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Abstract. The dynamics of a stratified fluid contained in a rotating rectangular box is
described in terms of the evolution of the lowest moments of its density and momentum
fields. The first moment of the density field also gives the position of the fluid’s centre-of-
mass. The resulting low-order model allows for fast assessment both of adopted parameteri-

sations, as well as of particular values of parameters. In the ideal fluid limit (neglect of vis-
cous and diffusive effects), in the absence of wind, the equations have a Hamiltonian
structure that is integrable (non-integrable) in the absence (presence) of differential heating.

In a non-rotating convective regime, dynamically rich behaviour and strong dependence on
the single (lumped) parameter are established. For small values of this parameter, in a self-
similar regime, further reduction to an explicit map is discussed in an Appendix. Introduc-

ing rotation in a nearly geostrophic regime leads through a Hopf bifurcation to a limit
cycle, and under the influence of wind and salt to multiple equilibria and chaos, respec-
tively.

Keywords: center-of-mass dynamics, diffusionless Lorenz equations, liquid pendulum,
Shil’nikov phenomenon, uniformly-rotating stratified fluid

1. Introduction: Moments characterising the state of a basin

The first question of a physicist, entering the field of lake and ocean
dynamics may despite some holiday experiences be: ‘‘ what is a lake, and
what is an ocean’’? A limnologist or oceanographer might refer to a certain
reservoir of water, having in some frame of reference its geometric centre
at O, being of dimensions L� B�H, containing fluid characterized by
state variables Sn (n ¼ 1; 2; 3; . . .), such as its temperature, salinity, flow,
etc., and exchanging heat, water, solutes, momentum, etc., with the outer
world through its boundaries Bn at rates Qn (river input and output, evap-
oration and precipitation, insolation, wind-stress, etc.). Clearly, we usually
cannot simply do with just one single value of any such state-variable,
since these are all fields, quantities that depend on both space and time in
a continuous way. A common way of proceeding is by monitoring just the
temporal change of certain integral measures of these fields, their
‘‘moments’’ (e.g., Fisher et al., 1979). Taking for instance some substance’s
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concentration S as general state variable, supposed to vary only in the
x-direction, an integral measure of this substance is simply the total
amount (total ‘‘mass’’) present in the lake (or ocean):

MSðtÞ ¼
Z

Sðx; tÞ dx; ð1Þ

the integral extending over the length of the lake. A first description of the
mass distribution is offered by weighting the concentration with the posi-
tion, giving the position of the centre-of-mass of substance S as

XSðtÞ ¼
1

MS

Z
xSðx; tÞ dx: ð2Þ

With reference to the power with which position x appears in these inte-
grals, these two quantities are referred to as the zeroth and first moments
of substance S, respectively. Higher order moments, obtained by multi-
plying the concentration field with xn (for integer n > 1) and integrating
over the domain, give information about the spreading of mass around
the origin (or around its centre-of-mass, when multiplying S with
ðx� XSÞ2), the skewness of this spread, etc.. These notions can quickly
be generalized to three dimensions. Here we restrict consideration to a
rectangular basin of size L� L�H, which is temperature-stratified only,
in which, by assumption, the zeroth order moments of mass and heat are
fixed (so that there is no net evaporation or precipitation, nor any net
river input or output, and neither a net heating nor cooling). The con-
tainer is assumed to be in steady, uniform rotation (on an f-plane). We
thus conceive the appealing idea that the dynamics of the position vector
of its centre-of-mass may to some extent be representative of the basin-
scale dynamics of a mid-latitude lake or sea (Morgan, 1956; Maas, 1994).

The moments method was used previously to describe, e.g., the figure of
the Earth under the influence of self-gravitation and rotation (Chandrase-
khar, 1968), and the collective motion of fluids that are linearly stratified
in temperature (Dolzhanskiy, 1977) and additionally in salt (Holm, 1978).
The linear spatial dependence of temperature and salt fields employed
therein will be adopted here too. The resulting low dimensional set of
ordinary differential equations, describing the evolution of the amplitudes
of these moments, is related to similar low-order systems that can be
obtained by a Galerkin projection of the partial differential equations onto
a set of modes that satisfy equations and boundary conditions (Lorenz,
1960; Obukhov, 1969; Obukhov and Dolzhansky, 1975; Dolzhanskiy and
Pleshanova, 1983). Such equations have also been interpreted as describing
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(forced and damped) coupled gyrostats, where a single gyrostat is a gyro-
scope (a rotating body in a uniform field of gravity) subject to additional
torques due to rotation, stratification, etc., and is described by a triplet of
nonlinearly coupled equations that conserve energy and phase volume
(Gluhovsky and Dolzhanskiy, 1980; Gluhovsky, 1993; Gluhovsky and
Agee, 1997).

There are physical as well as mathematical reasons for reducing the
full dynamics of a set of coupled fields governed by the Navier–Stokes
equations in the Boussinesq approximation to a severely truncated system
(represented here by the dynamics of their lowest moments). Physically,
this is motivated by the presence of an inverse energy cascade: both rota-
tion as well as stratification lead to a pile-up of energy at the largest
scales (Lesieur, 1996). Mathematically, this is because low-order models
can be used quickly to explore a (restricted) parameter space with rela-
tive ease (Olbers, 2001). This is an attractive property, lost in more
sophisticated numerical models that usually contain a large number of
parameters that specify geometry, forcing, as well as parameterisations
and discretisations needed to make the governing equations amenable to
numerical analysis, whose influence cannot so readily be assessed. In
such cases, typically one’s physical intuition is invoked to decide which
of these parameters can be assumed to be fixed, and which represent an
absence of knowledge on our part, whose impact therefore needs to be
established by a (generally crude) stepwise variation. The numerical inte-
grations are then assumed to capture possible bifurcations that might
take place in between the steps, and to depend smoothly on the unre-
solved parameters. This bypasses the question of whether these assump-
tions are actually correct. The sensitive dependence on the only
remaining parameter in a worked-out example, below, shows that this
may be quite erroneous.

It is important to notice that a basin need not (and in general will not)
have its centre-of-mass at the geometric centre. In fact, this happens only
in the isothermal–isohaline case. In a motionless, stably-stratified fluid, for
instance, gravity will displace the centre-of-mass directly below the geomet-
ric centre, its distance to this centre being representative of the degree of
stratification. Only when this distance recedes to zero, does the fluid reach
the isothermal state. When the centre-of-mass is far below the geometric
centre, the stratification is very stable. This distance can also be regarded
as the length of an equivalent fluid pendulum (Figure 1) whose motion,
under the influence of differential buoyancy sources, will be our main con-
cern here. Note that, in distinction to a traditional pendulum, the fluid
pendulum is able to change its length by moving its ‘‘mass point’’ in any
arbitary direction under the influence of external forcing as, e.g., surface
cooling or heating.
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2. Dynamics of centre-of-mass

The motion of an incompressible, viscous fluid on a rotating f-plane is gov-
erned by the Navier–Stokes equations. In the Boussinesq approximation
these read

Du

Dt
þ f k� u ¼ �rp� qgkþr � ðAruÞ; ð3Þ

r � u ¼ 0; ð4Þ

Dq
Dt

¼ r � ðKrqÞ; ð5Þ

where D=Dt ¼ o=otþ u � r. Here u ¼ ðu; v;wÞ denotes the vector of the
velocity components along the three Cartesian x ¼ ðx; y; zÞ axes, of which
the vertical z component is antiparallel to gravity. The Coriolis parameter
is denoted as f, and k is a vertical unit vector. The pressure, p, and density,
q0, are scaled perturbation quantities: p ¼ ðp� � p0Þ=p0, q0 ¼ ðq� � q0Þ=q0,
where the starred quantities denote the original, dimensional quantities, q0
is the constant (average) reference density with which a pressure p0 is
hydrostatically related, and g denotes the acceleration of gravity. Eddy vis-
cosity and diffusivity are denoted by tensors Aij and Kij, respectively, con-
sidered to consist of (constant) diagonal terms, differing only in the

