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1 Introduction

When internal waves are present in a container, very interesting behavior can

occur. For example when the container has a broken symmetry, so called

attractors are possible. Of the full three dimensional solutions however, not

very much is known. The subject of this report is the behavior of the internal

waves in three dimensional geometry's. Because analytical methods fail in

three dimensions for all bust the most simple geometry's, one has to resort to

numerical computation. This has been done in the past, Henderson & Aldridge

(1992) made a �nite element model (FEM) for internal waves in a frustum.

The work done here has been based on a FEM made by A.N.Swart. This

model was developed for examining the behavior of internal waves in a two

dimensional way, where a constant pressure distribution in one direction is

assumed. This FEM is based on the equations which describe the behavior of

the internal waves in terms of the pressure alone. The FEM was implemented

in MATLAB and has been used as a basis for the work done here. The research

goal of this project was to extend the FEM code written by A.N.Swart to

three dimensions. Using this code the three dimensional behavior of internal

waves, in a special trapezoidal shaped container, had to be examined. So far

the FEM model has been extended to three dimensions. Several versions were

made, both for internal gravity waves and inertial waves. Also, by assuming a

pressure distribution in one direction, some two dimensional simpli�cations of

the three dimensional model were made and programmed. These codes have

been tested and should be computationally correct. For the internal gravity

waves, the code was checked by looking at the results in a cube, which can

be derived analytically. For inertial waves, the code was checked with work

done by L.Maas on the amphidromic structures of inertial waves in a cube.

Analytically, some work was done by tracking the energy of the internal waves

through the containers.

In chapter 2 the mathematical model describing the behavior of internal

waves in a container is derived. Also some important properties of internal

waves are presented. After this the known solutions are brie
y discussed. Fi-

nally some features of the computer program warp are discussed. In chapter 3

some analytic work is presented, which mainly deals with tracking the energy

through the three dimensional container, which gives an idea of the behavior.

Using this analytic work the solutions for the cube and the expectations for the

trapezoid are discussed. In chapter 4 the FEM extensions are described both

in theory and implementation. Chapter 5 deals with the results of the FEM

implementation(s). The results are presented and where possible explained and

compared with known solutions. Finally, in chapter 6 the results are summa-

rized.

2 Mathematical model

2.1 Introduction

In this chapter the mathematicalmodel describing the behavior of internal waves

in a closed container is set up. The mathematical model is derived in section 2.2.
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This will result in a di�erential equation with boundary conditions in terms of

the pressure. In this section some properties of the di�erential equation are also

discussed. In section 2.3 internal waves are examined. Some important prop-

erties of internal waves, including the dispertion relation, energy propagation

and re
ection behavior, are described. In section 2.4 the known solutions are

presented. Finally, in section 2.5 the �nite element model Warp is presented.

2.2 Model equations

The behavior of internal waves in a rotating container is described by the lin-

earised bousinesq equations :

�

�

(u

t

+ f � u) = �rp+ �gk (1)

�

t

�

w�

�

N

2

g

= 0 (2)

r � u = 0 (3)

The �rst equation is a linearised version of the euler equation for a rotating


uid. The second equation expresses that there is no compression or di�usion.

The last equation is the continuity equation. A subscript indicates a derivative,

while a bold typed variable indicates a vector. In these formulas p stands for the

pressure perturbation, where the static part of the pressure is given by

dp

0

dz

=

��

0

g. N is the Brunt-V�ais�al�a frequency, de�ned by : N

2

(z) = �

g

�

�

(

d�

0

dz

+

�

0

g

c

2

s

).

The Brunt-V�ais�al�a frequency will be assumed to be a constant. This means

that the static part of the density is given by �

0

= Ce

�z

N

2

c

2

s

+g

2

gc

2

s

, where C � 0

is arbitrary constant. Because the density of the water increases with depth the

strati�cation is stable. �

�

is the depth average of �

0

. f = (0; 0; f) is a vector

containing the angular velocity f=2. It's direction is assumed to be in the

positive z-direction, which is opposite to the direction of gravity. Because it is

assumed that Boussinesq approximation holds, the description is valid for short

wavelengths (k

2

� N=g). The linearisation is valid when the particle velocity

is smaller than the phase velocity, which in turn should be smaller than the

velocity of the surface waves (juj � c � c

surf

). The e�ects of compressibility

on the velocity are neglected. This assumption is valid when the phase velocity

of the internal waves and the surface waves are much smaller than the speed of

sound (c� c

s

and c

surf

� c

s

).

The particle velocity is now directly dependent on the pressure. By assuming a

time dependence of e

�i!t

, rewriting the �rst equation one �nds :

u =

i!p

x

+ fp

y

�

�

(!

2

� f

2

)

(4)

v =

i!p

y

� fp

x

�

�

(!

2

� f

2

)

(5)

w =

i!p

z

�

�

(!

2

�N

2

)

(6)

By combining these expressions with the continuity equation, a di�erential

equation is found in which the behavior of internal waves is described in terms
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of the pressure alone : p

xx

+p

yy

��p

zz

= 0, where � =

!

2

�f

2

N

2

�!

2

. At the boundary

of the container it is assumed that the 
ow is parallel to the boundary, so that

there is no 
ow through the boundary. This condition, u � n̂ = 0, combined with

the expressions for the particle velocity give the boundary condition in terms of

the pressure : (p

x

; p

y

;��p

z

) � n̂ = �

f

i!

(p

y

;�p

x

; 0) � n̂.

So the behavior of internal waves in a rotating container can be described

in terms of the pressure alone :

p

xx

+ p

yy

� �p

zz

= 0 on V (7)

(p

x

; p

y

;��p

z

) � n̂ = �

1

i!

(rp� f) � n̂ on �V (8)

! is the frequency of the internal waves, which are assumed to be monochro-

matic, since a time dependence of e

�i!t

is assumed. V and �V are the interior

and the boundary of the container. n̂ is the unity vector normal to the

boundary �V , of which the direction depends on the place at the boundary.

When there is a strati�cation, N acts as an upper and f as a lower bound

for the internal wave frequencies, and when there is no strati�cation f acts as

an upper bound for the internal wave frequencies. In both these cases, so if

f

2

< !

2

< N

2

or if !

2

< f

2

, � > 0 and the di�erential equation is hyperbolical

in the z direction of the space. In all the other cases the di�erential equation is

elliptic. When it's hyperbolical it's characteristic surfaces are then given by :

z = �(�(x

2

+ y

2

))

1=2

+ C. These surfaces can be seen as the top and bottom

halves of a cone with center point (0; 0; C) and with a radial slope of �(�)

1=2

.

This is illustrated in �gure 2, where the characteristics of the di�erential

equation have the shape of the inner cone. Because the di�erential equation

is hyperbolical, the solutions may be discontinuous along the characteristic

surfaces. Also, the solutions are strongly dependent on the (local) shape of the

characteristic surfaces and the boundary. The problem is for this reason called

ill-posed, because minimal changes in the boundary can strongly in
uence the

solutions.

