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Abstract

Inertial waves propagate obliquely through a rotating 1uid with an angle with respect to the rotation axis
that is determined by the ratio of wave frequency and rotation frequency. This constraint leads to wave fo-
cusing or defocusing upon re1ection at a sloping wall. In an enclosed basin repeated re1ection may lead
to standing waves or wave attractors: limit cycles to which all energy converges. In a two-dimensional set-
ting (including the rotation-axis), wave patterns can be predicted mathematically; in three dimensions this is
not generally possible, but ray-tracing indicated that attractors can still be found due to refractive trapping
in the along-channel direction. Two wave attractors and a standing wave were investigated experimentally
in a rectangular basin with a sloping wall, using particle image velocimetry. Wave attractors and a stand-
ing wave were indeed observed, with inhomogeneous energy and phase distribution in the along-channel
direction, di5erent for the di5erent attractors and the standing wave. This behaviour can be partly un-
derstood using ray-tracing. Scale estimates revealed that the width of the attractor is limited by nonlinear
advection.
c© 2004 Published by The Japan Society of Fluid Mechanics and Elsevier B.V. All rights reserved.

PACS: 47.35+i; 47.54+r
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1. Introduction

Homogeneous, solidly rotating 1uids are stably strati!ed in angular momentum. They can carry
waves for which motion is purely in the interior of the 1uid, when the wave frequency is smaller than
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twice the rotation frequency (Greenspan, 1968) and these are called inertial or gyroscopic waves.
These waves are potentially relevant for the liquid outer core of the earth (Malkus, 1968; Aldridge
and Lumb, 1987; Aldridge et al., 1989; Rieutord, 1995), spinning spacecraft that contain tanks
!lled with 1uid (Aldridge et al., 1989; Manasseh, 1993), and in homogeneous layers in the ocean
(van Haren and Millot, 2003). In oceans (Maas, 2001), lakes (Fricker and Nepf, 2000) and stars
(Dintrans et al., 1999) they may also be modi!ed by a stable density strati!cation and then occur
as inertio-gravity waves.

An important property of inertial waves is that their direction of propagation is constrained to
a double cone with its centre line parallel to the rotation axis. This direction is purely determined
by the ratio of wave frequency and rotation frequency and cannot be altered upon re1ection. When
inertial waves re1ect at a sloping boundary, they may become focused or defocused, depending on
the slope of the boundary and the angle of propagation, as the cone has no symmetry with re-
spect to this slope. This has important consequences for wave propagation in enclosed 1uids. For
a quasi-two-dimensional setting (vertical cross section of an in!nitely long channel), repeated re-
1ection with focusing may lead to the appearance of wave attractors: limit cycles onto which all
wave energy converges (Stewartson, 1971; Maas and Lam, 1995). Such inertial wave attractors were
theoretically predicted for cross sections of a spherical shell (Stewartson, 1971, 1972; Rieutord and
Valdettaro, 1997) and were predicted and for the !rst time experimentally observed for a rectangular
tank with one sloping side wall by Maas (2001) and Manders and Maas (2003), hereafter referred
to as M and MM. These attractors behave di5erently from the standing waves for which focusing
does not occur (horizontally positioned rectangular tanks or cylinders rotating around their axis)
or for which focusing is exactly compensated by defocusing at a subsequent re1ection. The conse-
quence of the latter is that in a two-dimensional setting every individual wave ray returns onto itself
(Maas and Lam, 1995). Further, the attractors exist over parameter intervals (Israeli, 1972) bounded
by frequencies for which the attractor degenerates into a line or for which two coexisting attractors
merge, whereas the standing waves exist at most for isolated parameter values.

However, the ‘channels’ employed in the laboratory by M and MM were necessarily of !nite
extent. A two-dimensional approach is therefore, strictly speaking, not justi!ed. It is the aim of
the present work to clarify the in1uence of the front and end wall. This issue is addressed by
both a ray-theoretical and an experimental approach. The ray approach (Section 2) shows that wave
focusing in the cross-slope direction is accompanied by refractive wave trapping in the along-channel
direction. For a wave attractor, this implies that almost all rays penetrate only a !nite distance into
the channel. The experimental set-up, described in Section 3, employs a similar shape as those used
in M and MM, but its smaller size enables a full camera coverage of the horizontal cross sections.
The observed horizontal structure of the wave !eld for two attracting regimes and a non-attracting
regime (Section 4) is interpreted (Section 5) using the predicted wave ray behaviour. A comparison
with previous results suggests that geometric focusing of inertial waves is balanced by nonlinearities
rather than viscous spreading.

2. Theory

In this section plane inertial waves will be discussed, starting from the PoincarJe equation. Quasi-
two-dimensional solutions are discussed brie1y. Then re1ection of these waves at a (sloping) wall is
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described explicitly, including refraction upon oblique incidence. Finally, wave rays in an enclosed
tank are traced numerically.

We consider a homogeneous, inviscid 1uid rotating around a vertical axis. The basic equa-
tions governing the 1uid’s behaviour are the momentum equations and the continuity equation.
In this paper we will consider waves in a frame of reference that is nearly in solid body rota-
tion. The angular velocity of the frame will be � = �0 + ��1(t), where �0 is the background
rotation rate while �1(t) = �0 sin(!t) is its time periodic modulation. The strength of the periodic
modulation � determines the scale of the perturbations. For ��1, the momentum equations can
be linearized, resulting in equations for the perturbation pressure and perturbation velocities. The
gradient of the pressure P and gravitational and centrifugal forces form a dynamic equilibrium at
zeroth order. The remaining forces at !rst order due to rotation and modulation of the frame are
the restoring Coriolis force and the Euler bodyforce, respectively (Tolstoy, 1973). In the inviscid
description followed here, the sole condition at the boundaries is one of impermeability (vanish-
ing normal velocities). For a more detailed description including the explicit equations we refer
to MM.

