions change
dramatically when parameters are changed slightly. For some special basin geometries, like the circle or a rectangle,
one is able to obtain ‘classical’ regular solutions in terms of eigenmodes (standing waves, seiches) where every wave
ray reflects back onto itself. Examples can be found in[3] (circle, ellipse and rectangle),[4] (arbitrarily oriented
ellipse) and[5] (rectangle and the half ellipse). When the shape of the geometry or the slope of the wave rays is
changed infinitesimally the standing wave is destroyed.

In general, separation of variables is not possible and one must use the method of characteristics to solve the
hyperbolic equation. The characteristics can also be interpreted as wave rays[5]. Because of the monochromatic
Ansatz, time has been eliminated and the characteristics represent the spatial structure of the rays. It should be noted
that a three-dimensional approach leads to a three-dimensional hyperbolic equation, called Poincaré equation[6],
for which no such general method of solution is known to us for an enclosed basin.

When characteristics reflect at a sloping wall, they are focused or defocused. Reflection is not specular, parallel
characteristics remain parallel. For internal waves propagating up a gentle slope, reflecting up-slope (subcritical
reflection, horizontal component conserved upon reflection) at the slope and the surface, a decrease of wavelength
and an increase of amplitude were predicted and observed in the laboratory[7,8]. For a triangle, characteristics
approach one of the vertices. This is experimentally shown for inertial waves in a rotating cone[9,10], and described
mathematically in[4]. In a different closed geometry, repeated reflection with focusing may lead to the approach
to a limit cycle, thewave attractor. Examples are a basin of which the bottom is described by a parabola and a
trapezoidal (bucket-shaped) basin[5], and the spherical shell[11].

For inertial waves the peculiarity of trapping of a wave (the existence of a closed orbit) for the spherical shell
is known from the 1960s[12,13]. Closed ray paths were found for the equatorial region of a (thin) spherical shell.
Somewhat later these trapped waves appeared to be limit cycles to which neighbouring wave rays converged[14,15],
and it was noted that these limit cycles exist over continuous frequency intervals[16]. These limit cycles were later
called wave attractors[5]. Solution of the hyperbolic equation on a closed domain can also be treated as a mapping
of the circumference onto itself[17]. The mathematical notion of the existence of a limited number of periodic
characteristics (attractors) for mappings of the circumference onto itself is older.

At first, a wave attractor was considered too pathological to be relevant for fluid dynamics[14]. Indeed, the
mathematical attractor, with its infinitely large concentration of energy around it, cannot appear due to viscous
and nonlinear effects. But the attractor may be a good first order approximation for patterns to occur in a fluid. In
laboratory experiments, theoretically predicted attractors have been observed both for internal waves[18], and for
inertial waves[19,20] in a basin with one sloping boundary. In numerical studies where viscosity was included,
strong shear layers were found along patterns that were in agreement with the patterns of attractors predicted by
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the inviscid limit, as long as the mathematical attractor did not reflect more than about 10 times at the boundary
([11,21] for the spherical shell).

The question arises what is essential for a geometry to bear the possibility of wave attractors. The spheri-
cal shell is a geometry with a ‘hole’ in the middle, it is not convex which introduces special behaviour due to
the critical latitude singularity when the characteristic becomes tangent to the inner sphere[16,11]. In [5] the
parabolic basin and a bucket were investigated. The parabolic basin showed the presence of attractors. The bucket
was a hybrid geometry which showed both attractors and standing patterns, depending on the parameter val-
ues. Both geometries have corners, which can also play a special role since they act as critical points for all
characteristics.

Here we study a geometry without such obvious special points. The smooth convex part of a third degree curve
is adopted as a boundary. Depending on a parameter value, the convex part varies between a circle and a triangle.
For the circle either all characteristics are periodic or no characteristic is periodic, for the triangle characteristics
are always attracted to one of the corners. The behaviour of the characteristics is investigated in terms of a map of
the boundary onto itself.

In the next section, the theory is explained and the map describing the successive reflections of a wave ray will
be given. Also some definitions common in theory about one-dimensional maps are introduced. Then results will
be shown from numerical iteration, followed by a discussion regarding the role of some special characteristics
that close onto themselves. This leads to insight in the conditions under which attractors appear. Also, a criterion
is derived that indicates whether attractors are present for first order perturbations to the circle. However, for the
geometry under consideration second order theory is needed to describe the behaviour, as will be shown. Finally
the results will be discussed and compared with results from literature.

2. Theory

We consider waves in an inviscid, linear, continuously stratified, steadily rotating Boussinesq fluid. The gov-
erning equations are the conservation of momentum, conservation of density and the continuity equation (see for
example[22]). The time dependence is eliminated by assuming the waves to be monochromatic (frequencyω),
resulting in a factor exp(−iωt). The direction of gravity is the negativez-direction, the rotation axis is aligned
along thez-axis. It is assumed that the basin is infinitely long in one horizontal direction, reducing the problem
to a two-dimensional one. This enables the introduction of the stream function�(x, z) such that a single equation
remains:

∂2�

∂x2
− κ2∂

2�

∂z2
= 0, (1)

with

κ2 = ω2 − f 2

N2 − ω2
. (2)

This is a wave equation (hyperbolic equation) in two spatial dimensions for real values ofκ. N represents the
buoyancy frequency,f the Coriolis parameter and equals 2Ω, withΩ the rotation frequency. The physical condition
of no flow through the boundary requires that

� = 0 at the boundary. (3)

We will construct solutions using characteristics, since the possibility of separation of variables is restricted to some
specific boundary geometries. These characteristics describe the spatial pattern of wave rays (see[5] for discussion)
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since time has been eliminated from the problem. The solution of(1) can be written in terms of the characteristic
coordinatesκx− z = c1 andκx+ z = c2:

�(x, y) = g(κx− z)− h(κx+ z). (4)

The slope of the characteristics is defined byκ, and as already mentioned solely depends on the wave frequency,
the rotation rate and the buoyancy frequency. Therefore, these waves are sometimes calledmonoclinical waves
[23]. In fluid dynamics, one often does not work with the slope of the characteristics but with the angleθ of the
characteristics (wave rays) with respect to the direction of gravity or the rotation axis, which are always uniquely
defined. Hereθ = π/2 − arctanκ.