In principle, the �nite element method allows for arbitrary containers. In this

project, one two di�erent types of containers are used. The �rst container is

the cube, which is used as a test case. The second geometry is the trapezoid

(illustrated in �gure 1), which is of interest because is has a broken symmetry

and also because some experiments were done using this geometry. For the

simulations a cube with sides of length 1, and a trapezoid of length, width and

height of 1 and an o�set of 1/2 was used.

By assuming a plane wave solution in the y-direction, a simpli�cation can

be made that causes the resulting problem to be of dimension two instead of

dimension three. Taking a plane wave in the y-direction means that a pressure

distribution of p = p(x; z)e

i(k

2

y�!t)

is assumed. To satisfy the boundary condi-

tions the real part, Re(p), of this solution has to be taken. One can interpret

this as looking at an canal of in�nite length in the y-direction, where internal

waves are invoked in a linewise manner in the y-direction, so independent of the

y-position. All the contributions to the solution in the y-direction are canceled

out, which leaves a solution that only depends on the x and z positions. All

possible directions (in the xy plane) of the waverays are still present, but there
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Figure 1: The trapezoid

is only one possible wavenumber for each direction. Putting this expression in

the di�erential equation gives :

p

xx

� �p

zz

� k

2

2

p = 0 on V (9)

(p

x

; 0;��p

z

) � n̂ = �

fk

2

!

(p; 0; 0) � n̂ on �V (10)

so the problem has become two dimensional. Mathematically, one can view

this as solving a di�erential equation on a two dimensional domain, where in

fact the object of investigation is still three dimensional. In the rest of this

report, these two dimensional domains will be referred to as the rectangle and

the two dimensional trapezoid.

2.3 Properties of internal waves

Internal waves have properties that are very di�erent from those of normal

surface waves. In this section some of these properties will be brie
y touched.

For a more extensive description of internal waves LeBlond & Mysak (1978)

can be recommended.

One property of internal waves is that the angle of propagation of an in-

ternal wave only depends on it's frequency. The dispersion relation relates the

frequency ! and the wavevector k = (k

1

; k

2

; k

3

). If one assumes the solution

to be a plane wave, then p = p

0

e

i(kx�!t)

= p

0

e

i(k

1

x+k

2

y+k

3

z�!t)

. Putting this

solution in the di�erential equation results in :

k

2

1

+ k

2

2

� �k

2

3

= 0 (11)

and by rearranging the terms the dispersion relation is found :

!

2

=

(k

2

1

+ k

2

2

)N

2

+ k

2

3

f

2

k

2

1

+ k

2

2

+ k

2

3

(12)
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With polar coordinates the wavevector can be written as : k =

�(cos(�)sin( ); sin(�)sin( ); cos( )). Here � is the angle between k

h

=

(k

1

; k

2

; 0) (the projection of k on the horizontal plane) and the x-axis, and

 is the angle between k and the z-axis. In terms of k itself : tan(�) = k

2

=k

1

and tan( ) = k

3

=k

h

. With this notation the dispersion relation becomes :

!

2

= N

2

sin

2

( ) + f

2

cos

2

( ) (13)

which shows that the angle  of the internal wave with the z-axis is only

determined by it's frequency !. Of special interest are the cases f = 0 and

N = 0. When f = 0, the resulting waves are called internal gravity waves and

when N = 0, they are called inertial waves.

Internal gravity waves can be found in (uniformly) strati�ed 
uids, where

gravity generates density-di�erences in the vertical direction. Gravity works as

the restoring force. Possible frequencies for internal gravity waves are ! < N .

The dispersion relation is !

2

=N

2

= sin

2

( ) with  the angle between k and

the horizontal plane.

Inertial waves can be found in rotating homogeneous 
uids. Because of the

rotation pressure-di�erences are generated in the radial direction. The coriolis

force then works as a restoring force. Possible frequencies of the inertial waves

are ! < f , with f=2 the angular velocity of the 
uid. The dispersion relation

is now given by : !

2

=f

2

= cos

2

( ).

Another important property is that for internal waves the energy propagates

normal to the phase vector. The wavevector k determines the direction in which

single waves move. Perpendicular to the wavevector k are the velocity vector

u of the water particles, and the group velocity vector c

g

which determines

the direction of the energy propagation k (c

g

;u ? k). In �gure 2 the lines on

which the wavevector and the group velocity vector lie are shown. Important is

that the characteristics have the same slope as the group velocity vectors. The

group velocity vector can be directed in two ways. Because the energy is being

transported by the water particles, u and c

g

lie in the same plane.

The water particles move in the plane that lies perpendicular to the direction

of the waves. If there is some rotation, the particles will move in elliptic orbits.

If there is no rotation, so if f = 0, then the elliptic orbits degenerate into lines,

which are parallel to c

g

. The group velocity is an averaged quantity and is

de�ned by c

g

= �r

k

!. Using the dispersion relation, this can be written as :

c

g

=

N

2

� !

2

!k

2

(k

1

; k

2

;��k

3

) (14)

or also as :

c

g

=

(N

2

� f

2

)k

2

3

k

3

(N

2

k

2

h

+ f

2

k

2

3

)

1=2

(k

1

; k

2

;�

k

2

h

k

2

3

k

3

) (15)

If we have a wave with wavenumber k =

� (cos(�)sin( ); sin(�)sin( ); cos( )) then the energy vector can be written

as c

g

= �̂(cos(�)cos( ); sin(�)cos( ); �sin( )). So the group velocity vector
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Figure 2: The vectors k and c

g

are perpendicular and both lie on cones. The

characteristic surfaces of the di�erential equation equal the cone formed by the

c

g

rays. In this picture � = 0.

has the same angle � in the horizontal plane as k, but makes an angle  with

the horizontal plane instead of the z-axis. So for each frequency, the angle of

propagation for the energy is  , where  is given by the dispersion relation.  

also happens to be the angle that the characteristic surfaces of the di�erential

equation make with the horizontal plane, which shows that the energy is

transported along the characteristics.

The manner of re
ecting at boundary's is also an important property of

internal waves. If an internal wave hits a sloping boundary, several things may

happen. When the incoming wave lies in the plane normal to the boundary, the

wave will be re
ected in either the horizontal axis or the vertical axis. Which

happens depends on the angle � of the boundary and on the angle  of the wave.

When � >  the wave is re
ected in the vertical axis. This is called a subcritical

re
ection and the slope is now steeper than the characteristics. When � <  

it is re
ected in the horizontal axis. This is called a supercritical re
ection and

the characteristics are now steeper than the slope. If the incoming wave does

not lie in the plane normal to the boundary, the wave will also refract. This

means that the angle � the re
ected wave will be di�erent from that of the

incoming wave. Also it's amplitude, phase and the size of it's wavenumber may

be di�erent. At vertical and horizontal boundaries, the wavenumber and the

amplitude will remain equal in size, but at horizontal boundaries, the wave will

be shifted in phase by 180 degrees. Since the energy movement and also the

particle movement is perpendicular to the wavevector, it is more natural to look

at re
ections of the group velocity vector than at re
ections of the wavevector.