The 1ow !eld will be split into two parts, a particular solution of the forced equations and
a solution for the homogeneous part. The vertically uniform Euler force induces an alternating
horizontal, vorticity-conserving 1ow. Using the shallow water approximation its horizontal struc-
ture for the tank with sloping side-wall can be calculated (MM). This alternating 1ow has a
cross-slope component at the sloping wall near the end walls of the tank, which needs to be
compensated by inertial waves of frequency !. Inertial waves are also forced through Ekman
pumping and suction via the viscous boundary layers (Greenspan, 1968; Aldridge and Toomre,
1969). But the inviscid mechanism is thought to be more important here, whereas it does not ex-
ist in rotationally symmetric containers. A plot of the theoretical 1ow !eld and details about the
practical implications for the observations are presented in Section 4. Inertial waves, the subject
of this study, are described by the homogeneous equations. The exact way in which the forc-
ing drives these waves is not further resolved, since the equilibrium wave !eld is expected to
be mainly determined by the basin shape and frequency, and to a lesser extent by the generation
mechanism.

Therefore, from now on we consider the case that the 1uid is rotating uniformly with constant
angular velocity �0. Assuming all variables to be proportional to exp(−i!t), the momentum and
continuity equation can be reduced to a single equation for the perturbation pressure p:

pxx + pyy − 	2pzz = 0 (1)

with

	2 =
4�2

0 − !2

!2 (2)

in a Cartesian frame with z positive pointing along the frame rotation vector. For positive values
of 	2 (!¡ 2�0), this equation is called the PoincarJe equation, in honour of H. PoincarJe (Cartan,
1922). Separation of variables is only possible for limited classes of basin shapes (rectangular,
cylindrical and spherical). For other basins with sloping walls, this equation cannot be solved in a
straightforward way, which is precisely the problem that we meet here.
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2.1. Plane wave solutions

We consider plane waves p(x; y; z)˙ exp(ik ·x) of arbitrary small amplitude, with k=(k1; k2; k3)
the wavenumber vector of magnitude �. From Eq. (1) this yields

	2 =
k21 + k22

k23
= tan2  ; (3)

stating that the wavenumber vector makes an angle  with respect to the rotation axis, as is illustrated
in Fig. 1. Together with the de!nition of 	 (2), this implies that the wave frequency and the direction
of the wavenumber vector angle are related via the ratio of angular and wave frequency, regardless
of the wavenumber magnitude. The angle �, the angle of the horizontal component of the wave
vector with the positive x-axis, is not restricted. So the wave vector lies on a cone with half-opening
angle  and is alternatively written as k = �(cos� sin  ; sin� sin  ; cos  ) (Fig. 1).

The group velocity vector, cg = −(!=�2)(k1; k2;−	2k3), is perpendicular to k, with opposite hori-
zontal component. The angle � of the group velocity vector with the rotation axis is directly related
to 	 according to tan2�=1=	2. Wave energy propagates along lines (wave rays) that are in the same
direction as the group velocity vector. In analogy to the wave vector, the direction of the group veloc-
ity vector (wave rays) can be given as (cos�g sin �; sin�gsin �; cos �). Crests and troughs propagate
away from the rays with rapidly diminishing amplitude.

Regarding the chosen de!nition of  and �, downward propagating waves will have negative
values of  and �, upward propagating waves will have a positive value. The absolute value of
 and � is conserved upon re1ection. The term re1ection will include refraction in the horizontal
(change of � and �g).
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Fig. 1. Directions of wave vector, phase velocity vector and group velocity vector.
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2.2. Solution in two dimensions

For a cross section of a channel that is uniform in one of the horizontal directions (y), a
two-dimensional approach seems justi!ed. For waves propagating in the cross-channel direction
(k2 = 0 and � = 0), the PoincarJe equation reduces to the wave equation, albeit in two spatial
coordinates instead of in time and space. The resulting problem is a boundary value problem. The
waves still obey the above conditions regarding the constraint on the direction of propagation, and
particle motion remains three-dimensional due to the Coriolis force.

For some basin shapes (horizontally placed rectangle, circle), the wave equation is easily solved
using separation of variables. For basins with sloping walls this is generally not possible. Then, in
two dimensions the method of characteristics can be used (John, 1941, 1978). These characteristics
can be identi!ed with the spatial paths of the wave rays (Maas et al., 1997) since time has been
eliminated. Using these characteristics, the solution (pressure) in the basin can be constructed for a
given pressure distribution on the boundary of the basin. For the moment we only deal with wave
rays and study their spatial structure, keeping in mind that this structure forms the framework of the
true solution.

The constraint on the direction of the wave has the consequence that wave rays are focused or
defocused when re1ecting at a sloping wall, while remaining parallel. Repeated focusing may then
lead to the appearance of a limit cycle, to which all wave energy is attracted, it is therefore called
the wave attractor (Maas and Lam, 1995). This is illustrated in Fig. 2 for a cross section of the
basin and frequency conditions that were used in the experiments.

Fig. 2(a) is a critical case. Wave rays with positive slope are parallel to the slope. For incident
wave rays this leads to an immediate concentration of the wave rays along the slope upon re1ection.
Because of the special choice of the basin geometry, there is also a closed wave ray, running from
the upper left corner to the sloping wall and then parallel to the wall. All wave rays will become part
of this closed ray, when they reach the slope. Therefore it is also called the critical slope attractor.
Wave rays with a slightly larger slope would be re1ected upslope, and would approach the vertex
in successive re1ections at the top and the sloping wall. The vertex acts as a point attractor, no
closed ray path exists. This situation is equivalent to the progression of internal waves on a sloping
beach (Wunsch, 1969; Cacchione and Wunsch, 1974). In fact, the V-shaped attractor consists of two

(a) (b) (c) standingfocusingcritical slope

Fig. 2. Wave ray paths without refraction. (a) Critical re1ection: wave rays are tangent to the slope upon re1ection. (b)
Focusing: every wave ray approaches the limit cycle (wave attractor) where wave energy travels in a clockwise sense.
(c) Standing wave: for a single frequency all individual rays return back on themselves, and every ray intersects itself at
the dotted line.
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attractors: the critical slope and the degenerate form of the (1,1)-attractor, that will be described next.
For the speci!c geometry where the bottom width equals half the top width these are connected.