The functionsg andh are functions of the two characteristic coordinates only. If they are prescribed on the
boundary, the solution is determined. The values ofg andh on the boundary are conserved along characteristics,
and the values at the boundary determine the solution in the interior. But since the geometry is closed, characteristics
are ‘reflected’ (like wave rays) and the functionsg andh on the boundary must obey some periodicity condition
to avoid incompatibility. However, on a fundamental interval (an interval between a point on the boundary from
which a certain characteristic leaves and its nearest reflection point) the function can be prescribed arbitrarily. From
a physical viewpoint, prescription ofg andh replaces the prescription of a forcing mechanism. In order to satisfy
� = 0 on the boundary, the functional values ofg andh are identical when restricted to incoming and outgoing
characteristic at the same point, that is when characteristics belong to one web built by a certain characteristic and
all of its reflections.

Propagating internal or inertial waves conserve their slopeκ upon reflection. This is correctly represented by
these characteristics. When two parallel characteristics reflect from a boundary that is parallel or perpendicular
to the direction of gravity or the rotation axis, their distance is conserved. But when they reflect from a sloping
boundary, their distance may decrease (focus) or increase (defocus). In an enclosed basin, when focusing is not
balanced by defocusing, rays may ultimately end up in a limit cycle, the so-called attractor. The patterns arising
from the reflections of the characteristics form the framework of the structure of the stream function.

We want to obtain solutions forEq. (1)on the domain of which the boundaryΓ is parameterized by the convex
part of the third degree curve:

c = 1

ε
(x2 + z2)− z

(
x2 − 1

3
z2
)
. (5)

The parameterc is set toc = (1/ε) − (1/3), to achieve that this curve is symmetric with respect to rotation over
(2/3)π around the origin. It has fixed points(0,−1), (−(1/2)√3,1/2), ((1/2)

√
3,1/2) regardless of the value of

ε. The convex part varies between a triangle (ε = 2) and a circle (ε → 0), depending on the value of the parameter
ε. Forε > 2 there is no convex part, the curve then consists of isolated parts. The symmetry axes of the curve are
thez-axis and the linesz = ±(√3/3)x. Shapes of the curve for different values ofε are illustrated inFig. 1.

The spatial structure of the wave field is determined by the pattern (web) formed by the spatial structure of the
wave rays and their reflections. We will study the structure by describing the pattern formed by individual wave
rays (characteristics).

A straight line has three intersection points with the third degree curve, one of these points lies outside the convex
part. All three points are described by cubic roots. Expressions simplify if one of the intersection points is known,
which is the case since one can choose a point onΓ as starting point for a characteristic. If the characteristic
z = κx + b (belonging to the set of characteristics with positive slope) leaves from the point(xn, zn) onΓ , with
b = zn − κxn, then the next reflection point(xn+1, zn+1) is given by

zn+1 = 1

2zn

(
−z2

n − C1zn ±
√
(z2
n + C1zn)2 + 4C2zn

)
, (6)
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Fig. 1. Shape of the curve for different values ofε.

where

C1 = −(1/ε)κ2 − 2(zn − κxn)− 1/ε

1 − (1/3)κ2
, C2 = κ2(1/ε− 1/3)− (1/ε)(zn − κxn)

2

1 − (1/3)κ2
. (7)

Now xn+1 follows from insertingzn+1 in the equation describing the characteristic,xn+1 = (zn+1 − b)/κ. The sign
for the determination ofzn+1 must be chosen as follows:

(8)

For zn = 0 the square root term vanishes, so there is no sign involved. The next iteration step is performed by
following the same procedure, but now for the characteristic belonging to the set with slope−κ.

Following the successive reflections of a characteristics is equivalent to following the iterations of a map. Much
is known about orientation preserving maps of the circumference to itself (see for example[24,25]). Therefore, an
orientation preserving map is introduced, defined as the composition of two reflections, one for slope+κ and one
for slope−κ. Depending on whether one starts with characteristic with slope−κ or with slope+κ the map is said
to be iterated forwards or backwards. This composite map will be calledT andT n is thenth iterate of the map. It
mapsΓ onto itself. The position of a point onΓ can be parameterized by a single periodic parameterφ, where
z = r(φ) cos(2πφ), x = r(φ) sin(2πφ). The unusual convention of the coordinates is chosen in order to represent
the symmetry in thez-axis. Here, for any integerk, the real numbersφ andφ + k represent the same point onΓ ,
we can makeφ unique by restricting it to [0,1), but then have to jump discontinuously from 1 to 0 if we leave the
interval at the right-hand boundary. The transformationT corresponds to acontinuous transformationT̃ , R → R,
which is unique up to addition of a constant integerk. If φ0 ∈ [0,1), then we can writẽT n(φ0) = φn + m, where
φn ∈ [0,1) andm is an integer, both uniquely determined. Theφn are the representations in [0,1) of the iterates of
T onΓ , andm can be interpreted as a winding number.

Different methods are used to study the behaviour of the 2-parameter map. Firstly, one can iterate the map for a
certain parameter value combination (ε, κ) and directly plot a characteristic with its successive reflections. It gives
a very intuitive insight in where focusing and defocusing take place onΓ .

Secondly, one can iterate the map for a range of values of one parameter, fixing the other parameter value. A
Poincaré plot can be made by taking the last few hundred values ofφ out of a larger number of iterations and repeat
this for every parameter value. This plot gives insight in the change of behaviour of the map with the change of the
parameter value regarding the presence and location of an attractor.
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Thirdly, the rotation number can be computed. It measures the asymptotic average advance ofφ per iteration of
T . See for example[26] for details. The rotation number is defined as

ρ = lim
n→∞

T̃ n(φ0)

n
. (9)

If T̃ is replaced byT̃ + k, wherek is a constant integer, thenρ is replaced byρ + k. This means that for the
transformationT : Γ → Γ the rotation number is well-defined modulo integers. If the rotation number is rational,
so that it can be expressed asρ = p/q, p, q coprime, then there is a periodic orbit. The period of the orbit isq

andp < q. If the rotation number is irrational, then the map is called quasiperiodic, the characteristics never close
and finally fill a dense subset of the whole domain. The rotation number varies continuously and monotonously
with the parameter value, and remains a constant, rational number in a window in parameter space for which there
is a nondegenerate periodic point. A rational rotation number itself does not say anything about the character of a
periodic orbit, it may be attracting or repelling (actually they usually occur in pairs, one attracting and one repelling)
but it may also be neutral (every single ray is periodic, standing wave behaviour).