Figure 1. Schematic of a (planar) fluid pendulum, describing the motion of a heated, stratified fluid

confined to a rectangular box. Straight lines denote sloping isotherms, whose distance (stratification rate)

is inversely proportional to the length of the fluid pendulum, the distance between the centre-of-mass

(large dot) and geometric centre (small dot). Warm and cold fluid is indicated by w and c, respectively. The

sense of motion of the pendulum, depicted by the direction of small arrow, is determined by the gravi-

tational (buoyancy) torque g (thick arrow).
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horizontal and vertical (subscripts h; v) directions. At the boundaries these
equations are supplemented with appropriately prescribed fluxes of
momentum, or buoyancy (heat/salt).

We assume that the time scale T ¼ L2=Kh is set by diffusion. Because we
consider an application to a rectangular box of size L � H in the x and z
directions, respectively, we scale these directions and their velocities corre-
spondingly:

½x; z; u;w; p� ¼ ½L;H;Kh=L;HKh=L
2; ðKh=LÞ2�: ð6Þ

Scaling in the y-direction follows that in x. With this scaling the box has
unit sizes (centred on the origin). We shall further assume that the buoyancy
field (here considered to represent solely and monotonically the temperature
field) gq0 ¼ Rq, with an as yet undetermined magnitude R. The dimension-
less density field is assumed to be given by a polynomial expansion

q ¼ 12½xXðtÞ þ yYðtÞ þ zZðtÞ� þ ðx2 � 1=12ÞrXðtÞ þ � � � ; ð7Þ

so that the density perturbation has no net mass (
R
q dV ¼ 0), and to low-

est order consists of plane surfaces (of arbitrary orientation and strength),
whose basin-averaged density gradient rq �

R
Vrq dV ¼ 12X is propor-

tional to the location of the centre-of-mass X ¼ ðX;Y;ZÞ ¼
R
V xq dV. Here

V denotes the volume of the basin (and dV a volume increment), and rX
measures mass-spreading. Up to a multiplication factor, Z is sometimes
interpreted as the potential energy in a field of gravity (Staquet, 2000).
Note that the expansion of the density field is such that neither the low-
order moments are affected by higher order moments (e.g., the volume
integral of x times a higher order term, such as ðx2 � 1=12Þ, vanishes), nor
are its lowest basin-averaged derivatives affected by its higher derivatives
(e.g., the basin average of rq is independent of rX). This allows us to con-
sider the evolution of the lowest order moments separately, as we do here.
Restricting our attention to the biggest scales of motion is also loosely
motivated by the fact that rotation and stratification impose a kind of two-
dimensionality on the fluid, that, under turbulent forcing (not resolved
here), evokes an up-scale transport of energy: the ‘‘inverse energy cascade’’
(Sommeria, 1986; Rutgers, 1998).

The evolution equation of, e.g., the X component of the centre-of-mass
is obtained by multiplying the diffusion equation by x and by adding
qðdx=dt� uÞ ¼ 0, which vanishes because of the definition of u. We obtain

dðxqÞ
dt

� uq ¼ xr � ðKrqÞ:

DYNAMICS OF A STRATIFIED ROTATING FLUID 253



Next, inserting the expansion for q in the inertial and advective terms and
integrating over the basin, the following considerations can be made. The
first term yields dX=dt. The second term contains

Z
V

xudV ¼
Z
V

x
dx

dt
dV ¼

Z
V

1

2

dx2

dt
dV ¼ 1

2

d

dt

Z
V

x2dV

� �
¼ 0 ð8Þ

which vanishes, as it can be rewritten as the time-derivative of a geometri-
cally fixed quantity. Here integration and differentiation interchange
because the basin is of fixed size. (Formally, this requires noting that, on
employing the continuity equation, the advective term can be written as
the divergence of a flux whose volume integral vanishes because the normal
component of the flow vanishes at the boundaries.) In another term,

Z
V

2yudV ¼
Z
V

y
dx

dt
� x

dy

dt

� �
þ y

dx

dt
þ x

dy

dt

� �
dV; ð9Þ

the second part of the right hand side vanishes for the same reason. The
first part of the right hand of (9), however, is identified as the vertical com-
ponent �L3 of the basin-averaged angular momentum vector
L ¼ 6

R
V x� u dV, whose dynamics clearly needs separate consideration.

The diffusive term,
R
V xðoxKhox þ oyKhoy þ ozKvozÞq dV, can be simpli-

fied with a partial integration and use of the prescribed boundary condi-
tions. Assuming that the diffusive fluxes Khqx through the East (E) and
West (W) vertical boundaries vanish, the first term yields

�Kh

Z
V

qxdVþ
Z Z

xKhqx jEW dydz ¼ �12KhX; ð10Þ

using (7) in the first integral. This diffusive term thus acts as ‘‘Newtonian
cooling’’. In the absence of diffusive fluxes through the northern and south-
ern vertical boundaries, the middle term

R
V xoyKhqy dV vanishes. The last

term
R
V xozKvqz dV can be partially integrated in the vertical, and, with a

prescribed heat flux through the surface Kvqz ¼ Qðx; yÞ (and none at the
bottom), it represents differential zonal heating: FðxÞ �

R R
xQ dxdy.

In order to close the equations we need to know how the basin-averaged
angular momentum vector evolves. Its evolution is obtained by taking the
cross-product of x with the momentum equation and integrating over the
basin. Since x� du=dt ¼ dðx� uÞ=dt, the integral

R
V x�du=dt dV ¼ dL=dt.

Remarkably, the non-linear advective terms vanish identically. The torque
by the pressure gradient force can be written as a surface integral, which
vanishes under the assumption that there is no anisotropic external pres-
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sure torque acting on the fluid (Holm, 1986) (see Appendix A). This leads
to a very small value of the scale R. Assuming, however, that the density
field is to first approximation hydrostatic leads to a more acceptable scale,
larger than the previous one by a factor equal to L2=H2. The horizontal
pressure gradient field then reads �ðpx; pyÞ ¼ �12gRzðX;YÞ, which gives
rise to a buoyancy torque term gRðYi� XjÞ, with i and j unit vectors in
the x and y directions. This provides the coupling to the dynamics of the
centre-of-mass. The viscous terms, finally, can be treated in a way similar
to the diffusive terms, and lead to side-wall, bottom and internal frictional
terms, together captured in a Rayleigh damping / �Liði ¼ 1; 2; 3Þ. The
terms that represent a flux of ‘‘differential momentum’’ through one of the
boundaries, the external torque, such as, e.g., that due to the wind stress s
at the surface ðz ¼ 1=2Þ, or as mediated by the Ekman boundary layer at
the base of the mixed layer (Appendix A), give

T ¼
Z Z

� 1

2
sðyÞ;

1

2
sðxÞ;xsðyÞ � ysðxÞ

� �
dxdy: ð11Þ

Together, we obtain a system of six equations (Maas, 1994) coupling the
dynamics of the basin-averaged angular momentum vector L to that of the
centre-of-mass, X forced by differential momentum T and buoyancy F

fluxes, subject to the Earth’s rotation (f 0 ¼ f=2rh), friction (r ¼ rv=rh) and
diffusion (l ¼ KvL

2=KhH
2). Here, rh;v represent Rayleigh damping coeffi-

cients in the horizontal and vertical directions.