In Fig. 2(b) a higher frequency (larger value of tan �) is considered. Successive re1ections at
the sloping wall, where downward re1ection implies focusing, bring the wave ray closer to the
central parallelogram. This holds for any ray of this slope for the presented basin shape. A wave
attractor is not restricted to a single angle � but exists for a range of �-values (window), although
the parallelogram will be stretched. The window [�min; �max] is bounded by � = �min for which the
V-shaped attractor exists, and by � = �max for which a ray that starts in the upper right corner
ends in the lower left corner. In this case the parallelogram has degenerated into a line. All these
attractors with one re1ection at the side wall and one at the top and bottom are called (1,1)-attractors,
classifying the attractors by the number of re1ections at the top/bottom and the (sloping) side wall
(Maas et al., 1997).

In Fig. 2(c), for a still higher frequency, every individual wave ray re1ects back onto itself.
Focusing at downward re1ection is followed by defocusing at upward re1ection, no net focusing
exists. In particular, wave rays which start in an upper corner end in the corner below at the same
horizontal side. This case is called a standing mode and exists for a single value of �. The periodic
orbits of Fig. 2(b) are classi!ed as (1,2) standing mode, because they re1ect twice at the side walls
and once at top and bottom wall.

There are several windows with attractors, and isolated values of � with standing modes. For
the standing modes, closed ray patterns have an even number of re1ections at the sloping wall, and
focusing will always be balanced by defocusing. The limit cycles (closed ray paths) for the attractors
always have an odd number of re1ections at the sloping wall, and net focusing occurs. The values
of � for which periodic ray paths exist (standing or attracting) are separated by values of � for
which no closed ray path exists and the rays !ll the whole cross section. The use of characteristics
and the wave attractors are described in more detail in MM.

In three dimensions however, wave rays are not identical to characteristics. But, motivated by the
success of the wave rays in describing the structure of the solutions, we will study the behaviour of
wave re1ections in the horizontal direction. Although it is not possible to !nd full solutions in this
way, following wave ray paths may yield elementary properties of the solutions. For this purpose,
the e5ect of wave refraction upon re1ection at a sloping wall is studied.

2.3. Refraction of plane waves

The e5ect of interaction with a wall on the direction of a wave ray will be described explicitly.
This is most naturally done in terms of the velocity (LeBlond and Mysak, 1978) using the condition
that there is no 1ow through the boundary. We will closely follow the notation by Phillips (1963). He
used geometrical arguments to construct the re1ected wave, but here the properties of the re1ected
wave are calculated, since this enables us to visualise the e5ect of re1ection for the full range of
possible incident waves. An alternative formulation is given by Eriksen (1982) for inertio-gravity
waves.

The velocity u of the incident wave is given by Phillips (1963):

uin = a cos(k · x − !t) +
1
�
k × a sin(k · x − !t): (4)



A.M.M. Manders, L.R.M. Maas / Fluid Dynamics Research 35 (2004) 1–21 7

The vector a is related to the particle motion. Its magnitude A determines the particle orbit speed
(amplitude of the wave) and particle motion is in a plane perpendicular to the wavenumber vector
to guarantee incompressibility. For a wave in the interior of the 1uid, particles move along circles
that are tangent to the cone cg. Apart from this constraint, the direction of a is arbitrary, since a
shift in the direction merely implies a phase shift.

We consider re1ection at a wall that makes an angle � with the rotation axis, sloping upward in
the positive x-direction. Its normal n is then (−cos �; 0; sin �). The re1ected wave is given by an
expression fully analogous to Eq. (4), where b, m and � take the role of a, k and �, respectively,
including the incompressibility condition b · m = 0.
The components of m can be calculated using the dispersion relation with the condition that

the frequency is conserved and the condition that the projection of the wavenumber vector of the
incoming and re1ected wave on the slope must be equal. Then b can be calculated using the condition
that there is no net motion through the boundary and the requirement that particle motion is again
in a plane perpendicular to the wavenumber vector m.

The re1ected wave has wave vector components:

m1 =
(tan2 � tan2 + 1)k1 + 2 tan � tan2  k3

tan2 � tan2  − 1
; (5a)

m2 = k2; (5b)

m3 =
−(2tan � k1 + (tan2 � tan2  + 1)k3)

tan2 � tan2  − 1
: (5c)

The transmission coePcient, the ratio R = B=A, with A and B the magnitudes of a and b, is more
relevant in describing the action of (de)focusing than the absolute amplitude. It can be expressed as

B
A
=

∣∣∣∣
1 + cos 2� cos 2 + sin 2� sin 2 cos�

cos 2�+ cos 2 

∣∣∣∣ : (6)

For an incoming wave with angle �= arctan(k2=k1), the angle of the re1ected wave �re becomes

tan�re =
(tan2 � tan2 − 1) sin�

cos�(1 + tan2 � tan2 ) + 2 tan � tan  
: (7)

For a purely horizontal or vertical wall, there is no refraction and the transmission coePcent equals
1. For arbitrary values of �, the wave is refracted, altering the value of �. Also the magnitude of
the wave vector will be altered upon refraction, crests and troughs will be more closely together
(focusing) or further apart (defocusing).

The above calculations were all in terms of the wave vector. For ray-tracing, the direction of
the group velocity vector must be considered. The angle of the group velocity with the x-axis �g

equals �+ �, since the horizontal components of the wave vector and the group velocity vector are
opposite.