The behavior of the energy at re
ection is much like that of the waves. The

di�erence is that since k ? c

g

, if k re
ects in a subcritical way, then c

g

re
ects

in a supercritical way and vise versa. Also, since no energy can leave the domain

through the boundary, the c

g

is always pointing into the domain, while k can
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Figure 3: Two dimensional re
ections of c

g

in a container with a slope. The

rays start in the origin and when they reach the sloping wall re
ect either in the

horizontal or in the vertical axis. The �rst picture shows a subcritical re
ection

(� <  ) and the second picture shows a supercritical re
ection � >  .

also point outwards. The behavior of the energy vector at the boundary is

shown in �gure 3.

2.4 Known solutions

Several (non numerical) solutions are known for the problem (7),(8) or a

simpli�cation of it. For internal gravity waves the problem can be analytically

solved for a cube. Also for two dimensional geometry's, were a constant

pressure in the perpendicular direction is assumed, the problem can be solved

also analytically. For inertial waves the problem has been solved for a cube.

These solutions will be discussed below in some more detail.

If the geometry is a cube, the di�erential equation can be solved analytically

for internal gravity waves (f = 0). A plane wave p(x; y; z) = �e

i(k

1

x+k

2

y+k

3

z�!t)

(so u = Ue

i(k

1

x+k

2

y+k

3

z�!t)

) can be assumed. Putting this in the di�erential

equation gives the condition under which the plane wave is a solution of the

di�erential equation : � = �

k

2

1

+k

2

2

k

2

3

. In order to satisfy the boundary conditions

the real parts of p must be taken, so p(x; y; z) = cos(k

1

x + k

2

y + k

3

z � !t)

is a solution. This type of solution is called a global resoance. The possible

wavenumbers depend on the size of the cube. If the cube is of a size L

x

�L

y

�L

z

then the wavenumbers are given by (k

1

; k

2

; k

3

) = (j

1

�=L

x

; j

2

�=L

y

; j

3

�=L

z

) with

j

1

; j

2

; j

3

integers. The spectrum consisting of all the possible �'s consists of

rational numbers and extends from �1 to 0. The spectrum of �

0

extends from

�1 to 0. There are two independent degeneracy's in the solutions space. First, if

a wave (k

1

; k

2

; k

3

) solves the di�erential equation, then C(k

1

; k

2

; k

3

) for arbitrary

integer C is also a solution, which leaves the eigenfrequency unchanged. Also,

if the aspect ratio is

L

y

L

x

=

q

p

, with p and q coprime, then another degeneracy

exists. If a wave (k

1

; k

2

; k

3

) is now a solution, then (p

2

k

2

; q

2

k

1

; pqk

3

) is also a

solution, which again leaves the eigenfrequency unchanged. The degeneracies in
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the solution space mean that for certain frequency's, there are an in�nite number

of solutions. This degeneracy in the solution space, which also exists for other

geometry's than the cube and maybe also for three dimensional domains, can

be seen as freedom in specifying the solution. For the rectangle, there is only

one type of degeneracy whilst for the cube there are two types, as shown above.

The general solution for the rectangle can be expressed as a fourier series :

p(x; z) =

1

X

j=1

a

j

cos(jk

1

x)cos(jk

3

z) (16)

One can show that by specifying the pressure as p(x,z)=f(x,z) on a part of

the boundary the pressure on the whole domain can be uniquely determined.

The smallest interval to do so is called the fundamental interval. This

fundamental interval depends on the slope of the characteristics, which in turn

depends directly on the frequency of the waves. The fundamental interval also

depends on the shape of the domain. Finding the fundamental interval is a

matter of tracing the characteristics, where as a starting point usually a corner

is taken. In �gure () some fundamental intervals are shown. The factors a

j

in

the fourier expansion are equal to the fourier components of f(x; z) over the

fundamental interval. This approach using fundamental intervals can be applied

to more general two dimensional domain, as described in the next paragraph. In

three dimensions however, it does no longer apply readily . The reason for this

is that there may be more waves that solve the di�erential equation, but which

are not multiples (in wavesnumber) of each other. One would expect however

that the solution does depend only on these waves. On their own these waves

give global resonance type of solutions, which can have a two dimensional or a

three dimensional character. As an example for the cube with sides one, possible

solutions of frequency !=N = 2

�1=2

are : (k

1

; k

2

; k

3

) = (0; 1; 1), 1; 1; 2

1=2

and

(3; 4; 5). These solutions can be combined to form other solutions. For three di-

mensional solutions the relation k

2

1

+k

2

2

= k

2

3

has to hold for integer k

1

,k

2

and k

3

.

Figure() fund.interval cube+trap+th.sol.2d.int.grav.wav.leo+pic.nature.leo?

For internal gravity waves in a container, where the geometry does not

change in one, say the y-, direction, one can assume a constant pressure in

this direction. So one could see this as looking at a two dimensional slice of

the container. Because of this assumption, the problem (7),(8) also becomes

two dimensional, because the y-derivatives drop out. The problem is now

reduced to (9),(10). It has been shown by Maas & Lam (1995), that there is an

algorithmic way of solving this two dimensional problem. In short, the solution

can be found by tracing the characteristics as they move through the domain.

By prescribing the pressure on a part of the boundary called the fundamental

interval, an unique solution in terms of the pressure can be found. Along the

path of each characteristic, a quantity called the partial pressure is conserved.

This partial pressure corresponds to some pressure value on the fundamental

interval. The pressure at any point in the domain can now be calculated by

adding the partial-pressure values of the two rays that go through that point.

By subtracting the partial pressure values one can �nd the stream function.

By using this method solutions for internal gravity waves in two dimensional

containers can be found.
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For the two dimensional trapezoid, the spectrum consists of attractors (regions)

and global resonance's (points), where the global resonance's are separated

from the attractors by regions of small scale attractors. One attractor is

shown in �gure 5 (leo �g th?). Attractors are solutions that have fractal like

properties. When there is a symmetry breaking in the domain, like the sloping

boundary for the two dimensional trapezoid, focussing occurs. The sloping wall

acts as a lens, which causes the energy to accumulate near a single orbit. This

is a result of the symmetry breaking in combination with the re
ection laws for

internal waves, which do not follow snells law. In two dimensions, for attractors

the energy re
ects in the vertical axis at the sloping boundary. Now if some

pressure distribution is taken on the fundamental interval, the focussing of

rays causes a replication of this distribution on adjacent parts of the boundary,

which are smaller as the attractor is approached. This self reproducing aspect

is of course not limited to the boundary, but is visible in the whole domain,

since the partial pressure, which equals the pressure itself on the fundamental

interval is conserved on the characteristics.

When tracing along the characteristics, one is following the energy through the

domain, since the c

g

rays run along the characteristics. Following the energy

rays has also been done in three dimensions, and the results of this are in

chapter 3.

For inertial waves in a cube, solutions have been found by (Maas,2001).

For inertial waves in a cube one can assume a e

i(k

3

z�!t)

dependency. To sat-

isfy the boundary conditions at the top and the bottom again the real part

of this must be taken. The resulting pressure distribution will be complex,

which means that the pressure does not only oscillate in amplitude but that

the pattern will also move through the domain. Since a time dependence of

e

i!t

was assumed, the pressure can be written as : p = (Re(p) + Im(p))e

i!t

=

(Re(p)cos(!t)� Im(p)sin(!t)) + i(Re(p)sin(!t) + Im(p)cos(!t)). These solu-

tions show amphidromic structures (picturs?). The solutions have the property

that their maximum elevation is not reached at the boundary of the domain but

inside the domain.