Pr�1 dL

dt
þ f 0k� L ¼ �Yiþ Xj� ðL1;L2; rL3Þ þ T̂T; ð12Þ

dX

dt
þ X� L ¼ �ðX;Y;lZÞ þ RaF: ð13Þ

In these equations we find Ra ¼ gdqeH=2rhKhq0, a Rayleigh number,
indicative of the forcing strength, T̂ ¼ u2�L=2rhKhH, giving the magnitude
of the wind stress torque, and Pr ¼ rhL

2=12Kh, a Prandtl number, mea-
suring the ratio of a diffusive L2=Kh to a viscous r�1

h time scale. A final
rescaling of time with a factor 1=12, angular momentum and centre-of-
mass coordinates (both with a factor 2) has been applied. This leads to a
density scale R ¼ 12rhKh=gH in terms of which the external density con-
trast, dqe, related to the differential heating, is measured in the Rayleigh
number. We also assume that a frictional velocity, u� ¼ jsj1=2 is known.
Note that we have here adopted an f-plane, assuming that the (effective)
background rotation axis is determined by the projection of the Earth’s
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rotation vector along the vertical, so that, at latitude /, f k̂ ¼ X sinð/Þk̂.
In certain cases, particularly near the equator, one may wish to use its
unprojected version X instead. In the following we look at some limiting
cases of (12) and (13).

Note that Eqs.(12) and (13) represent a version of the virial equations
(Chandrasekhar, 1968) adapted to the Boussinesq description of a fluid, in
which inertial mass density (as opposed to heavy mass density) is replaced
by a constant. In the present case these equations have been extended with
viscous and diffusive damping terms, and, owing to the fixed confinement
of the fluid, have been analysed with respect to the differential motions
only (no steady translation of centre-of-mass).

3. Ideal fluid limit: Hamiltonian structure

Neglecting diffusive and viscous terms (setting K ¼ A ¼ 0, see (3) and
(5)), we consider the dynamics of an ideal rotating, uniformly stratified
fluid in response to forcing. Here we assume this to be due solely to dif-
ferential heating in the meridional (y) direction F ¼ ð0; 1; 0Þ, and consider
the wind to be absent (T ¼ 0). Eq. (12) shows that the horizontal circu-
lation (as presented by L3) is then a constant, taken to be zero here.
Without loss of generality we have set the Prandtl number, Pr, and Cori-
olis parameter f equal to one, as these can be scaled out in this limit.
Thus (12) and (13) reduce to the following five coupled equations
describing the evolution of angular momenta in the meridional-vertical
plane l � L1, the zonal–vertical plane m � L2 and the centre-of-mass
X ¼ ðX;Y;ZÞ:

_l�m ¼ �Y

_mþ l ¼ X

_X� Zm ¼ 0

_Yþ Zl ¼ Ra

_Zþ Xm� Yl ¼ 0;

ð14Þ

Inserting X and Y from the first two of these into the last equation reveals
a first integral of motion, denoted as B

B � Zþ ðl2 þm2Þ=2; ð15Þ

whose constant value is determined by the initial values of Z; l and m.
Inserting X and Y into (14c, d) yields
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€mþ _l� Zm ¼ 0

€l� _m� Zl ¼ �Ra;
ð16Þ

where, from (15),

Zðl;mÞ ¼ B� ðl2 þm2Þ=2: ð17Þ

With r ¼ _l; s ¼ _m, these equations can be written as

_l ¼ Hr

_m ¼ Hs

_r ¼ �Hl þHs

_s ¼ �Hm �Hr;

ð18Þ

with

H � 1

2
ðr2 þ s2 þ Zðl;mÞ2Þ þ Ra l: ð19Þ

This is a two degrees-of-freedom, generalized Hamiltonian system (Zaslav-
sky et al., 1991) with coordinate-momentum pairs ðl; rÞ and ðm; sÞ, respec-
tively. The Hamiltonian H consists of a quadratic kinetic part
T ¼ ðr2 þ s2Þ=2 and a quartic potential part Vðl;mÞ ¼ Z2=2þ Ra l, with
Zðl;mÞ given by (17). (Choosing the first momentum differently, as
r ¼ _l�m, these equations obtain the canonical Hamiltonian form (O. Bo-
khove, personal communication).) The Hamiltonian is a second integral of
motion that is conserved during evolution, reducing the dynamics to that
of three coupled ordinary differential equations. For two values of the
Hamiltonian, the resulting three equations are numerically integrated for
Ra ¼ 1. In a Poincaré section Figure 2 shows the typical structure of ellip-
tic and hyperbolic fixed points, periodic orbits and, revealing the non-inte-
grability for this value of Ra, stochastic webs. When the forcing vanishes
(Ra ¼ 0), an additional integral of motion (D � ðX2 þ Y2 þ Z2Þ1=2) exists,
the radius of the equivalent fluid pendulum. In that case, the Hamiltonian
system is integrable. The KAM theorem predicts that most of the periodic
orbits persist when this integrable Hamiltonian is slightly perturbed
(Zaslavsky et al., 1991). This is still visible in the Poincaré section of
Figure 2(b), for a large Hamiltonian perturbation ðRa ¼ 1Þ.

Hamiltonian flow conserves phase space volume. This extends even to
the mapping in the Poincaré section, which is area-preserving. Obviously,
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this property is lost when viscous effects are introduced. Phase space now
contracts and much of the irregularity, and even periodic orbits are gener-
ally lost. However, under certain circumstances, these flows can still be
chaotic as will be shown in some examples in the next section. Further
study is needed to elucidate the impact of the ideal fluid’s Hamiltonian
structure on the viscous equations, with whose study we now proceed
under other simplifying assumptions.

4. Convective case: differential vertical buoyancy fluxes

As convection by vertically differing buoyancy fluxes in the ocean or
lakes is usually a relatively small-scale feature, we defer discussion of the
effect of rotation to Section 5.2. When wind and rotation are absent
(T̂ ¼ f 0 ¼ 0) in (12) and (13) the dynamics in two orthogonal vertical
planes decouple. Let there be a perhaps externally preferred horizontal
direction, y say, to which plane the motion is confined. Then, reorienting
the coordinate system correspondingly, the motion is represented by a
single component of the angular momentum vector L � L1, and the gov-
erning equations reduce to

Pr�1 _Lþ Y ¼ �L ð20Þ

0.5-1.5

1

-1

l

m

1-1.5

1.5

-1.5

l 

m

(a) (b)

Figure 2. Poincaré section at s ¼ 0 for _s < 0 of numerical integration of the Hamiltonian equations in the

phase plane spanned by the angular momenta ðl;mÞ for B ¼ 0, Ra ¼ 1 and energy level (a) H ¼ 0, and (b)

H ¼ 1.
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_Yþ LZ ¼ �Y ð21Þ

_Z� LY ¼ �lZþ Ra: ð22Þ

Here we look at convection driven by differential vertical buoyancy forces
(along the direction of gravity) so that it is assumed that F ðxÞ ¼ F ðyÞ ¼ 0
and F ðzÞ ¼ 1 (its strength being absorbed in the definition of the Rayleigh
number). When there is no motion (L ¼ 0), the centre-of-mass is exactly
below the geometric centre (Y ¼ 0), and the resulting dynamics simply
reflects the effect of diffusion and differential heating (terms on the right-
hand side of (22)).