In Fig. 3(a) the ratio �g; re=�g; in is plotted as function of horizontal (�g) and vertical (�) incidence
angles. Regions with ratio ¿ 1 depict divergence in the y-direction, regions with ratio ¡ 1 depict
convergence. The smallest angles with respect to the positive x-direction were used to rule out the
e5ect of propagation in the positive or negative x-direction. In the !gures, 0¡�¡�=2 indicates
a downward propagating incident wave, such that the upper part of the !gure contains downward
propagating waves (coming from above). Furthermore, for the upward propagating waves not the
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Fig. 3. Features of refraction for the slope that was used in the experiment (� = 0:45). The unpatterned outer regions
represents the parameters for which incident waves come from the back side of the slope and are therefore rejected. Here
�¡�=2 represents the downward propagating waves. (a) Ratio �g; re=�g; in of the smallest angle with y=constant of the
outgoing and incoming wave ray as a measure of the strength of refraction. (b) Transmission coePcient B=A. Contours
are non-equidistant (0 0.25 0.5 0.75 1 2 3 4), in order to have a homogeneous distribution of contour values larger and
smaller than 1.

full range of � and �g are allowed; for values outside the bell-shaped region the rays would come
from the back of the slope. The present con!guration enables easy comparison with !gures in MM
where �g = 0 (or �) and 06 �6 �=2 is used to classify the parameter space. The behaviour for
�g; in ¡ 0 and �g; in ¿ 0 is equivalent, there is no asymmetry for wave re1ection.

In Fig. 3(b) the transmission coePcient B=A is plotted. Focusing takes place when B=A¿ 1,
defocusing takes place when B=A¡ 1. This is necessary to guarantee conservation of energy 1ux:
where wave rays are focused the wave number increases and the amplitude of the wave must increase
to conserve the total energy 1ux. Where wave rays are defocused the wave number decreases and
the amplitude must decrease.

The most important result is that wave focusing coincides with refraction towards �g = 0 or �
(cross-channel propagation). The e5ect is strongest for nearly critical waves (�= 0:45 in this case).
Defocusing corresponds with refraction towards �g = �=2 or −�=2 (along-channel propagation).

2.4. Three-dimensional ray-tracing

Now that the e5ect of a single re1ection has been described, we will consider the fate of wave
rays that experience many re1ections to investigate the possibility of limit cycles. The behaviour in
an in!nitely long channel is investigated: closing the channel does not alter the e5ect of re1ection
and refraction but it is less easy to see how far a wave ray has travelled before eventually reaching
a limit cycle.

As a simple illustration, Fig. 4 shows rays with three di5erent initial directions for the basin with
sloping wall: (a) for subcritical re1ection, (b) for the wave attractor and (c) for a standing mode. For
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Fig. 4. Progression and convergence of wave rays starting from (x; z) = (1; 0:6) with �g = �=6 (solid line), �=3 (dashed)
and 5�=3 (dotted) in a tank with sloping wall. (a) Subcritical re1ection �=0:42, (b) wave attractor �=0:63, (c) standing
wave � = 0:97.

the !rst two cases, convergence in the horizontal is achieved, wave rays become part of a limit cycle.
For the standing wave, rays do not converge and continue outside the depicted domain. Further, for
the standing mode wave rays were observed that exhibit periodic behaviour in the y-direction: they
were re1ected from the corner where the bottom and sloping wall come together and the pattern is
‘retraced’ in an xz-projection, but still with propagation in the y-direction.

In Fig. 5, the full parameter space is investigated for a single starting position. The y-position of the
wave ray after 1000 re1ections is computed by numerical ray-tracing and is plotted. Light-coloured
windows where most rays have converged in the y-direction (attractors) are separated by dark-
coloured intervals where the majority of the rays has propagated deeply into the channel. When
interpreting the !gure, one must keep in mind that only the !nal position is indicated, which is only
an indication for convergence, not convergence itself.

In a band with an attractor there are some values of �g for which the ray propagates deep into the
channel before eventually converging to a !xed y-position. This occurs when the initial or refracted
wave ray is nearly in the along-channel direction. This also implies that the ray re1ects to the bottom
and surface many times before it re1ects at the slope again and can be refracted back. Some rays
may re1ect without ever converging in the y-direction.

Partly the features can be explained by considering the combined e5ect of the steepness of the
rays (steeper rays are subject to stronger refraction, increasing the strength of convergence in the
horizontal) and the complexity of the attractor (the simpler the structure, the larger the window of
existence of the two-dimensional attractor). Consider a wave ray with angle �attr within a window
of an attractor [�min; �max] and arbitrary �g. When the angle �g is reduced upon refraction such
that the projection in the xz-plane �̃=arctan cg;1=cg;3 is also within this window, convergence in the
y-direction and the existence of an attractor is easy to understand. Focusing in the vertical occurs
at the downward re1ection at the sloping wall. Upon downward re1ection at this wall �g becomes
closer to �, the ray is refracted more towards y = constant, and �̃ is closer to �attr. For subsequent
re1ections this converges further till �g → � (or 0) and �̃ → �attr. Then the attractor is realised and
the wave is trapped at a certain y-position. If �̃ is not in this interval, then the attractor does not ‘!t’
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Fig. 5. Final position of wave rays after 1000 re1ections in an in!nitely long basin of cross section equal to that in
Fig. 2, as a function of initial angles �g and �. All rays start at the same point as in Fig. 4 in a downward direction.
The subcritical re1ection (�¡�=0:45) and part of the (1,1)-window (0:45¡�¡ 0:77) are left out, since in these cases
for all angles convergence was readily established.

in a two-dimensional cross section, but after a number of re1ections the angle may be modi!ed such
that �̃ is in the interval of existence of the attractor and convergence is again readily established. In
contrast, for a standing mode, refraction at downward re1ection is exactly balanced by refraction at
upward re1ection which makes it impossible to have convergence in the y-direction.