2.5 Warp

Warp is the implementation of the FEM model created by A.N.Swart. It was

programmed in MATLAB, and requires the triangularisation package QMG,

which also works in MATLAB. Warp is equipped with a graphical user interface

(GUI), in which all of the possibilities are incorporated. Figure 4 shows a picture

of the GUI.

In the top right part marked Geometry, the geometry can be entered. One

can either use the Internal mesh generator for creating structured meshes of

rectangular geometry's, or QMG for creating unstructured meshes of arbitrary

geometry's. By using the internal mesh generator, a rectangular geometry is

taken. If the QMG mesh generator is used, one can use the 'Width', 'Height'

and 'O�set' for easily entering a trapezoid geometry. Also, by using QMG, one

can enter more complex geometry's by using the 'Draw 2D geometry' possi-

bility. The generated geometry's can be saved and loaded. After a geometry

has been entered, by pressing 'triangulate' a triangularisation is performed on

that geometry. After the triangularisation the program is ready for calculat-

10



Figure 4: The graphical user interface of warp.

ing the solutions. In the middle right block marked Calculate, by pressing the

button, the solutions are calculated by solving a generalized eigenvalue prob-

lem. These solutions can also be saved and loaded. To examine the eigenvalues

and the corresponding eigenvectors some visualisation possibilities have been

incorperated. One can see what eigenvalues have been found by pressing 'Plot

eigenvalues'. In the bottom right block marked Visualize, the visualization of

the solutions is controlled. By entering a index (this is the eigenvalue number),

or an angle/frequency, a corresponding eigenvector can be selected for visual-

ization. Pressing 'visualize' shows the eigenvector. By selecting one of the four

possible plot options, surface plot, contour plot, velocity �eld or magnitude plot,

the solution can be examined.

The window in the top left part is for visualization. In the picture the

eigenvalues are shown of the indicated case. The options in the bottom left part

marked Partial pressure are for combining solutions. The Statistics block gives

some statistics.

To illustrate the workings of warp one solution is discussed. The (1,1) at-

tractor shown in picture 5 was found at !=N = 0:7477. It was calculated using

QMG and parameters coarse=0.05, height=1, width=1, o�set=0.5. The surface

and the contour plots show the pressure distribution. This is an attractor found

by the program itself. The quiver plot shows the velocity pro�le and one can

recognize that the velocity follows the attractor. Finally, the magnitude plot

shows the size of the velocity. The high velocity magnitude near the wall is a

numerical e�ect. One can however still clearly see the higher velocities along

the attractor.

The attractor that was found does not show very much smaller structure.

One reason for this is that the pressure on the fundamental interval has not

been speci�ed nicely. Warp is able to combine solutions on the basis of an

interval of eigenvectors and a pressure distribution on the fundamental interval.

Combining the solutions can be done by looking �rst at the eigenvalues. If one

compares the eigenvalues that are calculated when using an unstructured grid

with those calculated when using a structured grid, there seems to be a slight

shift in the values. When using a structured grid, multiplicities of eigenvalues are

11



Figure 5: The di�erent plotting possibilities of warp. From top left to bottom

right are plotted : The pressure in a surface plot, the presssure in a contour

plot, the velocity �eld in a quiver plot and the velocity �eld in a magnitude

plot. This attractor was found using a coarseness of 0.05 at index 265.

clear, but when using an unstructured grid, this is no longer the case. When

using an unstructured grid, by looking at the spectrum one can try to �nd

groups of eigenvalues which are close to each other and combine these. Now

the maximum number of eigenvectors that can be combined depends on the

frequency of the internal waves. Using the fundamental interval button, this

number can be checked. This combining of solutions is a discrete equivalent

of the prescribing of the pressure on the fundamental interval when using the

algorithmic way of solving the problem. There is a nice interpretation in terms

of fourier expansions, where in this discrete case, only some lower order terms

matter.

3 Analytical methods

3.1 Introduction

In this chapter a more analytical approach is taken to the problem by looking

more closely to way the energy moves through the domain, and how it re
ects
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at the walls. The energy of the internal waves propagates along straight lines in

the direction of c

g

. These lines, which will be referred to as rays, can be traced

through the through the container. The importance of the rays lies in the fact

that they shows what type of behavior is present. So global resonances and

attractors can be recognized. For the 2D trapezoid and some other geometry's

it is known how these rays behave. For internal gravity waves in a 2D trapezoid,

a solution in terms of the pressure can even be found on the basis of the rays. It

is not obvious however, how the rays will behave if they have a y-component. In

section 3.2 the re
ection expressions are examined. In section 3.3 the raytracing

method is discussed, including the results obtained by raytracing.

3.2 Re
ection expressions

Since no energy can leave the domain through the boundary, when a incoming

ray c

g;i

re
ects from the boundary as c

g;r

, the sum of the normal components

must vanish, so : c

g;i

� n̂ = �c

g;r

� n̂. If the boundary has some slope and

is given by z = ax + C, then this condition becomes : �ac

g;i;1

+ c

g;i;3

=

�(�ac

g;r;1

+ c

g;r;3

), Using that R

2

=

c

2

g;i;1

+c

2

g;i;1

c

2

g;i;3

=

c

2

g;r;1

+c

2

g;r;1

c

2

g;r;3

= 1=tan( )

2

, one

can derive the components of the re
ected ray as:

c

g;r;1

=

(1 + (aR)

2

)c

g;i;1

� 2aR

2

c

g;i;3

(1� (aR)

2

)

(17)

c

g;r;2

= c

g;i;2

(18)

c

g;r;3

= �

(1 + (aR)

2

)c

g;i;3

� 2ac

g;i;1

(1� (aR)

2

)

(19)

The formulas are very similar to the re
ection expressions for the waves, as

given in (Leblond). One can check that if k is perpendicular to c

g;i

, that l is

then also perpendicular to c

g;i

(as is expected). The way the rays behave at a

sloping boundary is shown in �gure 6.

In two dimensions the re
ection expressions simplify to :

c

g;r;1

=

(1 + (aR)

2

)c

g;i;1

� 2aR

2

c

g;i;3

(1� (aR)

2

)

(20)

c

g;r;3

= �

(1 + (aR)

2

)c

g;i;3

� 2ac

g;i;1

(1� (aR)

2

)

(21)

What happens in 2D is that when a c

g

ray hits the slope, it is re
ected

in either the horizontal or the vertical axis, depending on the value of aR.

The case is high-frequency transmissive when aR < 1, which means that the

angle of the c

g

rays is greater than that of the bottom slope (since if aR < 1

then tan(�) < tan( ) so � <  ). This means that rays will be re
ected in

the horizontal axis. The case is low-frequency transmissive when aR > 1,

where the angle of the c

g

rays is smaller than that of the bottom slope. The

rays are re
ected in the vertical axis in this case. The dividing case is when

the incoming group velocity (energy) vector has an angle equal to that of the

bottom slope (aR = 1). Extreme cases are when the group velocity (energy)
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Figure 6: A re
ection of a c

g

ray of a sloping boundary. The top left picture

shows the re
ection in 3d, the top right picture shows a xz projection and the

bottom left picture shows a xy projection. In this last picture refracting towards

the normal plane, which is here parallel to the x-axis, is visible.

vector is pointed along the slope. In the case aR < 1 the rays in the 2D

trapezoid geometry tend to get cornered. In the case aR > 1 the rays can get

focussed onto an attractor, �ll the plane or become part of a global resonance.