Diffusion moves the centre-of-mass towards the geometric centre (raising
it, when it is initially below it (see Staquet, 2000), forcing drives it to unsta-
ble stratification, Z > 0, when Ra > 0 (or stable stratification, Z < 0, when
Ra < 0). As soon as the centre-of-mass is slightly off-axis (Y 6¼ 0), however,
macroscopic motion L 6¼ 0 starts to develop, and the three coupled equa-
tions (20)–(22) determine its evolution (Figure 3).

Apart from a translation and re-orientation of the vertical coordinate
(Z ! Ra=l� Z), these equations are identical to the celebrated Lorenz
equations (Lorenz, 1963), where they emerge as a highly truncated set of
coupled Fourier modes. But, with reference to the direction of gravity, this
implies that the Lorenz equations are ‘‘upside down’’. Also, the explicit
nature of the forcing in (20)–(22) makes their physical meaning more trans-
parent. The constant term Ra is, of course, simply the applied heating/
cooling. In the convective case, heating at the bottom drives the centre-of-
mass upwards, above its stable level ðZ ¼ 0Þ. Angular momentum is then
generated by the buoyancy torque (second term of the first equation), when
it is not exactly above this centre (i.e., it has a slight off-axis component
Y 6¼ 0, or, alternatively, has some initial angular momentum L 6¼ 0). This

Figure 3. Schematic of the dynamics of a fluid pendulum. From left to right: slow, nearly vertical (and

axial) rise of the centre-of-mass (thick dot) under the influence of heating, followed by sudden and fast

overturning, and a few quickly damped relaxation oscillations to a new stable location, again nearly below

the geometric centre (thin dot).
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moves the centre-of-mass downwards (second terms of second and third
equations). The damping terms, on the right, represent mechanical friction,
�L, and diffusion �ðY;lZÞ, respectively. Diffusion tries to move the cen-
tre-of-mass back to the geometric centre, while friction removes momen-
tum, and, as a consequence, the liquid pendulum may at times be nearly
stuck to a certain off-axis position Y 6¼ 0 when its angular momentum is
effectively drained. Notice that the present derivation has no spectral leak-
age (such as that due to the truncation of a Fourier expansion). Owing to
the linear space dependence of the temperature and salinity fields, projec-
tion leads to a natural decoupling of the dynamics of the lowest moments
(as considered here) from those of higher order.

While the remaining three equations thus possess the richness, known
from the extensively studied Lorenz equations (Sparrow, 1982), the fact
that this system still contains three parameters (viz. Pr; l; Ra) makes it
too difficult to study comprehensively. The difficulties encountered when
exploring our own three-dimensional physical space (almost entirely
restricted to a thin band over the surface of our planet) illustrates that
scanning a three dimensional parameter space is not an easy task. For that
reason it is worthwhile searching for still more simple models within (20)–
(22). Apart from pragmatic reasons there are also mathematical and physi-
cal motives to attempt a further simplification. A sound mathematical
adage may well be that new insight is obtained by simplifying a problem
as much as one can, without ‘‘trivializing’’ it ( ‘‘trivial’’ here referring to all
pre-existing knowledge). Physically, there is also a good reason, as these
equations contain just one source but two ‘‘sink’’ terms (viz. friction and
diffusion), and it is thus natural to enquire what happens when just one of
these damping mechanisms dominates. We can achieve this by rescaling
(20)–(22), such that a parameter appears in front of either the diffusive
terms, or the friction term. Taking that parameter to be small (zero), we
obtain a reduced set of equations, which we may then try to solve. If we
thus eliminate the friction term, the remaining equations can be integrated,
but the angular momentum then grows indefinitely. This is in conflict with
the assumptions underlying the scaling, so that we consider this scaling to
be self-invalidating. It is left as an exercise for the reader to find the rescal-
ing and solution of the reduced set of equations.

4.1. The diffusionless lorenz equations (DLE)

When, however, the diffusive terms are eliminated by scaling
ðL;Y;ZÞ ! PrðL;Y;ZÞ, t ! t=Pr, and by taking both Pr;Ra ! 1, such
that R ¼ Ra=Pr2 remains finite, the solutions do not blow up (when Y and
L do not simultaneously vanish). We refer to this single-parameter set as
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the Diffusionless Lorenz Equations (DLE, see van der Schrier and Maas,
2000):

_L ¼ Y� L ð23Þ

_Y ¼ LZ ð24Þ

_Z ¼ �LYþ R: ð25Þ

Their solutions (e.g., Figures 4 and 5) display the typical richness known
from the full Lorenz equations, exhibiting (for R decreasing from 1 down-
wards) period-doubling bifurcations leading to chaos (characterised by
positive Lyapunov exponent, Figure 6(a)), a strange attractor (at, e.g.,
R � 1, Figure 6(b)), symmetry breaking bifurcations, multiple equilibria
and Shil’nikov’s phenomenon (Sparrow 1982; van der Schrier and Maas,
2000). The latter is associated with the presence of a homoclinic orbit to a
fixed point of the saddle-focus type at special values R ¼ Rs. As R
approaches any of these Rs, from below or above, the periodic cycle under-
goes an infinite number of saddle-node bifurcations. Hence the curve
depicting this periodic equilibrium in parameter space shows a spiral roll-
up, where the cycle in phase space resembles the homoclinic orbit more
and more as Rs is approached. Moreover, the cycle also exhibits an infinite
number of period-doubling bifurcations. Due to the presence of these
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Figure 4. (a) Horizontal Y (solid) and vertical Z (dashed) coordinates of the centre-of-mass as a function

of time t following from a numerical integration of the Diffusionless Lorenz Equation (DLE) for R ¼ 0:1

over four subsequent cycles of subsequent duration T1;...4. (b) Y� Z phase plane (here identical to real

space) representing the same curves. Different dashings indicate different subsequent cycles. Longer

durations T result in larger lengths of the fluid pendulum (distance to the geometric centre).
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period-doubling and saddle-node bifurcations, the curve in parameter space
frequently changes its stability (Glendenning and Sparrow, 1984; Mullin
and Price, 1989).

4.2. Self-similar behaviour

Paradoxically, the structure seems to be still richer, as, in contrast to the
full Lorenz equations, the DLE display a self-similar behaviour as R 	 1,
in which all of the previous behaviour is echoed in repetitively smaller
parameter windows (Figure 7). (This reflects Shil’nikov’s phenomenon,
showing that periodic states successively lose stability and ‘‘fall’’ onto a
neighbouring branch). Moreover, an approximate analytical solution can
be obtained in this part of parameter space, recovering this dependency,
which will be sketched here. Notice that this self-similar, chaotic behaviour
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for infinitesimally small values of R is quite remarkable, as it implies that
regular perturbation theory, by means of which we might otherwise be
inclined to tackle (23)–(25), always leads to erroneous results. This pertur-
bation approach assumes that we can develop the dependent variables in
convergent power series of R, e.g., as Lðt;RÞ ¼ L0ðtÞ þ RL1ðtÞ
þR2L2ðtÞ þ � � �. Notice, however, that Rð	 1Þ is now acting as an ordering
parameter, whose precise (small) value can no longer matter. In other
words, in this approach L;Y and Z are assumed to depend smoothly on R,
an assumption defied by the numerical and analytical results, no matter
how small R actually is. Sensitive dependence of the solution no longer
applies to just the initial conditions, but also to the parameter. It suggests
that for R 	 1 the DLE are invariant under some as yet unknown similar-
ity transformation. The reader may verify that a regular perturbation solu-
tion of (23)–(25) signals that there are ‘‘problems’’, by again leading to
unbounded growth of its higher order terms.