Contrary to the two-dimensional case, where all waves approached the same limit cycle, regardless
of their initial position, the !nal position of a ray is now very sensitive to the initial position and
direction. This is expressed by the speckled appearance and the narrow bands of slow convergence
in windows with attractors. The attractor is no longer a single limit cycle, but a limit surface to
which wave rays approach. The manifestation of a standing wave in terms of wave rays that close
onto themselves becomes questionable. Periodic orbits only exist for waves that do not propagate
in the y-direction. However, closing the basin may result in isolated closed rays, connecting the
corners of the basin. For standing waves, these are the only closed rays apart from the ones that do
not propagate in the y-direction from the beginning. For attractors these closed rays are among the
rays that do not approach an attractor. Their role is as yet unclear.

Ray-tracing illustrates the possibility of trapping of wave rays on an attractor at !xed y-position.
However, it is not said that such patterns are physical solutions. In a fully enclosed tank, ray analysis
allows a particular ray to converge on an attractor at the vertical wall at y = 0. However, on the
attractor, particle motion is large and also has a component in the y-direction, which violates the
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boundary condition of no motion through the boundary. Only the sum of all possible rays will
describe the actual wave !eld. The phase will determine to which amplitude they add up locally.
Nevertheless, in previous experiments wave attractors have been observed, and the next sections
must show their horizontal structure.

3. Experimental set-up

Experiments were performed in a perspex tank of width 2B = 19 cm, height H0 = 19:5 cm and
length L = 40 cm. The tank was provided with a sloping wall from the top corner to half way the
bottom, so that the tank e5ectively has bottom width B and top width 2B, and it had a rigid lid. It
was !lled with homogeneous 1uid (ordinary tap water), that was thus fully enclosed.

This tank was placed eccentrically on a rotating table of radius r = 55 cm. Fig. 6 illustrates
the set-up. The rotating table had an angular velocity �0 = 0:6912 rad/s. This rotation rate was
modulated according to �(t) = �0(1 + � sin(!t)) to generate waves with frequency equal to the
modulation frequency !. The small parameter � had a value of 0.1. The critical slope situation, the
parallelogram shaped attractor and the (1,2)-resonant mode were investigated. Table 1 displays the
forcing frequency, the ratio of wave frequency to twice the rotation frequency and tan �.

For 1ow visualisation the 1uid was seeded with small, almost neutrally buoyant particles. The
1uid was illuminated with visible light (slide projectors) shining through a slit in the black covering
of the tank. This slit had a width of about 1:5 cm. The motion was recorded by a digital camera and,
via particle tracking velocimetry (van der Plas and Bastiaans, 2000), velocity !elds were obtained.

Measurements were taken in horizontal cross sections (camera above the 1uid, horizontal slit) and
vertical cross sections (camera in front of the tank, vertical slit, as in Fig. 6). These horizontal cross
sections were distributed evenly over the 1uid: horizontal cross sections were taken at z=5, 10 and

x

y
z

camera

light source

19x19.5x40 cm

55 cm

Ωo ωε (1+   sin   t)

Fig. 6. Experimental set-up.

Table 1
Experimental modulation frequencies and corresponding parameter values

Name ! !=2�0 tan �

Critical slope 0.6057 0.4382 0.4872
Parallelogram 0.8156 0.5900 0.7303
(1,2) standing 1.1410 0.8255 1.4617
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15 cm for all frequencies. Vertical cross sections were taken at y=20 and 3 cm for all frequencies.
At y = 10 cm only the critical slope and the parallellogram shaped (1,1)-attractor were measured.
The latter was measured again at y = 30 cm.

The frame rate of the camera was 30 Hz, which was reduced to an e5ective frame rate of 7:5 Hz in
the processing of the data to velocity !elds. The resulting time series consisted of about 240 vector
!elds, spanning about 33 s, so 3–6 wave periods. The particle tracking results were interpolated to
obtain velocity !elds on a structured grid with a spatial resolution of 0:5 cm.

A led-light was used as an indicator for the phase of the sinusoidal forcing. Knowledge of the
exact phase of the data enables us to compare observations of the phases in di5erent cross sections
and to compensate for the vorticity-conserving 1ow. Using the theoretical prediction of the vorticity-
conserving 1ow !eld, of which the strength will vary sinusoidally in time, this 1ow can be subtracted
from the observed 1ow !eld to reveal the wave !eld. Its amplitude must be matched with the
experimental data.

Measurements were taken some time (10min) after onset of rotation and modulation to give the
system time to evolve to what appears as a quasi-stationary state. The advantages of using such
a small basin (as compared to the basins used in M and MM) are that the time for spin-up and
evolution of the wave !eld is shorter and that the full horizontal cross section can be captured, which
was not possible in the previous experiments. This enables the study of the horizontal structure of
the wave !eld.

4. Results

The results are presented in terms of dimensionless coordinates. To facilitate comparison with
MM, the same conventions are applied. This means that the scaled coordinates (x′; y′; z′) are de!ned
as x′ = x=B, y′ = y=L, z′ = z=H0. Primes will be dropped in the rest of the text.

The horizontal cross sections and the vertical cross section at y = 1=10 must be corrected for
the vorticity-conserving 1ow (Fig. 7), since in these cross sections the vorticity-conserving 1ow
dominates the vector !eld. It appeared from the observations that the strength of the vorticity-
conserving 1ow decreased slightly with depth, instead of being constant, and that the centre of the
cell, that is above the 1at part of the bottom (and not at x = 1) shifted a little towards x = 0 for
decreasing z. This is in agreement with the results of van Heijst et al. (1994) who also observe
a shift of the centre of the inviscid circulation cell towards the vertical wall in the solutions for
impulsively started 1ow in a wedge-shaped tank, in the case that (H0=L)2 is not much smaller than 1.
For correction of the horizontal cross sections the matched amplitudes can be used. For the vertical
cross section at y = 1=10, a linear change in amplitude with depth is used, based on the change in
amplitude in the horizontal cross sections. The amplitude is then given by A=0:001∗ z+0:023 with
z the level in centimeters. The shift in centre position was not accounted for as it was a minor e5ect.