The rays in the 2D situation follow exactly the direction of the characteristics.

In the two dimensional case, which corresponds to k

2

= 0 or c

g;2

= 0 a ray

is always re
ected in either the horizontal- or the vertical axis. In the three

dimensional case, this is no longer so. What happens is that when a ray hits a

boundary of angle, it is refracted towards or away from the normal plane, which

is the vertical plane containing n̂. Both the incoming and the outgoing rays

are on the cone that has the point of re
ection as it's centrepoint. Depending

on the value of �R, the ray is re
ected up or downwards from the boundary.

Some special cases :

� Refraction : If there is a sloping boundary in the x-direction, like with

the trapezoid geometry, an incoming waveray with c

g;i;1

=0, so a wave

that comes in parallel to the boundary, will be re
ected away from the

boundary, so it will get a component in de x-direction c

g;r;1

6= 0.
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� reciprocity : If a ray is turned around, it will follow the same path back.

So at any re
ection if c

g;i

is re
ected as c

g;r

, then �c

g;r

will be re
ected

as �c

g;i

.

The most important feature in the 3D case is the refraction of the rays at

sloping boundaries. This allows for the energy to converge to an x-z plane, where

the rays will behave just like in the 2D situation. The convergence is however

very hard to predict, since convergence and divergence might both occur. So in

theory, rays may never converge.

3.3 Raytrace

To see how the c

g

rays behave in a three dimensional domain, a raytracing

program was written. The program shows that in 3d, the 2d behavior remains

important. Rays which converge to attractors in the 2d case, and which are

given an additional component in the y-direction, often converge to an xz

plane, where the 2d case remains. Rays which converge to the corner in 2d

tend to do the same thing in 3d. The raytracing program was used to do some

simulations for the cube and the trapezoid.

In two dimensions the possible solutions were found :

� Attractors. If the geometry is not entirely symmetric, like in the case of

the trapezoid or the tilted cube, focussing can occur. When two parallel

rays re
ect of a sloping boundary, they may either focus or defocus. In

the case of focussing, their mutual distance will decrease, and in the case

of defocussing their mutual distance will increase. If the focussing e�ect

dominates, then the rays will approach to a single orbit, which is called

the attractor. Attractors are therefor characterized as being high energy

orbits. In the case of the 2D trapezoid ,when the rays are steeper then

the slope, the rays will converge to the cornerpoint.

� Global resonances. If the focussing e�ect is exactly matched by the defo-

cussing e�ect, there is a global resonance. This means that every ray will

return to it's initial position in a �nite number of re
ections. These global

resonances correspond to the eigenmodes. In order for global resonances

to be possible, the geometry must have some symmetry.

� Plain�lling solutions. In this case the focussing e�ect is also exactly

matched by the defocussing e�ect, but the rays will not return to their

initial positions. Instead the rays reach every point in the domain.

These solutions for two dimensions were already known. Compare plots

with (Maas, Nature picture). There � = (1=jtan( )j)(D=L). In the present

case : D = 1, L = 1=2 and d = 0, so � = 2=jtan( )j. More interesting at this

point is the three dimensional behavior of the rays.

For the cube, global resonances as well as volume�lling- and plane�lling

raypatterns can be expected. For the cube these di�erent behaviors are not

hard to �nd analytically. Global resonances can be found when c

g

= �(k; l;m),

where k,l and m are integers, and � an arbitrary constant. The raypattern
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Figure 7: The di�erent behaviors in two dimensions. Shown are from the top

left to the bottom right : A line attractor, a point (cornered) attractor, a global

resonance and a plane�lling solution.

reduces to a two dimensional global resonance when c

g

can be written in a

similar form, but with a maximum of two integers. The rays become plane�lling

in the direction which is left. The rays will �ll the plane in all the other cases.

These solutions are illustrated in �gure 8.

For the trapezoid, the behavior of the rays is much more complex. Figure 9

shows the dependence of the behavior on the starting angle of the rays, when

�red from one of the corners of the trapezoid. What is striking is that the two

dimensional behavior remains very important.

The attractors are easy to identify. They can only occur when there is

a attractor in the two dimensional situation, so for � = 0. The reason for

this is that there can be no convergence only in the y-direction. When there

is convergence in the x-z plane, there also must be a convergence in the

y-direction because of the refraction. So other types of attractors then the ones

known for the two dimensional situation are not expected. Some attractors

are shown in �gure 10. For almost all of the values of  , the attractor is

eventually reached at some y-position. The number of iterations needed to
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Figure 8: The di�erent behaviors in three dimensions for the cube. From top left

to bottom right a (2,3,4) global resonance, the same resonance with a di�erent

starting position, a (1,1,0) global resonance (c

g;1

= c

g;2

= 1 are integers and

c

g;3

= 2

(

1=2) is not) and a volume �lling mode are shown.

converge close enough to the attractor does depend on the angle �. When � is

small, convergence is fast, but the higher � becomes, the more iterations are

needed to converge. This can clearly be seen in picture 9. Also, for higher order

attractors, the convergence is generally slower then for lower order attractors.

Finally, the convergence itself is not dependent on the starting position and di-

rection of the rays, but the speed of convergence is somewhat in
uenced by this.

For the trapezoid, the global resonances are not very easy to �nd analyti-

cally. On the basis of what is known from the behavior in the two dimensional

trapezoid, one would expect global resonances to be possible in between the

area's where the attractors are found. Using the pictures from the simulations,

one can get a good idea where the resonances could are. Some resonances were

found, and some are shown in �gure 11. There seem to be no global resonances

possible, for some angles however there is a kind of partial resonance. Here the

resonance depends on the starting position, for some values the rays there is

a resonance for others there is not. Since these resonances are however very

dependend on the angles � and  , and also somewhat to the starting position,
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Figure 9: The dependence of the behavior of the rays in three dimensions on

the angles � and  . The top left picture shows the area's of convergence to

two dimensions, where a di�erence in color indicates a di�erence in behavior,

no convergence, a line attractor or a point attractor. The top right picture is

an enlarged region of the �rst picture, showing the positions of higher order

attractors. The bottom left picture gives an indication of the speed of the

convergence. Finally, the bottom right picture shows the length of possible

orbits, which gives an indication of the positions of resonances.

these resonances must be seen as rare solutions.

4 Numerical methods

4.1 Introduction

In two dimensions the behavior of the group velocity rays can be used directly to

calculate the velocity and the pressure �elds, where some freedom in specifying

the pressure on a part of the boundary is available. In three dimensions the

behavior of the group velocity rays can also be determined, as seen in chapter 3.