For R 	 1, the ‘‘fluid pendulum’’ exhibits the following behaviour.
Most of the time it resides very close to the vertical axis (jYj 	 1), being
almost depleted of angular momentum (jLj 	 1Þ, slowly raising its centre-
of-mass under the (weak) external forcing. Then, when this is above the
geometric centre, it is formally unstable. Yet, the instability needs time to
grow – the longer so, the closer the pendulum is to the axis. Then, at some
point, the gravitational (buoyancy) torque sets in, and the pendulum
quickly moves downward, dropping below its geometric centre, almost
without receiving further buoyancy, fixing its length (distance to the
origin), where it oscillates a few times in fairly viscous surroundings, so

Figure 7. (a) Poincaré section, giving the Z-position at Y ¼ 0, of numerically integrated DLE for a

number of different R, ranging from 0.01 (vertical line) to 0.5. (b) Bifurcation diagram of the duration T of

successive cycles obtained by iterating a map derived from the DLE for varying R (taken from van der

Schrier and Maas, 2000). Notice the difference in the abscissae.
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that it quickly sticks at a different distance from the axis, perhaps also on
the other side of it, from which point the cycle starts again (see Figure 3).
The latter relaxation oscillation and the former sudden growth of the angu-
lar momentum and subsequent drop of the pendulum are both well
described by a linear (Airy) equation. The only nonlinearity left is in the
duration T 0 over which this equation applies, which sensitively depends on
the previous distance to the axis, directly related to the duration of the pre-
vious cycle T (determining the ‘‘length’’ which the fluid pendulum could
acquire). We can thus construct (see Appendix B) what turns out to be an
analytical multi-peaked map that relates the duration of one cycle to that
of the next (Figure 8). This compares qualitatively (and to some extent
quantitatively) with a numerically determined multi-peaked map (Lorenz,
1979). From this map we determine (multiple) fixed points as the intersec-
tions with the bisector, and their stability from the slope of the map at
these intersections. Iterating the map (Figure 7(b)) shows period doubling
and chaos in a number of self-similar windows that decrease in size with
decreasing R. As this map ‘‘compresses’’ (the peaks becoming closer) when
R decreases, this reveals Shil’nikov’s phenomenon in yet another way.
Figure 8 illustrates how intersections (equilibria) may disappear through a
tangent bifurcation, as seen at T � 1:35, creating a sudden jump to a still
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Figure 8. Analytical map T 0ðTÞ, the cusped solid line given by Eq. (43), and numerical iterations of DLE

(dots) for R ¼ 0:1. The solid sloping line presents the bisector.
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existing equilibrium. An implicit form of a multi-peaked map for the full
Lorenz equations is derived by Fowler and McGuinness (1982, 1983).

5. Differential lateral buoyancy fluxes and extensions

A midlatitude sea may be mainly driven by lateral differences in buoyancy
fluxes, e.g., those due to incoming short-wave solar radiation at low lati-
tudes, compensated by a heat loss in the form of long-wave radiation at
high latitudes, so that we here assume that F ðyÞ ¼ 1;F ðxÞ ¼ F ðzÞ ¼ 0. Note
that, in a lake, river inflow and outflow may mimic such a situation. When
the Prandtl number is assumed to be large, (12) simplifies, and the over-
turning circulation (described by its angular momentum L) is frictionally
balancing the torque due to the basin-averaged, latitudinal buoyancy gradi-
ent, L ¼ �Y. When the vertical diffusion is again strong compared with
the horizontal ðl � 1), also the inertia in the last equation, controlling the
vertical position of the centre-of-mass, may be eliminated (by assuming
that Y ! lY and by taking the limit l ! 1), so that, in terms of the ori-
ginal variables, the lateral buoyancy gradient ðYÞ is governed by

_Y ¼ Ra� Y� L2Y=l: ð26Þ

5.1. Adding salt

In its present form (26) is – dynamically – not very interesting. Each initial
density contrast will veer towards the equilibrium described by the vanishing
of its right hand side. However, the dynamics becomes richer when the den-
sity contrast Y is assumed to be also determined by lateral salt-differences,
S, instead of just temperature differences T, so that the linearized equation
of state yields Y ¼ �Tþ S (after rescaling with the thermal and haline
expansion coefficients). In particular, when the salt has its own dynamics,
either due to having a different restoring time scale, or due to a different
exchange with the atmosphere, multiple steady states can be anticipated to
occur. This relates to the multiple equilibria of the thermohaline circulation
as found in box models in which the circulation in a midlatitude ocean is
conceived as the flow between two adjacent boxes, representing the sub-
equatorial and sub-polar regions (Stommel, 1961). In the present case, both
T and S are (approximately) governed by eq. (26), except that Ra and l
refer to different constants RaT;S etc, for heat and salt, respectively. Steady
states are obtained by the vanishing of the right hand sides of these equa-
tions, and by subtracting the resulting equations, replacing the difference
T� S by L, one algebraic equation for L is obtained:
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L ¼ RaT
1þ L2=lT

� RaS
1þ L2=lS

: ð27Þ

By graphical inspection this is seen to possess multiple steady states (for
appropriate parameter values), retrieving Stommel’s (1961) finding in a box
model. The last term in (26) represents advection, or, in box-model termi-
nology, the exchange flow between the two boxes. Stommel (1961) argued
that the exchange should be insensitive to the sense of the circulation (sign
of L) and thus took its modulus jLj. The present reduction from the
Navier-Stokes equations confirms this ad hoc argument, recovering the
insensitivity to the sense of the circulation through its squared appearance
L2 (Maas, 1994; van der Schrier and Maas, 1998).

5.2. Adding rotation

Large lakes and oceans are affected by rotation, so that it is worthwhile to
examine its effect, initially on an f-plane, by taking f 0 6¼ 0 in eq. (12). Since
we intend to keep the equations manageable, we shall make the same
ansatz that Pr ! 1, removing the inertia from the angular momentum
equations. With this assumption, and an intermediate rescaling
ðX;Y;Z;RaÞ ! ð1þ f 02ÞðX;Y;Z;RaÞ, we find:

L1 ¼ �Yþ f 0X ð28Þ

L2 ¼ Xþ f 0Y; ð29Þ

which, when f 0 ! 1, represent geostrophic relations, and

L3 ¼
T̂

r
: ð30Þ

Dropping the wind for the moment, so that L3 ¼ 0, assuming vanishing
zonal differential buoyancy fluxes FðxÞ ¼ 0, and inserting the remaining angu-
lar momenta in the equations for the centre-of-mass, we obtain (Maas,
1994):

_X ¼ ðXþ f 0YÞZ� X ð31Þ

_Y ¼ ðY� f 0XÞZ� Yþ RaF ðyÞ ð32Þ
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_Z ¼ �lZ� ðX2 þ Y2Þ þ RaF ðzÞ: ð33Þ

These equations are identical to another model, which Lorenz proposed as
‘‘possibly the simplest atmospheric general circulation model’’, in which Z
denotes the strength of the jet-stream, and X and Y the sine and cosine
components of a long planetary wave (Lorenz, 1984, 1990). Lorenz showed
that these equations exhibit chaos when F ðzÞ is large. (For a more extensive
bifurcation analysis, see van Veen, 2002). In oceans, or large-scale lakes,
lateral differential buoyancy fluxes are presumably more important, so that
we shall again consider the case F ðyÞ ¼ 1;F ðzÞ ¼ 0.