The Lyapunov exponentλ indicates whether a periodic orbit is an attractor, neutral or a repellor. The factor eλ is
the average factor with which a small interval [φ0, φ0 + ε] is stretched (λ > 0) or shrunk (λ < 0) after one iteration
of the map. It is defined by (e.g.[27]):

λ(φ0)= lim
N→∞

lim
ε→0

1

N
log

∣∣∣∣TN(φ0 + ε)− TN(φ0)

ε

∣∣∣∣ = lim
N→∞

1

N
log

∣∣∣∣dTN(φ0)

dφ0

∣∣∣∣
= lim
N→∞

1

N

N−1∑
n=1

log

∣∣∣∣dT(φn)dφn

∣∣∣∣ . (10)

In this study, we will use an alternative formulation. We cannot work with the interval [φ, φ + ε] or the distance
along the curve, since it depends on where the curve is intersected and therefore is not a measure of the convergence
of the map. Therefore the perpendicular distanceD between the characteristics passing throughφ andφ+ ε is used.
The ratio of the distance between rays before (DTn )and after an iteration (DTn+1) seems an appropriate measure
from a physical viewpoint of focusing of a wave ray. We refer to the appendix for details for the derivation ofλ in
this specific case and just give the resulting formula:

λ(z0) = lim
N→∞

1

N

N−1∑
n=1

log
DTn

DTn−1
. (11)

It should be noted that theratio of distances has a meaning, individual distances cannot be eliminated.
For some basin shapes, it is possible to find a simple analytical expression for the Lyapunov exponent. An example

is the bucket-shaped basin[5], a geometry with two sloping walls with constant slope. Since the slopes are constant
and the map linear,λ can be determined with a ‘bookkeeping’ of the number of times that the ray reaches a divergent,
convergent or neutral part of the map, corresponding to the sloping walls of the bucket or the horizontal walls. For
the spherical shell, a very simple expression could be obtained forλ, in terms of the latitudes of the reflections[11].

In our case, it was not possible to derive a simple explicit analytical expression for the Lyapunov exponent,
since the slope of the boundary, and therewith the strength of the focusing, varies with the ‘latitude’ (φ) in a more
complicated way. As a check to the conventional method of considering a large number of reflections to study the
limiting behaviour of the map for a random starting point, we could alternatively start directly on the attractor of
periodq itself and apply the mapq times, and calculate the Lyapunov exponent from that. The results are still
numerical approximations, but this method saves the averaging over the large number of iterations for a random
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starting point. This method has been tested for the most simple attractor and the results agreed well with those for
the conventional method.

3. Results

In this section, we will show results for different parameter values to study the dependence of the map on the
parametersε andκ.

To illustrate the geometry and the idea of focusing a picture of the fate of a characteristic forε = 1.82 and
κ = 1.5 is shown inFig. 2(a). The corresponding stream function is also plotted. The characteristic starts to the
right (forward iteration) and ends up in the limit cycle of period 2. This is the most simple attractor and it exists
over a range of parameter values, although its exact location will change with changing parameter values. When we
would have iterated the map backwards, the attractor would have been located at the left and would be a reflection
of the former attractor in thez-axis. Depending on the direction of iteration and the exact starting point of a certain
characteristic, one of the two is an attractor, the other a repellor. A characteristic may change its direction from
going clockwise to anticlockwise when it reflects critically. Critical reflection means that the characteristic directly
reflects back onto itself, which occurs when the tangent to the curve is equal to minus the slope of the characteristic.
For this different circulation direction a former repelling limit cycle turns into an attractor.

There are three fundamental intervals where the functiong (or h) in Eq. (4)can be prescribed: one in between
the twoz-symmetric limit cycles, one to the left and one to the right, all forz > 0.5 in this case. These intervals are
shown as black lines at the top boundary, directly right from the middle and on the leftmost and rightmost side, in
Fig. 2(b). All three intervals have their own domain of influence. This is illustrated in the stream function plot. The
intense grey-tones appear where information of two different fundamental intervals is incorporated, the more modest
tones indicate that the information comes from a single fundamental interval. In all three fundamental intervals a
sine-function was prescribed, with different absolute values to illustrate the different domains of influence. The
derivative of the sine-function is zero at the boundary of the interval, which guarantees smooth solutions except on
the attractor. However, in practice the forcing mechanism for the waves is prescribed and the derivative at the end of

Fig. 2. (a) Characteristic approaching an attractor and (b) corresponding stream function forε = 1.82 andκ = 1.5. The black lines at the
boundary represent the fundamental intervals.
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Fig. 3. Poincaŕe plot forε = 1.82. Position onΓ of last 200 reflections out of 1000.

the fundamental interval is in general not smooth. Discontinuities in the velocity or the velocity gradient are reported
for the precessing cylinder[28] and for forcing by oscillation of the end caps of a cylinder[29]. Mathematically, there
are no objections. In physical experiments discontinuities in velocity or the velocity gradient have been observed
[30].

In Fig. 3the Poincaré plot is shown, whereε equals 1.82 andκ varies. There are distinct windows with attractors,
separated by regions with high-periodic and quasiperiodic orbits. The regions with mostly quasiperiodic orbits may
also contain attractors, but the intervals ofκ over which they exist are too small to be visible on this scale. This will
be illustrated later. Windows become substantially larger for increasingκ. This has the following simple reason. To
investigate the whole range of slopes,κ should vary between 0 and∞. The angle of the characteristic with respect
to the direction of gravity or rotation axisθ only varies betweenπ/2 and 0. Withκ = tan(π/2 − θ) the interval
π/4 ≥ θ ≥ 0 is smeared out over the region 1≤ κ ≤ ∞, whereas the intervalπ/2 ≥ θ ≥ π/4 is compressed in the
interval 0≤ κ ≤ 1. But since the parameterκ arises in the definition of the map and it gives a good resolution in
the most interesting region we chose to use this parameter rather than work in terms ofθ.

The rotation number and the Lyapunov exponent are shown inFig. 4. The rotation number grows monotonously
and remains constant in windows where a nondegenerate periodic point is present. The features of this graph, with a
rapid increase ofρ just before and after an interval on which it is constant and many intervals in whichρ is constant,
are also known as ‘devil’s staircase’. The Lyapunov exponent is nearly zero in the regions where the orbits are
quasiperiodic or neutrally periodic and negative where the attractor exists. There is no interval on whichλ > 0.