Knowing the behavior of the rays, one can determine whether or not focussing

occurs. It is not clear yet however how this information can be used to determine

the three dimensional velocity and pressure �elds. A way of determining what
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Figure 10: Attracting behavior in three dimensions. Shown are from top left

to right bottom : an attractor at � = 0:2�, = 0:3�, a higher order attractor

at � = 0:1, = 0:495, a higher order attractor at � = 0:1, = 0:555� (xz

projection), and a point attractor at � = 0:4�, = 0:4�.

kind of velocity and pressure �elds might occur in three dimensions is to solve

the hyperbolic di�erential equation describing the behavior of the internal waves

in terms of the pressure. From a solution in terms of the pressure, the velocity

�eld can be calculated. A practical way of solving the di�erential equation is by

means of numerical approximation. To solve the di�erential equation, a �nite

element model was constructed.

In order to solve the hyperbolic di�erential equation, one has to resort to

solving it as an eigenvalue problem. The reason for this is that there is a freedom

in specifying the pressure on part of the boundary, but it is not a priori clear

how much freedom there is or where one can specify dirichlet conditions. In

two dimensions one can de�ne fundamental intervals, at which the pressure can

be speci�cated and which leaves a unique solution. The size and place of the

fundamental interval depends however on the frequency. In three dimensions,

it is not known whether or not an equivalent of the fundamental interval can be

speci�ed. So dirichlet conditions cannot be taken, since one cannot be sure when

there is overspeci�cation. In two dimensions, the freedom in the fundamental

interval is in the numerical model translated to a freedom on a �nite number
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Figure 11: Shown are some resonances. These where found at the angles (�;  ) :

(0.7644325,0.3851114), (0.43162,0.51167) and (0.2579,0.74035). For some start-

ing positions, the resonances will dissapear and make place for volume�lling

modes.

of points. One can see this as a truncation of the fourier series of the possible

pressure distributions on the fundamental interval, leaving only a �nite number

of low order fourier series. This is also expressed in the multiplicity of the

eigenvalues. One can try to �nd eigenvalues that are close together and combine

their eigenvectors to obtain solutions one is interested in.

In this chapter the �nite element model for the three dimensional problem

(7),(8) is presented. The theory is presented in section 4.2 and the implemen-

tations are presented in section 4.3.

4.2 FEM theory

Since the 3D problem does not allow for an analytical solution in the case of

a trapezoid or if f 6= 0, it has to be handled numerically. For this purpose a

�nite element model was made, which was based and relies heavily upon Warp,

a numerical model that was constructed for the 2D equivalent of the problem.

To solve the problem using a �nite element method, one �rst has to �nd a

variational formulation. To �nd the variational formulation one multiplies the
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di�erential equation with a test function v and integrates over the volume V :

Z

V

(p

xx

+ p

yy

� �p

zz

)v dV = 0 (22)

This can be rewritten as :

Z

V

p

x

v

x

+ p

y

v

y

� �p

z

v

z

dV +

Z

�V

v

i!

(rp� f) � n̂ dO = 0 (23)

Now by subtracting the following expressions :

Z

V

p

xy

v dV =

Z

�V

p

x

n

y

v dO �

Z

V

p

x

v

y

dV (24)

Z

V

p

xy

v dV =

Z

�V

p

y

n

x

v dO �

Z

V

p

y

v

x

dV (25)

and some rewriting one gets :

Z

V

p

y

v

x

� p

x

v

y

dV =

Z

�V

(p

y

;�p

x

) � n̂ v d�V =

Z

�V

v (rp� f) � n̂ dO (26)

Using this the integral can be written as a(p; v) = 0, where a(p; v) is a (non

symmetric) bilinear form :

a(p; v) =

Z

V

p

x

v

x

+ p

y

v

y

� �p

z

v

z

+

f

i!

(p

y

v

x

� p

x

v

y

) dV (27)

The variational formulation is now : Find a p�

~

V such that a(p; v) = 0 for

8v�

~

V . For the variational space we will take

~

V = H

1

(V ) = W

1

2

(V ), which

is the Sobolev space, de�ned by W

1

2

(V ) = ff�L

1

loc

(V )jkfk

W

1

2

(V )

< 1g. This

is the space of all functions f which are locally integrable, of which the �rst

weak derivative D

1

w

f exists and which have a �nite sobolev norm kfk

W

1

2

(V )

=

(kfk

2

L

2

(V )

+ kD

1

w

fk

2

L

2

(V )

)

1=2

.

From the variational formulation we generate the approximation problem :

Given a �nite dimensional subspace

~

V

h

�

~

V , �nd p

h

�

~

V

h

such that a(p

h

; v) = 0

for 8v�

~

V

h

.

The boundary conditions arise in a natural form in the variational formu-

lation. Because there are not yet any dirichlet conditions, the solution will be

unique up to an additive constant. These dirichlet conditions can be chosen

later. Also since the di�erential equation is linear, the solutions can be com-

bined or multiplied by constants. In the two dimensional problem, there was

a clear degeneration in the set of solutions, which came from the fact that not

all degrees of freedom had been used. The freedom lies in the possibility to

prescribe the pressure on a part of the domain. A way to exactly use all the

available degrees of freedom is by prescribing the pressure on the fundamental

interval. Because of the degeneration, for some frequency's an in�nite number

of solutions will be possible. In the translation of the problem to an approxima-

tion of the original problem, the number of solutions for each frequency becomes
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�nite. In the 2D case, where one has fundamental intervals to prescribe the pres-

sure on, one can see this as a truncation of the fourier expansion of the possible

pressures on the fundamental interval.

To approximate the solution of the variational problem, a �nite dimensional

subspace

~

V

h

has to be chosen. This is done using �nite elements. First the

entire domain is subdivided into (open) tetraeders K

i

(triangles in 2D) in such

a way that the tetraeders do not overlap (K

i

\ K

j

= ; if i 6= j) and that

they �ll the volume V ([

�

K

i

=

�

V ). Furthermore no vertex of any triangle may

lie in the interior of an edge of another triangle. Such a subdivision is called

a triangularisation. Using the triangularisation, �nite elements (K

i

; P;N) are

de�ned on all of the subdomains K

i

, where P are the shape functions and N

is a basis of P

0

. Now �

1

; �

2

; ::; �

d

is called the nodal basis and is de�ned by

N

i

(�

j

) = �

ij

.

The local interpolant on K

i

is now given by :

I

K

p =

d

X

i=1

N

i

(v)�

i

(28)

and the global interpolant by :

I

T

pj

K

i

= I

K

i

p (29)

It is common to take for P a set of polynomials. Here for P the set of all poly-

nomials of degree � 1, so the set of linear basisfunctions, is chosen. This means

that the solution is being approximated using so called hatfunctions, which are

piecewise linear functions that are unequal to zero on only a small part of the

volume. Also for the nodes N , only the edges of the subdomains are chosen.

To solve the approximation problem we can solve the square matrix equation

Mp

h

= 0, where the sti�ness matrix M is de�ned with M

i;j

= a(�

i

; �

j

). In

the variational form the frequency of the internal waves will be taken to be un-

known. As a result of this, the matrix equation to be solved will be a polynomial

eigenvalue problem. The order dependents on the choices of f and N . If f = 0

is taken, so for internal gravity waves, the order is one (generalized eigenvalue

problem). If N = 0, for inertial waves, the order is two. For f 6= 0 and N 6= 0

the order is three.