It appeared that the most dominant features in the velocity !eld due to the vorticity-conserving
1ow can be eliminated using this simple model and there is no direct need for a more sophisticated
model. The remainder contained also weak vortices over the 1at part of the bottom, that are also
encountered in van Heijst et al. (1994), and a weak mean 1ow due to mixing of angular momentum
near the slope, where energy is concentrated (M). Their velocities were smaller than those associated
with the attractors and standing wave, and were therefore neglected in the study of the wave !eld.
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Fig. 7. Theoretical prediction of vertically uniform, vorticity-conserving 1ow !eld, based on the shallow water approxi-
mation (see MM). The slope is from x = 1 to 2. The 1ow !eld is not symmetric with respect to x = 1. The amplitude
scale is arbitrary.
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Fig. 8. De!nition of ellipse parameters. The local elliptic current structure is characterised by its maximum (U ) and
minimum (V ) radius and by its orientation & and its initial phase '. This can be interpreted as the linear combination or
two circular but counterrotating currents of the same frequency, but of amplitude W± which, at initial time, have phase
angle �±.

To analyse the wave !eld, time series of the tips of the velocity vectors (hodographs) were plotted.
They appeared to be of elliptical shape, varying between nearly circular and nearly rectilinear. When
hodographs were plotted over more than a period, patterns appear to be retraced almost exactly,
which means that a stationary state is established and that the forcing frequency was by far the
dominant frequency in the spectrum.

This justi!es the description of the velocity !eld in terms of ellipse parameters, which summarise
a whole time series. We characterised the ellipse by its semi-major (U ) and semi-minor (V ) axes,
and the phases �+ and �− of the two counterrotating circular motions in which the ellipse can be de-
composed (see Fig. 8, Maas and van Haren, 1987). The phase parameters do not represent the actual
phase of the waves, since only projections of the three-dimensional wave !eld are observed, but they
are used as a diagnostic tool providing insight in the phase propagation patterns and relative phases.

4.1. Vertical cross sections

Results for all the vertical cross sections are plotted together in Fig. 9. Only the intensity of the
motion (U , 0:5 cm grid, in greytones) and the hodographs (1 cm grid) are plotted, since they provide
most information. The hodographs are plotted over two wave periods. Their smoothness illustrates
the purely periodic behaviour.
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First, we discuss the parallelogram shaped attractor (Fig. 9, left column), since this (1,1)-attractor
is considered the canonical form of a wave attractor. The attractor is visible at all four y-positions,
but there are di5erences in shape and strength. Noteworthy is the relatively large circular motion
in the middle at y = 1=10, which is absent at the other y-positions. At y = 1=2, the purely vertical
motion in the middle is remarkable. The cross sections at y = 1=10 and y = 1=4 roughly have the
same phase values (not shown), that di5er nearly by � from the phases at y=1=2 and y=3=4. The
di5erences in intensity and shape, the non-rectilinear hodographs along the attractor, and the phase
di5erences between the di5erent cross sections are indications for three-dimensional behaviour.

The triangular shape of the critical slope attractor (Fig. 9, middle column) can be identi!ed in
all three !gures of U , although the left branch is not visible as a line of strong motion but as
a line of weak motion. This is probably a result of strong shear due to opposed particle motion
above and below the attractor. The hodograph patterns vary in the y-direction. Regions of clockwise
and anticlockwise motion are separated by the attractor, and at y = 1=10 regions of clockwise and
anticlockwise motion are interchanged as compared to y = 1=2. In between, at y = 1=4, the circular
motion is more towards the middle, anticlockwise to the right and clockwise to the left. At y=1=2,
on the attractor itself the motion is nearly purely vertical, in the centre of the V-shape the ellipses are
deformed such that they are curved, which points at motion with twice the forcing frequency, typical
for nonlinearity. Phases are di5erent for all three cross sections. Overall, the change of rotation sense
and shape for the hodographs together with the phase changes in the along-channel direction, suggest
that the wave !eld has a strongly three-dimensional character.

For the (1; 2) standing wave (Fig. 9, right column) motion is much weaker than for the two
attractors, by about a factor two. At y = 1=10, only in the lower right part of the cross section the
motion is substantial, there are no features typical for a (1,2) structure visible. At y = 1=2 these
features are visible from the division in di5erent regions with alternatingly clockwise and anticlock-
wise hodographs and the ‘central’ points of no motion ((x; z) = (0:6; 0:2) and (x; z) = (0:8; 0:65),
cf. lines from the corners in Fig. 2). The phases �+ and �− vary only slowly at y = 1=10, but at
y = 1=2 they vary clearly, being parallel to the lines connecting the corners and reproducing the
pattern of U . The di5erence in structure between y=1=10 and y=1=2 makes a comparison of phases
meaningless.