It is remarkable that inFig. 3 in the interval 1.6< κ < 1.9 no window with attractor is detected. This coincides
with a relatively rapid increase ofρ in Fig. 4(a). In this interval, the Lyapunov exponent (Fig. 4b) is nearly 0 and the
minima ofλ become less deep again forκ > 1.9. This behaviour is due to the presence of a standing wave mode (all
characteristics reflect back onto themselves) forκ = √

3. In Section 4, where more special orbits will be treated,
we will see that the standing mode behaviour forκ = √

3 occurs for all values ofε.
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Fig. 4. (a) Rotation number and (b) Lyapunov exponent forε = 1.82.

To compare and to investigate what the role ofε is we will also show results for other values ofε. We start with
ε = 1.98, a parameter value for which the curve is close to a triangle. The plots ofρ andλ are inFig. 5. As compared
to the results forε = 1.82 there are more and smaller intervals in which an attractor exists. The rotation number
has a wider range for the same interval ofκ-values. Also the negative peaks for the Lyapunov exponent are deeper
and narrower. The interval aroundκ = √

3, where no attractor is found numerically, is very small.
Fig. 6 shows results forε = 1.33. In this case less attractor windows are visible than forε = 1.82. The curve

for the rotation number is monotonously increasing with just a few small intervals on which it is constant. Also the
range ofρ is smaller than forε = 1.82 on this scale, although for the full range ofκ all values 0< ρ < 1 must
be adopted. The structure of the Lyapunov exponent curve is very simple with just a few negative peaks. This is in
sharp contrast with the abundance of structure forε = 1.98. The depth of the peaks inκ for ε = 1.98 andε = 1.33
differs by almost a factor 10. There is no attractor detected in a relatively wide range ofκ aroundκ = √

3.
The behaviour of the map is self-similar in the sense that when part of the plot is enlarged, it will show the same

features as the ‘original’ plot, just on a different scale. This is illustrated inFig. 7, whereρ andλ are plotted for all
three values ofε. Especially forε = 1.98 the self-similarity is clear. Between two relatively large scale attractors a
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Fig. 5. (a) Rotation number and (b) Lyapunov exponent forε = 1.98.
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Fig. 6. (a) Rotation number and (b) Lyapunov exponent forε = 1.33.

pattern arises that is similar to the original picture, with smaller and larger scale attractors, the Lyapunov exponent
peaks becoming deeper and less deep again. If we enlarge part of the enlarged section we again find this structure.
The structure of the enveloping line is reproduced also. On every scale we find patterns with the same structure.
Forε = 1.82 the structure is also self-similar, but since the original picture did not show much structure in between
the attractors we cannot expect different behaviour (much small scale structure). The structure forε = 1.33 is very
plain again. If we enlarge strongly we can also discern small negative peaks forλ in the interval around

√
3 where

no attractor was visible in the original picture.
So far, the pattern of the dots in the Poincaré plot within a window with an attractor was continuous. We chose

the starting point on thez-axis and the attractor shape was smoothly varying with the parameter value. However, if
one chooses a random starting point (kept constant for the Poincaré plot), a discontinuity might arise in the Poincaré
plot. An example is shown inFig. 8. This occurs when the characteristics that are attracted towards one attractor
are attracted to the mirror image of this former attractor for a slightly different value ofκ. It happens very abruptly
in parameter space and it can only occur for attractors that are not symmetric with respect to thez-axis themselves,
but have a conjugate attractor that is its mirror image, like the period 2 attractor.

Fig. 7. (a) Rotation number and (b) Lyapunov exponent forε = 1.98 (solid line),ε = 1.82 (dashed line) andε = 1.33 (dotted).
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Fig. 8. Discontinuity in Poincaré plot forε = 1.82, characteristics start atz = −0.6 instead of atz = zmax on thez-axis.

Fig. 9. Strength of convergence log10(−λ) of characteristics for the whole parameter space.
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To summarize the results and sweep through the complete parameter space a picture is made which shows the
strength of convergence for all parameter combinations (Fig. 9). Instead ofκ the angleπ/2−θ = arctanκ was used.
This is done in order to show the whole parameter space. The strength of convergence is indicated by log10(−λ).
Regions of strong convergence can be beautifully recognized as broad ‘tongues’ at large values ofε, becoming
very narrow at low values ofε and all bending towards arctanκ = arctan

√
3, which is the limiting value for all

attractors atε = 2. This is also the value for which the standing mode arises for all values ofε (black line). The
tongue-like structures are called Arnol’d tongues, after[24]. Between the large scale tongues, corresponding to the
major peaks in the Lyapunov exponent plots, there are smaller tongues corresponding to the smaller scale peaks. As
stated earlier, because of the self-similarity of the structure for different scales, there must be an infinite number of
smaller scale tongues. However, they are not resolved here, both because of the spatial scale of the plot and because
the value ofλ becomes very small. Outside the tongues there is an interference pattern, known as Moiré pattern.
This is due to the finite resolution and not a feature of the map itself.

4. Special trajectories

As we have indicated before, a standing wave mode appears forκ = √
3 for all values ofε. This can be

explained by the symmetry of the curve, seeFig. 10. The curve has three axes of symmetry: thez-axis and the lines
z = ±(1/√3)x. Forκ = √

3 all characteristics are orthogonal to the last two symmetry axes. The map can then be
interpreted as a pure reflection in these two lines. For every single characteristic the boundary reflection points lie
on a circle centred at the origin. There are two special orbits: one connecting the long axes of the curve (leading to
the circle with largest diameter) and one connecting the short axes (leading to the circle with smallest diameter).
These orbits connect the critical points. All characteristics intersect themselves on thez-axis.

There is an important difference in the behaviour of the characteristics forκ <
√

3 andκ >
√

3. For the triangle
(ε = 2) we know that either the lower corner or the two upper corners act as attractor. Forε < 2 the curve has no
real corners where the characteristics are trapped. But what we can observe is that forκ <

√
3 the characteristic

reflects more often near the lower ‘corner’ whereas forκ >
√

3 the characteristic reflects more often in the two
upper ‘corners’. This is illustrated inFig. 11 for two different period 5 attractors. The attractor forκ <

√
3 and

Fig. 10. Standing wave mode,κ = √
3. The axes of symmetry are dotted, the special characteristics, connecting the critical points in pairs, are

dash-dotted, solid lines are two arbitrary periodic characteristics. The circle, centred at the origin, connects the reflection points at the boundary
of a single periodic characteristic. For every characteristic in this standing wave mode such a circle can be drawn.
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Fig. 11. Two attractors with the same period (q = 5) but a different location. Forκ = 1.28, p = 2, reflection occurs mainly near lower ‘corner’,
for κ = 1.99, p = 4, reflection occurs mainly near two upper ‘corners’.

p = 2, ρ = 2/5 has more reflections near the lower ‘corner’, the one forκ >
√

3, p = 4, ρ = 4/5 has more
reflections near the upper ‘corners’. Both attractors correspond to large peaks ofλ.