A polynomial eigenvalue problem (�

l

C

l

+ :::+�C

1

+C

0

)x = 0 can be rewritten

to a generalized eigenvalue problem Az = �Bz, which is called the linearisation

of the polynomial eigenvalue problem (Sleijpen (1999)). The matrices A and B

are de�ned as :

A =

0

B

B

@

0 I 0 ::: 0

0 0 I ::: 0

::: ::: ::: ::: :::

�C

0

�C

1

�C

2

::: �C

l�1

1

C

C

A

(30)

B =

0

B

B

@

I 0 0 ::: 0

0 I 0 ::: 0

::: ::: ::: ::: :::

0 0 0 ::: C

l

1

C

C

A

(31)

22



and z = (1; �; :::; �

l�1

)x

T

.

The elements of the sti�ness matrix are given by M

i;j

= a(�

i

; �

j

) :

M

i;j

=

Z

V

(�

i

)

x

(�

j

)

x

+ (�

i

)

y

(�

j

)

y

� �(�

i

)

z
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j

)

z

+

f

i!

((�

i

)

y

(�

j

)

x

� (�

i

)

x

(�

j

)

y

) dV (32)

This can be rewritten as :
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= !
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dV (33)

This is an third order polynomial eigenvalue problem. Using this general

form some simpli�cations can easily be made. Because only linear basisfunctions

are being used, all the derivatives of the basisfunctions are constants and so:
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The linear basisfunctions are given by :
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C
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,where �

i;j

is the value of the i-th basisfunction in node j (with 4 nodes in

each tetraeder). This gives :

�

i

= �

i;1

+ (1=d)(c

i;1

(x� x

1

) + c

i;2

(y � y

1
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1

) (36)

where :
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For each tetraeder there are four basisfunctions, which are given by �

i

(�

i;j

=

1 if i = j and (�

i;j

= 0 if i 6= j). The derivatives of the basisfunctions are now

constants (bv �

x

= c

1

=d). Using the constant derivatives, the elements of the

sti�ness matrix can be computed. Filling in the derivatives gives :
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with :

Z
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The calculation of the sti�ness matrix is usually done using element sti�ness

matrices, which contain the contributions for the individual elements. Per

element, the basisfunctions are linear functions, while on the whole domain,

they are piecewise linear functions, hatfunctions. Using the element sti�ness

matrices, the sti�ness matrix is then computed by summing the element

contributions of a(�

i

; �

j

) for each combination of two basisfunctions. Since

most basisfunctions don't overlap, the resulting sti�ness matrix will be sparse.

If one assumes a solution of the form p = p(x; z)e

i(k

2

y�!t)

where k

2

is taken

to be a constant, the problems dimension is reduced from three down to two.

Using that p

y

= ik

2

p, v = v(x; z) (so v

y

= 0) in the bilinear form a(p; v) a new

bilinear form ~a(p; v) is found :
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Z
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The elements of the sti�ness matrix are given by

~

M

i
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i
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j
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This can be rewritten as :
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To evaluate this expression, integrals of basisfunctions and of products of two

basisfunctionsmust be calculated. In order to do so, it is convenient to transform

the triangles (2D), to the standard triangle with edges (x,z) : (0,0),(0,1) and

(1,0). Suppose we look at a triangle with edges (x

1

; z

1

),(x

2

; z

2

),(x

3

; z

3

), with

area O. The linear basisfunctions are given by :
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which gives :
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with :
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c

i;1

= (z

3

� z

1

)(�

i;2

� �

i;1

)� (z

2

� z

1

)(�

i;3

� �

i;1

) (49)
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Now de�ne transformation f and g by :
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then �

i

can be written as :
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This gives :
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and now :
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We can now calculate the two needed integrals, where the integration is done

over one triangle K:
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This evaluates to d=12 if i = j and to d=24 if i 6= j.
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Thus, the sti�ness matrix
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, where the integral over T

st

, which the standard triangle, evaluates to d=12

if i = j and to d=24 if i 6= j.

To check if amphidromic structures would be visible for inertial waves in

a cube shaped container, another simpli�cation was made. In a cube shaped

container one can assume a pressure distribution of p = p(x; y)cos(k

3

z)e

�i!t)

.

Using this in (7),(8) the resulting problem becomes :

p

xx

+ p

yy

+ �k

2

3

p = 0 on V (61)

(p

x

; p

y

; 0) � n̂ = �

1

i!

(rp� f) � n̂ on �V (62)

4.3 FEM implementations

The QZ algorithm that is used by MATLAB's eig function, which can calculate

all the generalized eigenvalues and eigenvectors of a Ax = �Bx, is of order

n

3

, where n is the size of the matrices A and B. So if the matrix size is

doubled, the execution time will be multiplied by a factor 2

3

= 8, for n large.
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Now for solving the polynomial eigenvalue problems they can be rewritten to a

generalized eigenvalue problem, but this gives a larger matrix. For a polynomial

eigenvalue problem of order m, one gets a matrix size of nm. In the present

problem the size n of the matrix is equal to the number of nodes used in the

triangularisation. Also, the size of m depends on the type of internal waves

that are examined. For internal gravity waves m = 1, for inertial waves m = 2

and for combinations of both m = 3. This means that computation on internal

gravity waves are about 8 times faster for large n than those for inertial waves.

Another aspect is that for internal gravity waves the matrix is real, but in all

other cases it is complex, which also gives a higher computation time for inertial

waves.

The implementations of the FEM can roughly by divided into four steps.

First the mesh has to be created. Starting by de�ning a two or three dimen-

sional geometry, a triangularisation is performed on the geometry. This means

that the domain is divided into non-overlapping triangles or tetraeders. In the

implementations, the triangularisation is performed by the program QMG. Re-

sulting from the triangularisation are the matrices, Z containing the postions

of the nodes, and T containing the vertices. After this, the element sti�ness

matrices, m in total, are calculated. These matrices contain the contributions

of the di�erent basisfunctions in each of the �nite elements. These calculations

are the implementations of the expressions found in the previous section. The

detailed calculations are done in the function makesti�3d. The calculation of

the element sti�ness matrices is done by the functions elmsti� and makesti�.

The sti�ness matrices are now calculated by taking for each basisfunction the

sum of the individual contributions for the relevant elements.

These sti�ness matrices form the matrices of the polynomial eigenvalue prob-

lem. Using the sti�ness matrices, the two matrices for the generalized eigenvalue

problem are determined. This is all done by the function assemble. Finally, the

generalized eigenvalue problem is solved by the function eigsolve. This results in

the matrices for the generalized eigenvalues and the corresponding eigenvectors.

5 Numerical results

5.1 Introduction

In this chapter the numerical results are presented and discussed. Where pos-

sible an attempt to validate the results is made. In section 5.2 the results for

internal gravity waves are discussed. In section 5.3 the results for inertial waves

are discussed.

5.2 Internal gravity waves

For solving the probem when f = 0, so looking only at internal gravity waves,

two programs were written. The �rst is the implementation of the FEM for

solving the simpli�ed case, when a pressure distribution in the y-direction is

assumed. This program was called warpn (for now). The second program is the

implementation of the FEM for solving the problem in the full three dimensions.