By setting the right hand sides equal to zero, we obtain ðX;YÞ ¼
Raðf 0Z; 1� ZÞ=ðð1� ZÞ2 þ f 02Z2Þ. When inserted in the last equation (at
equilibrium) this yields

Zðð1� ZÞ2 þ f 02Z2Þ ¼ �Ra2=l: ð34Þ

Because the right hand side is negative, there is always just one statically
stable (Z < 0) steady state, which implies that X < 0, Y > 0 and, from
these, a thermal circulation with north-eastward (L1 < 0;L2 > 0) surface
flow. This flow may, however, become unstable for certain values of the
rotation rate ðf 0Þ, diffusivity (l) and forcing ðRaÞ. We may check this by
perturbing the solution around that at steady state, found above, with
ðX 0;Y 0;Z 0Þemt and, upon substitution into eq. (33) and linearisation, derive
the cubic equation for the eigenvalue m. For small values of the parameter
all three eigenvalues have negative real parts, and the equilibrium is stable.
But at some parameter setting two eigenvalues cross the real axis simulta-
neously, m ¼ 
ib, and a periodic solution (limit cycle) results (Hopf bifurca-
tion), without, however, violating the static stability (Z < 0 always).

Again, adding salt, the resulting equations may show a still richer
behaviour, up to chaos in the salt-dominated regime. On the other hand,
the Stommel-type of multiple equilibria may cease to exist when rotation
increases (van der Schrier and Maas, 1998).

6. Effect of wind

We wish to add a wind stress field, supposed to represent the mid-latitude
wind pattern, with its high-latitude westerlies and low-latitude easterlies.
This is here condensed to the assumption that it exerts a constant negative
torque, T ðzÞ ¼ �1 (its magnitude being represented by T̂ ), leading in a
steady state, by (30), to a uniform horizontal circulation, represented by a
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negative constant L3 < 0. Equations similar to (33) result, except for the
replacement of f 0Z ! f 0Z� L3 in the two first equations. The steady states
are again governed by (34), provided the same replacement is made there
too:

hðZÞ � Zðð1� ZÞ2 þ ðf 0Z� L3Þ2Þ ¼ �Ra2=l: ð35Þ

Multiple equilibria may now arise again (in the absence of any salt stratifi-
cation) due to the combined effects of rotation and wind. They require,
first of all, hðZÞ to be non-monotonic. By requiring its derivative
dh=dZ ¼ 0 to vanish, we determine (with w �

ffiffiffi
3

p
) when its roots

Z
 ¼ 2ð1þ f 0L3Þ 
 ½ððL3 � wÞf 0 þ 1þ wL3ÞððL3 þ wÞf 0 þ 1� wL3Þ�1=2

3ð1þ f 02Þ
ð36Þ

are real, see Figure 9(a). For the northern hemisphere, f 0 > 0. Since hðZÞ is
an asymptotically increasing function of Z and since we require the local
minimum to be negative (in order for it to equal the negative quantity
�l2 � �Ra2=l), multiple equilibria occur for cases that hðZþÞ < 0.

For each f 0 > w and L3 < �w, this occurs for f 0 > f 0þ �
ðwL3 � 1Þ=ðL3 þ wÞ, over some interval of Rayleigh numbers (l2), see Figures
9(b) and (c). Conditions for the instability of these equilibria can be derived
along the lines discussed for the windless case in Section 5 (see Maas, 1994).

Figure 9. (a) Equilibrium curve hðZÞ, for f 0 ¼ 25;l ¼ 2, showing multiple equilibria (solid circle: stable,

open circle: unstable) due to having three intersections with the (dashed) line l 2 ¼ Ra2=l ¼ constant. (b)

For l ¼ 2 and for wind-induced, horizontal circulation having L3 ¼ �6, multiple equilibria exist in the

dashed region of the Ra� f 0 parameter plane. Crossing the solid line from below, one of the previous

stable equilibria turns unstable via a Hopf bifurcation. The dot indicates the parameter values used in the

X;Y;Z-phase space (identical to physical space) of (c) displaying these two equilibria: a stable fixed point,

and a limit cycle, circling around the (now unstable) equilibrium. The initial positions are denoted by a

dot.
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7. Discussion and summary

The density field of a continuously stratified rotating fluid contained in an
enclosed basin can be expanded in a global Taylor series, a series of
orthogonal polynomials. Their time-dependent amplitudes are equivalent
to the moments of the density field. Assuming that there is a balance
between net buoyancy gain and loss, the leading term, the average density
excess, vanishes. The lowest dynamic moment, the basin-averaged density
gradient, is a vector that can also be interpreted as the fluid’s centre-of-
mass position relative to the geometric centre. Owing to a peculiarity of
the non-linearities in hydrodynamic systems (namely that these are qua-
dratic), this first order moment of the density field evolves independently
of the higher order moments (but not the reverse!). This allows us to
neglect higher order moments (describing the density field’s spread, skew-
ness, etc.), particularly as both stratification and rotation provide a degree
of two-dimensionality to the fluid that, under turbulent forcing (not mod-
elled here), through a so-called inverse energy cascade, leads to a pile up of
energy at the largest scales.

The first moment of the density field is here solely determined by the
first order moments of the buoyancy and momentum fluxes through the
boundaries, and couples dynamically to the lowest non-trivial moment of
the momentum field, the basin-averaged angular momentum. This results
in a set of ordinary differential equations governing the centre-of-mass
position vector and the basin-averaged angular momentum vector, Eq.
(12)–(13), and has been employed here for just a few cases.

With relatively little effort a number of interesting submodels can be
derived from it, under certain conditions displaying rich dynamics (nonin-
tegrable Hamiltonian structure of the ideal fluid limit, and multiple steady
states, limit cycles, bifurcations and strange attractors in a damped version).
It can be extended with an independently varying salt field, and thus be
used to test parameterisations in thermohaline circulation modeling by, e.g.,
linking a virtual salt flux to the local temperature instead of prescribing it
externally (van der Schrier and Maas, 1998; van der Schrier, 2000). It can
also be used to explore other boundary conditions, such as considering the
effect of stochastic forcing representing weather variability (Monahan,
2002). Its versatility also makes it an interesting model to use in simplified
ocean-atmosphere climate models (especially in its quasi-geostrophic limit),
either of deterministic (van Veen, 2002; van Veen et al., submitted for publi-
cation) or stochastic (Arnold et al., 2002) nature. It finally seems attractive
for use in a post-processing phase, compressing 3-D information obtained
in field, laboratory or numerical experiments. In the field, undersampling
probably makes this very hard to accomplish. In controlled laboratory and
numerical experiments, however, this may well be the most succinct way of
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expressing the state of a stratified, rotating fluid, and may help to provide a
framework for interpreting the sparse field data.

Extending the model to an equatorial box, aimed at understanding the
possible transition of an equatorially symmetric to asymmetric response
under equatorially symmetric forcing, shows that some of the simplicity is
lost, since higher order moments and some truncation come into play.
However, this may be balanced by an increased insight into the symmetry
breaking aspects due to three-dimensionality and the Earth’s rotation (van
der Schrier et al., unpublished manuscript).
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Appendix A: Details of derivation of moments model (12) and (13)

Here, we give arguments for the treatment of the pressure term in the
moments model. Also, we discuss the moments of the viscous termR
V x�r � Aru dV. Rather than simply replacing these viscous terms by
Rayleigh damping �rL, we show that there is room for distinguishing
damping acting on the horizontal circulation (embodied in �rvL3) from
that acting on the vertical circulations ð�rhðL1;L2Þ).