We also want to investigate the structure of the windows and the role of symmetric orbits and critical characteristics.
In Fig. 12the periods of the strongest attractors are indicated. Only the period 4 attractor forκ >

√
3 is not visible,

as it is weak and its interval of existence is extremely small. InTable 1, the corresponding properties are indicated
for increasing value ofκ. Fig. 13illustrates the paths of the characteristics at the boundary of the window for an
odd and an even period window. It appears that windows with symmetric attractors (odd periods) are bounded by
values ofκ for which two (symmetric) critical points are mapped onto each other, on one boundary the upper, on the
other boundary the lower. Windows with asymmetric attractors (even period) are bounded on one side by a value
of κ for which two (asymmetric) critical points are mapped onto each other. On the other side, the two coexisting
asymmetric attractors, that are each other’s mirror image, merge into one single periodic orbit.

At the boundaries of the windows, there are no singularities or jumps inλ. It smoothly goes to zero, attrac-
tion is no longer exponential but algebraic. Because the two asymmetric attractors are attractors for opposed
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Fig. 12. Lyapunov exponent forε = 1.82 with indication of the periods of the attractors and the standing wave.
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Table 1
Typical properties of the strongest attractors regarding their symmetry and their structure at the beginning and end of their window of existencea

q p Symmetric κmin κmax

9 2 Yes C–C c–c
4 1 No C–c sym
7 2 Yes C–C c–c
3 1 No C–c sym
5 2 Yes C–C c–c
2 1 No C–c sym
3 2 – – –
4 3 No sym C–c
5 4 Yes C–C c–c
6 5 No sym C–c
7 6 Yes C–C c–c
8 7 No sym C–c

a c means that the periodic orbit starts and ends in critical points: C indicates a critical point in the upper part of the curve, c in the lower. If
the end of the window consists of a symmetric attractor formed by the merging of two asymmetric attractors this is denoted by ‘sym’.

sense of the map, it seems natural that attraction is cancelled when they merge. Similar behaviour was ob-
served for the spherical shell[11], when the attractor reflects at the inner sphere at the equator. This also cor-
responded to the merging of two coexisting attractors that are each other’s mirror images with respect to the
equator.

Table 1andFig. 12also illustrate the difference in the ordering of the windows forκ larger and smaller than
√

3.
The properties of the attractors are in a sense symmetric aroundκ = √

3. But the ordering of the periods of the
windows is different. Forκ <

√
3 the periods of the largest windows, starting from the large period 2 windows, are

2,5,3,7,4,9, . . . . Forκ >
√

3, it is a continuously increasing series with the odd periods for the large windows
and the even periods for the smaller windows.

Smaller peaks in between the large peaks inFig. 12correspond to attractors of rather low period, but higher than
the adjacent large windows (for example the period 9 and 7 attractors in between the period 2 and the period 5
attractor). The characteristics have a more complex reflection pattern than the characteristics that belong to the large
windows. The even smaller peaks have intermediate period like 25 atκ = 2.648. But again these smaller windows
are bounded by characteristics connecting the critical points or forming a symmetric orbit.
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Fig. 13. Periodic characteristics that determine the boundary of a window: solid characteristics belong to the beginning of the window, dashed
characteristics to the end of the window; (a) period 5 window (p = 2) and (b) period 2 window.
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Fig. 14. Rotation number forε = 1.82, curve rotated over 0.15 rad.

5. Breaking of basin symmetry

We investigated the role of symmetry breaking with respect to thez-axis. This was effectively done by rotating
the curve around the origin by 0.15 rad. The angle of rotation was chosen such that it is not a rational fraction of
2π, but apart from this the exact value is rather arbitrary. The characteristics remain symmetric with respect to the
vertical axis. The rotation number is plotted inFig. 14. The strength of convergence over the whole parameter space
is shown inFig. 15.

The results look similar to the results with symmetry. The most striking difference is the absence of the stand-
ing wave mode. When we look in more detail and inspect the plot of the rotation number, we also note that the
ordering of the periods of the attractors is different. With the period 2 window somewhere in the middle of the
parameter space again, the major windows are more or less symmetric around the period 2 window, with a sequence
of periods 3,4,5,6, . . . in both directions. Like in the case with symmetry, the critical points play an important
role in defining the beginning and end of a window in parameter space. The windows with attractors with even
period begin and end where critical points with the same tangent slope are mapped onto each other. The win-
dows with odd period attractors begin and end where critical points with different tangent slope are mapped onto
each other.

6. Perturbed circle

In this section, we consider the dynamics of a composition of two reflections for a general perturbation of the
circle. A criterion is derived that states if attractors are present or not at first order of the perturbation.

For the circle, the composition of two reflections is a rotation. Consider the circle with radius equal to 1. The
coordinate on the boundary is represented byα, with 0 ≤ α < 1. The characteristics reflect in lines that make
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Fig. 15. Strength of convergence of characteristics over whole parameter space. The curve is rotated over 0.15 rad to break the original axial
symmetry.

an angleξ andθ with the horizontal axis. The situation is illustrated inFig. 16. The involution with respect to
ξ, denoted byiξ(α), mapsα into β = 2ξ − α and iθ(α) = 2θ − α. The compositioniθ(iξ(α)) yields 2(θ −
ξ) + α. The dynamics of the map is either periodic ((θ − ξ)/π = p/q, periodq) or quasiperiodic ((θ − ξ)/π

irrational).
Now we consider the perturbed circle parameterized by(rε(α) cos(2πα), rε(α) sin(2πα)), whererε(α) = 1 +

εr1(α) + · · · is a prescribed perturbation to the unit circle. The effect of a perturbation on a single reflection is