This program was called 3dn. Both programs were tested using the cube as

a container, for which the exact solutions are known. Both programs were
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also applied to a trapezoidal shaped container. For the trapezoid the solutions

are known for those cases when the pressure doesn't vary in the y-direction.

The programs were also compared with these known solutions. Finally, the

programs were used to see if any other solutions for the trapezoid could be found.

First the solutions of warpn are will be discussed, and later the solutions

of 3dn. In �gure 12 some of the eigenvalue spectra obtained using warpn are

shown. An important feature of these spectra is that for increasing k, the

lower eigenvalues disappear, as can be seen in the bottom right picture for the

trapezoid. This can be explained best by looking at the cube. For the cube

the eigenvalues are given by !=N =

k

2

1

+k

2

2

k

2

1

+k

2

2

+k

2

3

1=2

. Now this expression goes

to zero when

k

2

3

k

2

1

+k

2

2

goes to in�nity. When k

2

is large when compared to k

1

and k

2

, low eigenvalues no longer occur. Another way of looking at this is

by realising that low eigenvalues are related to energy rays that make a small

angle with the horizontal plane. By assuming a large k

2

value a low steepness

in the y-direction is more probable.

In �gure 13 some solutions of warpn are shown. For k

2

= 0 the normal

attractors are visible. Looking at k

2

= � an attractor like shape is still visible,

but it has a three dimensional solution, since the pressure is no longer constant

in the y-direction. For k

2

= 10� the rays still suggest an attractor like solution

(since this is a geometric property), but high frequency oscillations are visible

in the solution, probably due to the high k

2

. Because of this the energy rays

are not very steep. For example rays that have no x-component will, when

out of reach of the sloping wall, re
ect often at the front and back walls.

Clearly visible in all the solutions are the characteristics. The high frequency

oscillations were also observed a lot for the cube with k

2

= 10�.

Shown in �gure 14 are some solutions found by 3dn. As could be expected,

solutions with a constant pressure in the y-direction were found, for both the

cube and the trapezoid. For 3dn, the distribution of the eigenvalues depends

on the spacing of the grid. In �gure 14, the eigenvalues correspond to a grid

that is narrow in the xz plane and more coarse in the y direction. In the

eigenvalues, the kind of curved structures, which are known from warp, can be

recognized. In warp, these structures represented groups of eigenvalues having

the same frequency. When the grid is unstructured, these eigenvalues were

found to be somewhat spaced apart. Looking at the eigenvalues for 3dn, it is

likely that a similar thing occurs in three dimensions. One could therefor try

to combine those solutions which, on the basis of the eigenvalue plots, appear

to be in the same group, and therefor may have the same frequency. (compare

with structured grid eigenvalues)

5.3 Inertial waves

For solving the problem for inertial waves, so for N = 0, three programs

were used. The �rst, warpf, assumes like in warpn, a wavelike solution in the

y-direction, and then solves the problem which has become 2 dimensional. The

second program, 3df, is like 3dn the full 3 dimensional case. The last, warpfz,
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assumes a pressure distribution of e

i(k

3

z�!t)

in the z-direction. This spin-o�

program was used only for testing for the a cubeshaped container, because in

this case the solutions are known. Below some result of the programs will be

shown.

Amphidromic structures : cube coarse 25, rect. coarse 20.

First we will look at warpfz. When applied to a cube shaped container,

the solutions are known to be amphidromic structures. In picture 15 some

solutions are shown. Although this is a spin o� program, the result do give

some credibility to the other programs. The results were checked and found to

agree with the solutions found by (Leo,ampstr). The �nite element code also

came up with series of alternative solutions, which did not seem to make much

sense physically, but are probably a result of trying to comply to the boundary

conditions in a local way.

Using warpf also some attractor like structures were found. One solution

here is especially interesting. For k = �, an attractor like structure was found

for !=f = 0:6876. This solution corresponds very good to one found using

warpn, namely the solution at !=N = 0:7535. These two solutions happen to

be at about the same angle  .

With 3df solutions for the full 3 dimensional problem for inertial waves can

be determined.

6 Conclusions Summary
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Figure 12: Some eigenvalue plots showing !=N as a function of the ordered

eigenvalue index. The top left picture shows the eigenvalues for the cube, using

a structured grid (k

2

= 0). The multiplicities of some of the eigenvalues are

clearly visible. The top right picture shows the eigenvalues for the cube using an

unstructured grid (k

2

= 0). Comparing this plot with that of the unstructured

grid, one can see that the multiplicities have spread out somewhat and are

no longer exact. In the bottom left picture the eigenvalues for the trapezoid

(k

2

= 0) are shown. There are some minor shifts, but the overall picture is

comparable with the eigenvalues of the cube. Finally, in the bottom right picture

the eigenvalues for the trapezoid (k

2

= 10�) are shown. Clearly visible is that

the lower eigenvalues have dissapeared.
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Figure 13: Shown in the pictures are some solutions obtained using warpn. The

solutions show the pressure distribution. In the top left picture a (5,10,1) global

resonance for the cube (k

2

= 10�) is shown. It was found at !=N = 0:9958. In

theory this global resonance would be at !=N =

k

2

1

+k

2

2

k

2

1

+k

2

2

+k

2

3

1=2

= (125=126)

1=2

=

0:9960. In the top right picture a point attractor is shown. In the middle left,

right and bottom left picture attractor like structures for k

2

= 0, k

2

= � and

k

2

= 10� are shown. In the bottom right picture another solution is shown

k

2

= 10�.

32



Figure 14: Some solutions of 3dn. The top left picture shows the eigenvalues

!=N ordered by their size. The top right picture and the middle left picture

show global resonances for the cube for frequency's 0.8927 and 0.8019. The

second of these global resonances is a (1,1,1) global resonance. In theory one

would expect this resonance when !=N =

k

2

1

+k

2

2

k

2

1

+k

2

2

+k

2

3

1=2

= (2=3)

1=2

= 0:8165.

The other three pictures show attractors at frequency's 0.8115 and 0.7622.
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Figure 15: Amphidromic structures, as calculated using warpfz. Plotted is the

pressure as (Re(p)

2

+ Im(p)

2

)

1=2

. The top four plots are for a 1x1 rectangular

container, the bottom four ar for a 2x1 rectangluar container. The amphidromic

structures were found at frequency's !=f : 0.5460, 0.4166, 0.3675, 0.3394 and

0.6557, 0.5621, 0.4726, 0.4303.
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Figure 16: Shown are some solutions calculated using warpf. The pictures show

the pressure distributions as (Re(p)

2

+ Im(p)

2

)

1=2

. In the top two pictures

solutions for the cube with k

2

= � are shown. These were found at frequency's

0.6962 and 0.7686. In the middle two pictures attractor like solutions for the

trapezoid with k

2

= �, found at frequency's 0.6117 and 0.6876, are shown. In

the bottom two pictures two solutions for the trapezoid with k

2

= 10�, found

at frequency's 0.0667 and 0.1658 are shown.
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Figure 17: Shown is a solution for the cube found using 3df. Frequency's 0.3826,

0.2350 resp. 0.4875, 0.2642.
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