A.1. Pressure torque

When we consider the linearized 2-D equations in the Boussinesq approxi-
mation, taking the curl of the momentum equation eliminates the pressure
gradient term. Thus we are left with two equations for streamfunction and
buoyancy which can be simplified to an internal wave equation. When this
equation is solved, subject to certain initial and boundary conditions, the
pressure field can then be determined. Taking the divergence of the
momentum equation, the pressure field is described by a Poisson equation,
in which the vertical buoyancy gradient acts as a body force, that can then
be considered as known. However, the solution of this Poisson equation
requires that we specify the pressure (Dirichlet condition) or its normal
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derivative (Neumann condition) at the boundary. If this is done anisotropi-
cally, this effectively operates as an additional (in this case, boundary) forc-
ing mechanism. This may be relevant when we consider the response to
surface waves at a free surface (Morgan, 1956), or to atmospheric pressure
loading (Wunsch and Stammer, 1997). But, when considering the response
to differential heating, there is no reason to prescribe an anisotropic exter-
nally imposed pressure field at the boundary. In the same sense, it is natu-
ral to again choose the pressure isotropic in the boundary pressure torque
term of the equation governing the basin-averaged angular momentum.
The effect of this choice will be that this torque term vanishes (while the
interior pressure field will, of course, not). If, however, we aim to study the
effects of free surface waves, or of atmospheric pressure loading, an aniso-
tropically prescribed pressure at the surface simply acts as an additional
forcing term in the moment equations too.

In the main text hydrostatic balance was assumed in the vertical
momentum equation. This gave rise to an internally determined pressure
field whose torque could be evaluated and led to the scaling of the density
perturbation as given. Without a basic hydrostatic state, but retaining the
requirement that there is no net external pressure torque, the same set of
equations is obtained, but with a density scale reduced by a factor ðH=LÞ2,
in terms of which any externally ‘‘applied’’ density contrast (as embodied
in the definition of Ra) will be huge.

A.2. VISCOUS DAMPING

The equations for the basin-averaged angular momentum result from taking
the cross product of the position vector with the momentum equation, and
subsequent integration over the whole (box-shaped) fluid domain V. Here
we look more closely at the viscous term, yielding S �

R
V x�r�ArudV.

Expanding this, we find, e.g., as its vertical component

k̂ � S ¼
Z
V

x½oxðAhvxÞ þ oyðAhvyÞ þ ozðAvvzÞ� � y½oxðAhuxÞ þ oyðAhuyÞ

þ ozðAvuzÞ�dV:
ðA1Þ

This acts to drive and damp the horizontal circulation, represented by the
vertical component of the angular momentum vector L3, as can be seen by
the partial integrations, use of boundary conditions and some closure
assumptions.
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We regard the fluid domain to consist of a (nearly) inviscid interior, up
to the edge of a thin boundary layer adjacent to the rigid walls. Integration
is assumed to extend up to this layer, where stresses relate by some stress
law to the local velocity at the edge of this boundary layer: Anonu ¼ snu,
allowing for some slip (see, e.g., Maas and Van Haren, 1987, using tidal
observations from the North Sea). Here n refers to the inward normal
direction, and sn is a friction velocity. At the surface this stress is exerted
by the wind stress Avðuz; vzÞ ¼ s ¼ ðs1; s2Þ.

Collecting z-derivatives and performing the integration from bottom (B)
to top (T), yields an integral over the horizontal surface A :R
AðxAvvz � yAvuzÞ jTB dA ¼

R
Aðxs2 � ys1ÞT � svðxv� yuÞB dA. This contains

the torque of the wind stress at the top as a driving term, and a bottom
friction term. We are tempted to close the description by relating the inte-
gral over the bottom area to that of the same quantity over the total vol-
ume divided by the depth:

�
Z
A

svðxv� yuÞB dA � � sv
H

Z
V

ðxv� yuÞ dV � �rvL3; ðA2Þ

introducing a decay rate rv ¼ sv=H.
Partial integrations of the remaining terms in (A1) from West (W) to

East (E), or from South (S) to North (N) yield the following terms

Z
A

ðxAhvx � yAhuxÞ jEW þðxAhvy � yAhuyÞ jNS dAþ
Z
V

Ahðuy � vxÞdV:

ðA3Þ

The first two terms are, of course, surface integrals over different side walls
(indicated by E,W,etc.). In the first term of the first integral the stress law
can be employed Ahvx ¼ 
shv (and similarly in the second term of the sec-
ond integral), where the sign accounts for the derivative pointing inwards
ðþÞ or outwards ð�Þ. Employing the continuity equation to replace
ux ¼ �ðvy þ wzÞ in the second term of the first integral, and performing
additional partial integrations on these two terms, in the y and z directions,
respectively, yields, from the condition that there is no flow normal to the
respective boundaries (vN ¼ 0, etc.):

�
Z
A

yAhux jEW dA ¼
Z
A

yAhðvy þ wzÞ jEW dA ¼ �
Z
A

Ahv jEW dA: ðA4Þ

Hence, together with a similar term from the second integral of (A3), and
a partial integration of the volume integral in (A3), we obtain the follow-
ing, additional side-wall friction terms:
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Z
A

ð�ðjxjsh þ 2AhÞv jEW þðjyjsh þ 2AhÞu jNS ÞdA: ðA5Þ

Note that at the respective side walls, jxj ¼ L=2, etc., are simply constant,
so that (A5) equals ðLsh=2þ 2AhÞ

R
Að�v jEW þu jNS ÞdA. The integral presents

the horizontal circulation along the side wall. This can be also written as
the volume integral of the vertical vorticity component, so that we shall
again be tempted to close (A5) as being proportional to �rhL3. Together
with the bottom friction (A2), we obtain a damping �rvL3, with
rv ¼ rh þ rv. Note that the damping rate rv, given the derivation, has an
empirical character.

Similar arguments can be used also to close the horizontal components
of S. We shall parameterise the damping terms acting on the horizontal
angular momenta as �rhðL1;L2Þ, retaining, by using a different subscript,
only the possibility that the decay rate acting on these two terms is differ-
ent from that acting on the horizontal circulation. The forcing of circula-
tions in meridional and zonal vertical planes due to windstress is no longer
by its torque, but rather, directly, by the net windstress itself (see (11)),
assumed to vanish in this study.

Appendix B: Derivation of multipeaked map from DLE (19)

In van der Schrier and Maas (2000) the single parameter (R) Diffusionless
Lorenz Equations (23)–(25) (DLE) were derived. It was shown that for
R 	 1 these equations are approximately solved by a second order Airy
equation, which is applicable over a duration that depends on that of the
preceding cycle. An alternative derivation is given here, leading to a quali-
tatively similar multi-peaked map, which, however, makes less assumptions
in its derivation and whose peaks are located closer to those obtained by
numerical integration.

In his seminal paper on deterministic non-periodic flows, Lorenz (1963)
derived three nonlinearly coupled differential equations describing convec-
tion between two horizontal plates. While its numerically determined solu-
tions show irregular transitions of positive to negative cycles of its
dependent variables, the height of subsequent maxima of each of these
cycles seemed to be strongly related to that of its predecessor. A plot of
subsequent maxima against each other was shaped like a single peak tent,
to which it was subsequently idealized. For such a map the (sensitive) cha-
otic dependence of iterations (depending on the initial conditions) could be
established, and was rigorously linked to a symbolic shift map. In a later
numerical integration, Lorenz (1979) observed that for other values of the
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parameters, such a map could exhibit multiple peaks. An implicit map for
the three parameter Lorenz equations was described in Fowler and
McGuinness (1982, 1983). Here we follow van der Schrier and Maas
(2000) by taking the one parameter diffusionless Lorenz equations (23)–
(25), and obtain an explicit map.