θ β ξ α

Fig. 16. Illustration of composition of two reflections for the circle. Reflection of characteristics in lines that make an angleξ andθ with the
positive horizontal axis.
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investigated first. We denoteiε,ξ(α) by β and expand:

β = iε,ξ(α) = i0,ξ(α)+ ε
∂

∂ε
iε,ξ(α)

∣∣∣∣
ε=0

+ · · · ≈ 2ξ − α+ εβ1. (12)

An extra indexε was introduced toi to discern the perturbed and unperturbed case. The first order termβ1 can be
calculated as follows. Reflection in the linez = tan(ξ)x implies thatβ must satisfy

rε(α) cos(2π(ξ − α)) = rε(β) cos(2π(β − ξ)), (13)

which relates the projections ofz = tan(α)x andz = tan(β)x on this line. The expansion(12) is substituted and
both sides are differentiated with respect toε in ε = 0. With the definition

σ1(α) = ∂rε(α)

∂ε

∣∣∣∣
ε=0

,

the expression forβ1 is given by

β1 = σ1(2ξ − α)− σ1(α)

2π sin((ξ − α)2π)
cos(2π(ξ − α)). (14)

With this result we can proceed to consider the composition of two reflections. To simplify things without loss
of generality,ξ is set equal to 0 so thati0,ξ(α) = i0,0(α) = −α. The orientation preserving map is defined by
Tε,θ(α) = iε,θ(iε,0(α)). We consider the compositionT q(α):

Tε,θ(α) = α+ 2θ + ε
∂T(α)

∂ε

∣∣∣∣
ε=0

+ O(ε2), (15)

T
q

ε,θ(α) = α+ 2qθ + ε
∂T q(α)

∂ε

∣∣∣∣
ε=0

+ O(ε2). (16)

We choose 2θ = p/q so thatT q0,θ(α) = α, the identity, andp andqmust have no common factors,q > p. We define
τ1,θ(α) = (∂T(α)/∂ε)|ε=0. It can be calculated using the expressions forβ1:

τ1,θ(α) = β1,θ(−α)− β1,0(α), (17)

τ1,θ(α) = σ1(2θ + α)− σ1(−α)
2π sin((θ + α)2π)

cos(2π(θ + α))+ σ1(−α)− σ1(α)

2π sin(α2π)
cos(2πα). (18)

We further can use thatT j0,θ = α+ jp/q and∂T0,θ/∂α = 1. This gives

∂T q

∂ε

∣∣∣∣
ε=0

= τ1

(
α+ (q− 1)p

q

)
+ τ1

(
α+ (q− 2)p

q

)
+ · · · + τ1(α), (19)

∂T q

∂ε

∣∣∣∣
ε=0

=
q−1∑
j=0

τ1

(
α+ j

p

q

)
. (20)

We have to determine(∂T q/∂ε)|ε=0 (=τq1,θ(α)) for a general form of the first order perturbation to the unit circle
σ1(α). Becauseσ1(α) is periodic of period 1, it can be expressed as a Fourier series:

σ1(α) = a0 +
∞∑
k=1

ak cos(2πkα)+
∞∑
k=1

bk sin(2πkα).
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Then the expression forτq1,θ(α) becomes, after a long but straightforward calculation in which the complex repre-
sentation of a Fourier series was used:

τ
q

1,θ(α)=
q

π

∑
l≥1

{
b2l

(
cos

(
2πl

p

q

)
− 1

)
+ a2l sin

(
2πl

p

q

)}

− 2q

π

∞∑
m=1

∑
l≥1

{
b2l+mq

(
cos

(
2πl

p

q

)
− 1

)
+ a2l+mq sin

(
2πl

p

q

)}
cos(2πmqα). (21)

If T qε,θ(α) = α has solutions for a finite number of valuesα, then there are attractors (or repellors) for these values of
α. Since we explicitly choseθ such thatT q0,θ(α) = α, we can state that there are attractors (or repellors) ifτ

q

1,θ(α) = 0
for a finite number of valuesα.

However, ifτq1,θ(α) = 0 holds for all values ofα the theory is inconclusive. This holds for example for curves
of which σ1(α) does not contain Fourier coefficients of period 4 or higher. In such case, Arnol’d tongues may
narrow stronger than linearly inε (as is the case in[24]) and it is necessary to extend the analysis to a higher order.
Alternatively the solution can be a standing mode. This notion puts a limitation to the practical value of the theory.
But the theory clearly shows that for a variety of smooth geometries of a basin, attractors are possible, even with a
tongue opening linearly inε. Therefore the effect of corners turns out not to be crucial.

6.1. Application to ellipse and third degree curve

For the ellipse the radiusr can be expressed as

rε(α) =
√

1 − ε sin2 2πα, (22)

rε(α) ≈ 1 − ε1
4(1 − cos 4πα), (23)

with ε equal to the squared eccentricity. This yields nonzero Fourier coefficientsa0 anda2 only andτqθ equals
zero. So there is not a finite number of solutions forα for which τqθ=0. This correctly represents the fact that the
ellipse does not allow for wave attractors[4]; either all characteristics are periodic or no characteristic is periodic.
Therefore, higher order terms in the perturbation series would yield zero also. In fact the ellipse is equivalent to the
circle, there is a linear transformation that maps the ellipse to the circle and the parallel characteristics get a slightly
different orientation but remain parallel.

Eq. (21)is also applied to the third degree curve. For the third degree curve the radius of the convex part follows
from:

1 − 1
3ε = r2 − εr3( sin(2πα) cos2(2πα)− 1

3 sin3(2πα)). (24)

This results in the approximation:

r(α) ≈ 1 + ε(−1
6 + 1

6 sin 6πα), (25)

which has the nonzero Fourier coefficientsa0 andb3 for σ1(α). This givesτqθ = 0 also. From closer inspection of
(21) it follows thatσ1(α) must contain at least period 4 terms (a4 or b4 unequal to zero) in its Fourier expansion.
If not, τqθ does not depend onα. If we directly take characteristics parallel to thex- andz-axis, we find a standing
mode of period 2 due to the symmetry of the curve in thez-axis.

Still we know from the previous results that attractors are indeed present.Fig. 9suggests that these tongues are
not a first order effect but must be sought in higher order. To avoid elaborate general second order analysis we



A.M.M. Manders et al. / Physica D 186 (2003) 109–132 127

restrict ourselves to second order analysis of the period two attractor. Also, it is necessary to rescale and reorientate
the curve in order to fit the curve in the conventions of this theory.