4.2. Horizontal cross sections

The parameters U and �− for the horizontal cross sections are plotted in Fig. 10, together with
the hodographs. It appears that motion is dominantly clockwise such that the phase is almost fully
described by �−. Therefore �+ was omitted. Only in regions of very weak motion this is not the case,
but then noise may dominate. One should note that the phase increases in the direction of decreasing
�− for clockwise motion. Near the walls, in a real 1uid the velocity will be zero due to friction.
However, the theoretical vorticity-conserving 1ow is inviscid and has maximum velocity at the walls.
Subtracting the vorticity-conserving 1ow then gives an overcorrection, resulting in strong unphysical
motion of uniform phase near the walls. Further, the measurements are slightly less accurate near
the walls, since due to light re1ection at the perspex walls the contrast between background and
particles decreases. In the rest of the cross section the correction works well, according to the circular
hodographs, since the (correction for the) vorticity-conserving 1ow would give rectilinear motion
which is hardly ever observed.
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Fig. 10. Observed ellipse parameters U and �− in horizontal cross sections at z=3/4, 1/2 and 1/4. Also hodographs of
two wave periods are plotted, transparent for clockwise motion and !lled for anticlockwise motion. Upper, middle and
lower panels are for modulation frequencies corresponding to the parallelogram shaped attractor, the critical slope attractor
and the standing wave, respectively. The colour scale for U is from 0 (blue) to 0:2 cm=s (red) for the parallelogram and
critical slope attractor, and from 0 to 0:1 cm=s for the standing mode. The phase is plotted in a cyclic color map. Black
lines in the pictures of U indicate the intersection of the theoretical two-dimensional attractor with this plane.
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Cross-sections of the parallelogram shaped attractor (Fig. 10, upper panel) clearly have four
regions of stronger motion at z = 1=4 and 3/4. Their x-position can be associated with the location
of the theoretical (two-dimensional) attractor (straight solid lines). At z = 3=4 the left part is in
excellent agreement, at z = 1=4 it is the right part that coincides well with the prediction. In the
middle, motion is weak. The phase pictures reproduce the four regions. In the x-direction, the phase
is identical on the intersection with the attractor, re1ection at the horizontal top or bottom does not
alter the x and y-component of the wave. In the y-direction the phase di5erence between the parts
y¿ 0:45 and y¡ 0:45 is about � for the sections at z=1=4 and 3/4. The phase di5erence between
z= 1=4 and 3/4 also nearly equals �. At z= 1=2 the pattern is more or less in between the patterns
of z = 1=4 and 3/4. At z = 1=2 motion is weak, except near the sloping wall where the attractor
re1ects. Surprisingly, there the motion is strongest around y = 1=2 and 0. The phase picture does
not exhibit the antisymmetric structure around y = 0:45. In general, the hodograph structure is in
agreement with the vertical cross sections.

The horizontal cross sections of the critical slope attractor (middle panels) have a completely
di5erent structure. There are regions of strong circular motion, at z= 3=4 and 1/4, which have their
maximum close to the theoretically predicted attractor. But there are also nearly motionless regions.
Hodographs are more or less aligned around these regions. Phase lines tend to come together in the
motionless, so-called amphidromic points, most clearly visible at (x; y)=(0.6,0.8) at z=3=4 and (0.6,
0.4) at z=1=4. The phase pattern at z=3=4 suggests propagating waves with a wave length of about
1/2 in the y-direction. At z = 1=2 the structures are diPcult to interpret. At z = 1=4 the structure is
dominated by the amphidromic point. This point also corresponds with the purely vertical motion
observed in the cross section at y = 1=2 around (x; z) = (1; 0:25) (Fig. 9, middle column).
The (1; 2) standing wave (bottom panel) is weaker than the two attractors, as also observed in

the vertical cross sections. Motion is strongest near the sloping wall, and around (x; y) = (0:8; 0:15)
at z=3=4 but there are no such prominent ‘gaps’ in the y-direction like for the two attractors. One
can see smooth phase changes in the x-direction, as already noticed in the vertical cross section, but
in the y-direction the phase is nearly uniform. Because the motion is so weak, the e5ects of noise
become more important, resulting in more irregular patterns. However, the large scale structures are
still coherent, which gives the results more credit.

5. Discussion

The observed wave !elds showed three-dimensional behaviour for the three di5erent frequencies.
This behaviour was not only frequency-dependent in vertical cross sections, but also in the horizontal.
In this !nal section, the results are interpreted and compared with results from ray-tracing, previous
experiments and theoretical solutions for a horizontal rectangular tank. Also an estimate will be
given of the process that determines the width of an attractor, using present results and observations
from earlier experiments.

5.1. The three-dimensional wave 9eld

The parallelogram shaped attractor was clearly visible, with maximum intensity near y=1=4 and
3/4 and a phase di5erence of � in the y-direction with the transition at y = 0:45, which is a new



18 A.M.M. Manders, L.R.M. Maas / Fluid Dynamics Research 35 (2004) 1–21

observation. Ray-tracing predicts the formation of limit cycles when two-dimensional theory predicts
the existence of an attractor. Energy is then concentrated due to focusing upon downward re1ection
combined with convergence in the horizontal due to refraction. The observed high intensities at
y=1=4 and 3/4 suggest to be the result of such horizontal convergence of the wave rays generated
at y = 0 and 1 (where the vorticity-conserving 1ow has the strongest cross-slope component). This
is supported by similar observations in the larger tank (MM), where the attractor was strongest near
y=0:12 and waned towards y=0:5, with uniform phase. In contrast, for forcing with a paddle, that
was attached to the vertical wall and extended over the full length of the tank, the attractor became
stronger towards the centre, y = 0:5, as discussed there. Furthermore, the generation mechanism
would imply a phase di5erence of � between y¡ 0:5 and y¿ 0:5, as observed.
Near the wall at y=0, the attractor was hardly visible, although the generation should be strongest

there. This may be due to an adaptation to the end walls. Particle motion of inertial waves is
necessarily three-dimensional, which prevents the existence of a real attractor in the vicinity of the
end walls. It would be interesting to consider the structure of an ensemble of rays, starting at di5erent
points (ideally related to the generation mechanism) and propagating in di5erent directions, and test
if there are regions where the majority of rays have their limit cycle. Still, for a physically realistic
solution, information about the generation and phase of the waves must be included to !nd the
superposition of all waves, for example to describe the uniform phase over half the basin’s length.
Thus ray-tracing is no substitute for solving the PoincarJe-equation. It appears that motion in the
part y¿ 0:45 is stronger than for y¡ 0:45, and that the phase jump does not occur exactly in the
middle. We have no satisfactory explanation for this. Contrary to Rossby waves, inertial waves do
not have an asymmetry with respect to eastward or westward propagation.