The derivation starts with the observation that, for, jLj; jYj 	 R1=2, the
vertical coordinate of the centre-of-mass, Z � Rtþ c, where c is a constant
of integration, which we take to be zero, so that time is measured from the
moment that the centre of mass passes the geometric centre. Eliminating Y
from the first two equations, and substituting this approximation for Z,
leads to

€Lþ _L� RtL ¼ 0: ðB1Þ

For L ¼ e�t=2 ~L, and s ¼ dðtþ 1=4RÞ, with d � R1=3, we find that this
reduces to the Airy equation:

€~L � s ~L ¼ 0; ðB2Þ

where a dot now denotes a s-derivative, so that the general solution reads

L ¼ e�
1
2tðaAiðsÞ þ bBiðsÞÞ; ðB3Þ

where Ai;Bi denote Airy functions (e.g., (Abramowitz and Stegun, 1965),
and a and b are undetermined amplitudes. These solutions apply over some
time interval that is determined by matching the part over which Y grows,
during the upper phase of the liquid pendulum, to its oscillatory, relax-
ational decay part of the next cycle, during which the pendulum is in the
lower half plane, and during which it will slowly ascend again (under the
influence of heating).

The advantange of the present derivation over that cast in polar coordi-
nates r; h, as in van der Schrier and Maas (2000), is that we do not need
an additional matching near the origin (Y;ZÞ � ð0; 0Þ (where h ‘‘jumps’’ by
p). Also, there is no additional approximation involved, as in that study,
where sin h was replaced by 
h. This approximation is appropriate for h
close to 0 or p, but was, in fact, applied also for h near 
p=2, motivated
by the fact that the ascent and descent of the liquid pendulum occur on
widely differing time scales. The ascent (h near 0; p) is a slow process, and
the descent (h � 
p=2) a very rapid process. Presently, the only problem is
to decide exactly when to match. For this we choose the moment T ¼ Rt
at which the liquid pendulum no longer grows in length. This occurs when
Y ¼ Ymax, or when Z ¼ 0. From (25) it follows that r � ðY2 þ Z2Þ1=2 � T.
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Thus, at Z ¼ 0, Ymax ¼ sT, where s ¼signðYÞ. Hence, the moment of
matching is determined by finding the root of Y ¼ _Lþ L ¼ sT. Since the
Ai/Bi-functions and their derivatives (indicated by primes) decrease/grow
exponentially for a positive argument, only the Bi-function and its deriva-
tive are taken into account, s ¼signðbÞ, and the time of matching T is
determined by solving

e�
T
2RbðdBi0þ þ 1

2
BiþÞ ¼ sT: ðB4Þ

The arguments of the Airy functions Ai
;Bi
 are labelled by subscripts 
,
which are given by ð1=4
 TÞd�2. Once T is known, we match L and _L for
the increasing part, to the oscillatory decay part of the next cycle, when
angular momentum is lost by mechanical friction. This part of the solution
is again given by (B3), except that it employs a shifted time t0 ¼ tþ 2T=R,
matching occurring at t0 ¼ �T=R. The undetermined amplitudes in the
next cycle, denoted by primes, then follow from the matching conditions,
and read

ða0; b0Þ ¼ pbe�T=RðBi0�Biþ � Bi0þBi�;Bi
0
þAi� � BiþAi0�Þ: ðB5Þ

Note that the dependence on a is lost owing to a multiplication with the
vanishingly small Aiþ or its derivative. In another application of (B4) (to
primed quantities), b0 now determines the positive time T 0 and therefore
the maximum length which the pendulum reaches in the next cycle. To
obtain an explicit approximate relation of T on b (and hence also of T 0 on
b0), we use the asymptotic expansions of the Airy functions [Abramowitz
and Stegun, (1965)],

lim
z!1

ðBiðzÞ;Bi0ðzÞÞ ! p�1=2efðz�1=4; z1=4Þ; ðB6Þ

where

f ¼ 2

3
z3=2; ðB7Þ

and argument

z ¼ d�2ðTþ 1

4
Þ: ðB8Þ
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Inserting these in the primed version of (B4) leads to

ef
0�T 0=2R ¼ p1=2sT 0

d1=2b0
T 0 þ 1

4

� �1=4

þ 1

2
T 0 þ 1

4

� ��1=4
" #�1

: ðB9Þ

Taking the logarithm of both sides, using the auxiliary variable
g0 ¼ ðT 0 þ 1=4Þ1=2, gives

2

3
g03 � 1

2
g02 � R ln½g01=2ðg0 � 1=2Þ� ¼ R ln½ðp=dÞ1=2=jb0j� � 1

8
� p; ðB10Þ

Inserting b0 into this equation from (B5), and from (B4), writing

b ¼ sTe
T
2RðdBi0þ þ 1

2
BiþÞ�1; ðB11Þ

its right hand side p can be rewritten as

pðTÞ ¼ T

2
� 1

8
� R ln ðpdÞ1=2 TAi�

Bi0þ=Biþ �Ai0�=Ai�

dBi0þ=Biþ þ 1=2

����
����

� �
: ðB12Þ

The left hand side of (B10) is a function of T0, the right hand side, p, a
function of T, given by (B12). Hence, solving for g0 ¼ g00 þ Rg01 þ � � � as a
function of pðTÞ establishes the desired explicit relation (approximately)

T 0ðTÞ ¼ �1=4þ ðg00 þ Rg01 þOðR2ÞÞ2; ðB13Þ

where

g00 ¼
1

2
coshðcosh�1ðj48pþ 1jÞ=3Þ þ 1

4
; ðB14Þ

and g1
0 can be cast in terms of g0

0

g1
0 ¼ ln½g00ðg00 � 1=2Þ2�=ð2ð2g00 � 1Þg00Þ: ðB15Þ

From (B12) it is evident that the map T 0ðTÞ will have peaks (T 0 ! 1)
when the argument of the logarithm vanishes. Employing the asymptotic
expansions

lim
z!1

ðAið�zÞ;Ai0ð�zÞÞ ! p�1=2ðsinðfþ p=4Þz�1=4; cosðfþ p=4Þz1=4Þ;

ðB16Þ
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applied to z� ¼ d�2ðT� 1=4Þ, where f� ¼ ð2=3Þz3=2� , leads to

p ¼ T

2
� 1

8
� R ln

2T 2

ðT� 1=4Þ1=4ððTþ 1=4Þ1=2 þ 1=2Þ
cosðf� þ p=4� /Þ

�����
�����

" #
;

ðB17Þ

where

/ ¼ tan�1 Tþ 1=4

T� 1=4

� �1=2

: ðB18Þ

Thus, the peaks are found at the zeros of the cosine, i.e., at

f� � / ¼ ðnþ 1=4Þp; n ¼ 1; 2; . . . ; ðB19Þ

which, for large T, occur at

Tn �
1

4
þ 3

4
Rð2n� 1Þp

� �2=3

; n ¼ 1; 2; . . . ðB20Þ

For R ¼ 0:1, the solid curve of Figure 8 presents the analytical map (B13)
up to order R2, the dots represent numerically determined values by
directly integrating the diffusionless Lorenz equations (23)–(25). The dis-
tances between subsequent peaks and the location of the baseline curve
seem to be correct. The peak locations are closer to the numerical observa-
tions than to those given by van der Schrier and Maas (2000), but they still
need further improvement.
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