First we derive the expression for∂2T 2
ε,θ(α)/∂ε

2|ε=0, which will be denoted byτ2
2,θ(α) for convenience. The

expression forβ (Eq. (12)) can be extended with the next term in the Taylor expansion,β ≈ 2ξ − α+ εβ1 + ε2β2,
with

β2 = ∂2iε,ξ(α)

∂ε2

∣∣∣∣∣
ε=0

.

In order to determineβ2 expression(13)must be differentiated twice with respect toε and evaluated inε = 0. With
the definition

σ2(α) = ∂2rε(α)

∂ε2

∣∣∣∣
ε=0

this yields

β2 = 1

4π sin 2π(ξ − α)

(
σ2(2ξ − α)− σ2(α)− 4π2β2

1 + 2β1
∂σ1(α)

∂α

∣∣∣∣
2ξ−α

)
cos 2π(ξ − α)− β1σ1(2ξ − α).(26)

The termτ2
2,θ(α) can be determined by straightforward differentiation ofiε,θ(iε,0(iε,θ(iε,0(α)))). Using the expres-

sions forβ1, β2 andτ1,θ(α), this can be expressed as

τ2
2,θ(α)= β2,θ(−2θ − α)− β2,0(2θ + α)+ 2β1,0(2θ + α)

∂β1,θ(α)

∂α

∣∣∣∣−2θ−α
+ 2τ1,θ(α)

∂τ1,θ(α)

∂α

∣∣∣∣
2θ+α

+β2,θ(−α)− β2,0(α)+ 2β1,0(α)
∂β1,θ(α)

∂α

∣∣∣∣−α . (27)

For the circle, in the above notation withξ = 0, the angleθ is 1/4 and the characteristics are parallel to thex- and
z-axis. The problem of the third degree curve was however consequently put in terms of two characteristics with
opposed slopes, and only in the limit for smallε the characteristics belonging to the period two attractor become
orthogonal. In order to use the first order analysis and extend it to a second order analysis we have to translate our
problem to the appropriate coordinate system with one reflection inξ = 0 and one inθ = 1/4.

In the limit caseε = 0 the characteristics, belonging to period two, haveκ = ±1 and are perpendicular. The
curve only needs to be rotated overπ/4 to be in the right coordinate system. However, as soon asε > 0 the tongue
bends away fromκ = 1. In order to have perpendicular characteristics for the period two attractor we rescale the
curve by replacingx by (1 − Cε2)x. The values ofC for which the tongue is found will follow from the analysis.
Polar coordinates are introduced and the curve can be rotated overπ/4. This results in the expression:

rε(α)= 1 + ε(−1
6 − 1

12

√
2( cos 6πα+ sin 6πα))+ ε2 1

144(3 + 72C + 72C sin 4πα

+ 4
√

2( cos 6πα+ sin 6πα)+ 5 sin 12πα)+ O(ε3). (28)

Substituting this expression inEq. (27)yields a periodic function forτ2
2,θ(α). In Fig. 17(a) this function is plotted

for C = 0.2. It has eight zeros for approximately the interval 0.06< C < 0.3, representing the two periodic orbits
(attractors). ForC < 0.06 the function is completely positive, forC > 0.3 completely negative. So we found the
boundaries of the Arnol’d tongue belonging to the period two attractor to beκ ≈ 1 + 0.06ε2 andκ ≈ 1 + 0.3ε2.
In Fig. 17(b), the boundaries of the Arnol’d tongue are plotted together with results representing parameter values
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Fig. 17. (a)τ2
2,1/4(α) forC = 0.2. The eight zeros of the function correspond to the values ofα on the two attractors. (b) Arnol’d tongue, bounded

by κ = 1 + 0.06ε2 andκ = 1 + 0.3ε2. The vertical stripes indicate values for which convergence to a period 2 orbit was detected numerically.

for which numerical convergence to a period 2 periodic orbit was reached. It can be compared withFig. 9around
arctanκ = π/4. Apparently the tongue, as described by the second order perturbation theory, is subject to narrowing
for ε > 0.02. This was confirmed by calculating the boundaries of the tongue by numerically solving the values
for which the two critical points are directly mapped onto each other, and the values for which the symmetric orbit
occurs, by determining for which valueszmax andzmin are mapped onto each other by a single application of the
map. These special trajectories are known to form the boundaries of the period two window for each value ofε from
Section 4.

7. Discussion

This study shows that smooth convex geometries bear the possibility of wave attractors. Even small (smooth)
perturbations to the circle can lead to wave attractors, with an Arnol’d tongue with an opening that is linear inε,
provided that the perturbation can be described in Fourier components of period 4 or higher. So no singularities like
corners or critical latitude singularities are needed. But for such period 4 perturbations it becomes hard to investigate
the parameter space analytically, as expressions for ray tracing become difficult to handle.

For the third degree curve, the attractor only appears in the second order in the perturbation theory. But for
this curve the expressions needed for ray tracing are easily obtained analytically, although when iteration of the
map is involved a numerical approach is required. The parameter space was investigated in detail to study the
structure of the windows with attractors and the role of symmetry. Windows containing an attracting periodic orbit
are bounded by parameter values that imply either periodic orbits connecting critical points, or imply a ‘merging’
of two attractors of the same period, that are each other’s mirror image with respect to thez-axis in the rest of the
window, resulting in a singlez-symmetric attractor. The periodic orbits belonging to the boundary of a window are
only weakly attracting, the Lyapunov exponent vanishes. A single standing mode is detected, present for all values
of ε and owing its existence to an additional symmetry of the system for this specific value ofκ. This standing mode
disappears when this symmetry is destroyed by rotation of the curve. Then the mirror-symmetry with respect to the
z-axis is also broken, resulting in a different ordering of the windows regarding the period of the attractor.

For inertial waves in the spherical shell, windows with periodic orbits (attractors) are bounded by characteristics
that touch the inner or outer sphere at the critical latitude[16]. The strength of these attractors was determined[11].
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The Lyapunov exponent either vanishes or becomes−∞ at the boundary of a window. It equals zero (only algebraic
convergence) when the characteristic goes from the equator or pole of one sphere to the equator or pole of the other
sphere, or to the critical latitude of the outer sphere. When the equator or the pole is part of the attractor, the attractor
is symmetric with respect to the equator or the rotation axis, and will also be accompanied by the ‘merging’ of two
attractors. When the characteristic reflects at the critical latitude of the inner sphereλ = −∞.