The shape of the critical slope attractor is visible in all xz-cross sections, even at y=1=10, which
is a new observation. Motion is relatively strong, which is probably due to the immediate focusing
at the sloping wall together with immediate trapping in the y-direction when a ray re1ects at the
slope. The interchange of locations with clockwise and anticlockwise motion (open versus !lled
ellipses, Fig. 9) between the sections of y=1=10 and 1/2 and the in-between situation at y=1=4 is
remarkable. In the horizontal sections, the variation is even more clear and the rich structure could
not be observed so well in MM. For this attractor there is phase propagation in the y-direction:
from the interior (y = 1=2) towards the walls at y = 0 and 1. This implies energy propagation
from the end walls (generation area) into the interior. The wave length seems to be 1/2 in this
direction, although patterns are not symmetric with respect to 1/2. In MM it was also observed that
the critical slope attractor was strong and that there was phase propagation (and energy propagation)
in the y-direction. There the wave length was estimated to be 1/4 or 1/5. These wave lengths may
be related to the horizontal aspect ratio of the tank, 2B=L, which gives 0.475 for the actual basin
and 0.214 for the larger tank, which are close to the observed wave lengths. Possibly the phase
pattern is mainly determined by the distance over which the wave has travelled from the generation
area before converging towards an attractor. Since convergence is immediate, the local structure is
probably determined by a smaller number of wave rays, enabling a small-scale structure.

The (1; 2)-standing wave has the weakest motion and the most simple structure in the y-direction.
The relatively weak motion can be explained by the fact that wave rays do not converge; not due to
focusing due to downward re1ection, nor due to refraction in the y-direction. Only wave rays that do
not propagate in the y-direction, and possibly some isolated rays, can return back onto themselves.
At this point it must be mentioned that the role of rays that close onto themselves, as pointed out
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in the two-dimensional approximation, may not have its equivalent in three dimensions. Rieutord
et al. (2001) show that the frequency belonging to the !rst axisymmetric mode in a full sphere does
not yield periodic wave rays.

5.2. Mode solutions

The patterns in the horizontal plane of observation have some features in common with those
computed for inertial waves in a horizontal rectangular tank by Maas (2002). The nearly vertical
motion in the centre of the tank (Fig. 9) was also encountered in sloshing modes in the rectangular
tank. In such a tank, no focusing takes place and separation of variables can be applied. Assuming
standing waves in the vertical, the horizontal structure is then determined by an in!nite sum of iner-
tial PoincarJe and Kelvin waves (no gravity). Motion for the standing wave solutions is dominantly
clockwise, except in amphidromic points and near the boundaries at y = 0 and 1, where patterns
and intensities can vary drastically on small scale. It is possible that these scales are not resolved
in our measurements. The (1,2)-standing wave has a horizontal structure that resembles mode-1 so-
lution of the rectangular tank. Overall, the increase of complexity of the horizontal structures with
decreasing frequency in our observations is also present in the theoretical results of Maas (2003).
For decreasing frequency, rays are steeper in the vertical, resulting in smaller horizontal structures.
However, the solutions presented in Maas (2003) cannot correctly describe the solutions of the tank
with a sloping wall, since focusing and wave refraction are impossible in the horizontal rectangular
tank, and play an important role in the observations.

5.3. Limitation of energy concentration

It is interesting to directly compare the present observations with previous observations in larger
basins by M (54 × 40 × 120 cm3), and MM (107 × 80 × 500 cm3) with respect to the relative
thickness of the attractor. Because of the di5erence in scales, such a comparison reveals which
processes balance the in!nite concentration of energy predicted by linear theory. In Fig. 11 the
values of U are plotted, divided by the maximum value Umax on the attractor. The di5erent basins
were plotted at the same size to enable observation of the relative width. Values smaller than 1=e
are black. The relative width of the attractor appears to be comparable.

There are two processes which may determine the thickness of the attractor: viscous processes and
nonlinear processes. Rieutord et al. (2001, 2002) investigated the width of the attractor assuming
viscous processes to be the limiting factor, and found that it depended on a power of the Ekman
number E = 2+=(fH 2

0 ) with + the molecular viscosity, according to E1=3 (thinnest layer, Rieutord
et al., 2001) or E1=4 (strictly two-dimensional approach, Rieutord et al., 2002). The three di5erent
series of experiments have di5erent Ekman numbers, as indicated in the !gure and Table 2. But
taking into account the length scales of the basin, as in Fig. 11, the attractor width appears to be
independent of E.

Therefore we argue that nonlinear processes determine the width of the attractor in the experiments
of Fig. 11, rather than viscous processes. To test this idea, the strength of the nonlinear and viscous
term were estimated. As a length scale we take the distance b over which the motion increases
from U=Umax = 1=e to 1. Umax is used as a velocity scale and the forcing period T as a time scale.
The nonlinear terms are of order U 2=b, the viscous terms of order +U=b2 (with += 10−6 m2=s) and
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Fig. 11. Scaled maximum velocity for experiments in di5erent sized basins. The left pictures are for basic rotation rates
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Table 2
Estimated scales of processes

Experiment H0 E U b U2

b
+U
b2 2U=T

(cm) (cm/s) (cm) (m=s2) (m=s2) (m=s2)

Maas (2001) 40 4:6 × 10−5 0.3 4.5 2 × 10−4 1 × 10−6 2 × 10−4

Manders and Maas (2003) 80 1:2 × 10−5 0.4 8 2 × 10−4 0:7 × 10−6 3 × 10−4

Present 19.5 3:8 × 10−5 0.2 1.5 3 × 10−4 9 × 10−6 5:2 × 10−4

the inertial terms of order 2U=T . Table 2 indicates that the nonlinear terms are in close agreement
with the inertial terms, which means that the width of the attractor is determined by a balance
between these two. The viscous term is much smaller. All of the square attractor shapes of MM
have been investigated. Although at y-positions more close to the endwall (y = 0) the balance
was slightly worse, the di5erence was not more than a factor two. Another argument in favour of
nonlinear processes is that in M a net (Lagrangian) 1ow is observed, apparently resulting from mix-
ing. Future models should therefore include nonlinear terms in the neighbourhood the mathematical
attractor.
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