Also the structure of the parameter space of the parabolic basin with a horizontal surface[5] can be described by
inspecting special characteristics. Windows ofz-symmetric attractors are bounded by parameter values for which
the corner is mapped to the other corner of the basin and values for which the two critical points are mapped onto
each other. The windows with asymmetric attractors are bounded by values for which a corner and a critical point are
mapped onto each other and by values for which the two asymmetric attractors come together in a single symmetric
attractor. This is analogous to the third degree curve, where the corners are replaced by critical points.

For the bucket[5] the situation is different. The bucket is a trapezoid with flat top and bottom and two sloping
walls of opposite constant slope. Windows with symmetric attractors start with values ofκ for which a characteristic
joins the two upper corners and end with values ofκ for which the two lower corners are mapped onto each other.
Therefore reflections at the corners can be interpreted as critical reflections. The asymmetric attractors do not occur
because focusing at one side wall is compensated by defocusing at the other side wall. All rays are periodic when
this happens (standing mode) and in particular the upper corner is connected to the opposite lower corner.

The ‘half bucket’ with one sloping wall[18] is closely related. A ray is focused towards a periodic orbit (attractor)
that has an odd number of reflections at the sloping wall. When it has an even number of reflections at this wall, a
downward, focusing reflection will always be balanced by a defocusing upward reflection so that no net focusing
occurs. For the full bucket, focusing on one sloping wall is not compensated at the other sloping wall, but reinforced
for a symmetric attractor, since also the sense in which characteristics travel is mirror symmetric. For the half bucket
this corresponds to a connection from the upper corner of the sloping wall to the lower corner of the sloping wall.
Thus thez-symmetry is not of essential importance for the existence of attractors or standing modes.

When comparing the structure of the variations of the Lyapunov exponent withκ in the different geometries
mentioned above, it was noticed that, contrary to the other geometries, for the third degree curve the values ofλ

varied smoothly. For the parabolic basin this was only the case at the beginning of a window, for the end of the
window there was a jump from a finite value ofλ to 0. The continuous variation ofλ corresponds to the cases where
the window is bounded byκ-values for which the true critical points are mapped onto each other or the attractor
becomes symmetric, the jump corresponds to the boundary where the corner points are connected to each other or
to a critical point. For the bucket-shaped basin, indeed, both boundaries of the window are characterized by a jump
in λ. This indicates the singular nature of these corner points.
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Appendix A. Lyapunov exponent

The distance between two parallel characteristics is not uniquely determined in terms of the periodic coordinate
φ; it depends on which of the two sets of intersection points is chosen. This is illustrated inFig. 18(a), where
dφ1 < dφ2. The distance along the curve between the two parallel characteristics has the same problem. This makes
these definitions of distance unsuitable to determine the Lyapunov exponent.
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Fig. 18. (a) The angular distance between two rays and the distance along the curve between two rays depends on the precise location of the
intersections, here dφ1 < dφ2. (b) Part of the curve with two characteristics to illustrate the definitions in the derivation of the Lyapunov
exponent.

Therefore, the perpendicular distanceD between the characteristics is used. This also seems an appropriate choice
from a physical viewpoint, where classically a beam of waves, emanating from a generation area is considered, and
concentration of energy is related to the beam itself rather than to its contact area with the boundary. The ratio of
the distance before and after application of the mapT can be used to compute the Lyapunov exponent, as will be
shown here.

Fig. 18(b) shows two characteristics, starting on boundaryΓ at (x1, z1) and(x2, z2) and extrapolated outside the
boundary. The line connecting(x1, z1) and(x3, z3) is horizontal,z3 = z1, the angleβ is related toκ viaβ = arctanκ.
This gives for the perpendicular distance between the characteristicsD:

D = 0x sinβ, (A.1)

D = (x3 − x1) sinβ, (A.2)

D =
(
z1 − z2

−κ + x2 − x1

)
sinβ. (A.3)

For a given value ofz, thex-coordinate of a point on the curve is known from the parameterization of the curve,
x = F(z) up to a sign, that can be found by selecting a specific point on the curve and characteristic to start with,
and is taken into account in the computation ofF. Substitution leads to

D =
∣∣∣∣
(
z1 − z2

−κ + F(z2)− F(z1)

)∣∣∣∣ sinβ. (A.4)

The same procedure can be followed to find the distance between the characteristics through the points obtained by
iteration of the mapT for the points(x1, z1) and(x2, z2). The new points are denoted by theirz-coordinate only,
zn+1 = T(zn). The distance after applying the map is denoted byDT :

DT =
∣∣∣∣
(
T(z1)− T(z2)

−κ + F(T(z2))− F(T(z1))

)∣∣∣∣ sinβ. (A.5)
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The quantityDT /D is closely related to the Lyapunov exponent. If the quantity is larger than 1 the map defocused
the two characteristics, if the quantity is smaller than 1 the map focused the characteristics. To derive the definition
of the Lyapunov exponent we proceed as follows.

We choosez2 very close toz1 so that we can writez2 = z1 + ε. This results in

DT
D

= |((T(z1)− T(z1 + ε))/− κ)+ F(T(z1 + ε))− F(T(z1))|
|(ε/κ)+ F(z1 + ε)− F(z1)| . (A.6)

After multiplying numerator and denominator withκ/ε and considering the limitε → ∞ we obtain the formula:

DT
D

= |(dT/dz)|z1 − κ(dF/dz)|T(z1)(dT/dz)|z1|
|1 − κ(dF/dz)|z1|

. (A.7)

If we apply this formula on and on for the successive iterations of the mapT this gives the total divergence or
convergence of the map. The definition ofλ as measuring the exponential ‘separation’ of two adjacent points[27],
here translated in terms of the distance between the rays, reads

D eNλ(z0) = DTN . (A.8)

This can be written as

eNλ(z0) = DTN

DTN−1

DTN−1

DTN−2
· · · DT
D
. (A.9)

Note that individualD-terms cannot be eliminated, since an expression for theratio has been obtained (Eq. (A.7))
and individual distances have no meaning. Rewriting and taking the limitN → ∞ yields an analogon for the
‘classical’ formula for the Lyapunov exponentλ:

λ(z0) = lim
N→∞

1

N

N−1∑
n=1

log
DTn

DTn−1
. (A.10)
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