
THE CLASSIFICATION OF SURFACES

LENNART MEIER

Everything should be made as
simple as possible, but not
simpler.

Attributed to Albert Einstein

There are several textbook accounts on the classification of surfaces. I can recommend es-
pecially the ones in [Arm79], who presents a similar proof to ours, the informal presentation
in [Zee66] and [Mas91], who presents essentially the most traditional proof. We present a
different proof though, which is due to Thomassen [Tho92] and has not appeared in a text-
book yet. We expand on some points that Thomassen just briefly sketches, in particular the
well-definedness of attaching handles. The epigraph refers to the fact that the classification
of surfaces contains some subleties, which are not equally well-treated in all sources. I hope
that I managed to do better, though this document will certainly contain inaccuracies and
gaps as well.

1. Surfaces

The aim of this series of lectures is to understand and classify surfaces in the following
sense:

Definition 1.1. A surface is a connected compact 2-dimensional manifold (without bound-
ary).

If we allow boundary, we speak explicitly of a surface with boundary, but retain that
they are compact and connected. Note that the connectivity is only for convenience as
every 2-dimensional manifold is the disjoint union of its connected components (exercise).

What are some examples of surfaces? Some are explicitly embedded into R3, like our
good friend, the two-sphere. We can also hint at such an embedding by drawing a picture.1

The number of “holes” in the surfaces is often called its genus. But in the moment it is
not clear at all that this is a property of the manifold itself and not just of the embedding
or the picture – and how many holes do you count in the rightmost picture anyhow?

1The rightmost of the pictures is taken from https://forum.processing.org/two/discussion/23313/
how-do-i-make-a-torus-knot, the other two from wikicommons.

1
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Another way to construct surfaces is to take a polygon and to glue pairs of side such that
every side occurs in exactly one pair. It is not too hard to see that this gives a manifold
(see e.g. [Lee11, Proposition 6.4]). An example is the following:

The letters indicate, which pairs of sides we glue. The arrows indicate, which homeomor-
phism of a side with the standard interval [0, 1] we choose and hence by which homeomor-
phism we glue the two sides.

How to see whether this example is homeomorphic to one of the surfaces above? We
can first test whether they have isomorphic fundamental groups. The surface obtained by
glueing an octagon as above has fundamental group

〈a, b, c, d | aba−1b−1cdc−1d−1〉.

The fundamental group of the genus two surface above can be computed via van Kampen.
If we cut in a curve in the middle, one can see that the fundamental groups of the two pieces
are both free on two generators (as they are tori without an open disk and thus homotopy
equivalent to a wedge of two circles). We thus obtain a presentation with generators a, b, c, d
and one relation: aba−1b−1 = c−1d−1cd (Note that our arguments in this computation are
slightly vague as we defined the genus-2 surface above only by picture and not by a precise
mathematical definition.)

The fundamental groups are thus isomorphic, but are the surfaces homotopy equivalent or
even homeomorphic? The answer will be yes. We will indeed be able to completely classify
surfaces up to homeomorphism. But first we will do as a warm-up the case of curves.

2. Warm-up: Classification of curves

As a warm-up we classify compact 1-dimensional manifolds (without boundary). We
easily reduce to the connected case.

Definition 2.1. A curve is a 1-dimensional compact connected manifold without boundary.

Lemma 2.2. Every curve C is homeomorphic to (the geometric realization of) a graph.

Proof. Choose around every point of C a neighborhood that is homeomorphic to a closed
interval. By compactness, finitely many suffices, and we call them Ai. Let the complexity
of this cover be the number of pairs of intervals that overlap in their interior. We denote
the complexity of C by n.

If the complexity is zero, then C is homeomorphic to a graph. We argue by induction
and assume that every curve C with a cover of complexity smaller than n is homeomorphic
to a graph. Consider two overlapping intervals Ai and Aj . If Ai ⊂ Aj , delete Ai. Else,
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replace Aj by Aj \ (Ai ∩Aj), which is still an interval. In either case, the new cover has
lower complexity. �

Remark 2.3. For a version of this result without compactness assumption see [Lee11, The-
orem 5.10].

Proposition 2.4. Every curve C is homeomorphic to S1.

Proof. By the previous lemma, there is a graph structure on C, which we will fix. As C is
a 1-dimensional manifold, removing v from a small neighborhood of a vertex v results in a
space with two connected components. Thus, every vertex must have valence 2, i.e. must
be contained in exactly two edges (which might be identical if we allow loops).

We claim that C is as a graph isomorphic to a standard n-gon Dn. As (the geometric
realization of) Dn is homeomorphic to S1, this implies the result.

We argue by induction on the number n of edges, the case of exactly one edge being clear
as the only graph with just one edge has one vertext and one loop is thus isomorphic to D1.
If we have more than one edge, pick an edge e and consider the quotient C/e. This is still
a curve and thus induction shows that C/e ∼= Dn−1. If we cut Dn−1 open along the vertex
correspond to e and insert an edge, we obtain both C and Dn and thus these have to be
isomorphic. �

This foreshadows our procedure in the significantly more complicated case of surfaces:
(1) Find a combinatorial structure on our object.
(2) Simplify the combinatorial structure by an inductive procedure and obtain the orig-

inal surface by performing these simplifications backwards.

3. Triangulations

The precise combinatorial structure for surfaces we need to consider are triangulations.
Combinatorially, triangulations are given by simplical complexes.

Definition 3.1. A triangulation of a surface S is a homeomorphism S → K to a space
K that we obtain as follows: Consider a disjoint union of triangles (i.e. ∆2) and a set of
pairs of directed edges, which we glue together. We call the images of vertices, edges and
triangles by the same name in K. We demand that

• every edges in K has two distinct endpoints and for every two vertices there is at
most one edge between them, and
• every triangle has three distinct sides and for every three vertices there is at most
one triangle spanned by them.

Such a space K is called a (2-dimensional) simplicial complex. If we leave out the two
last conditions (i.e. K is just glued from triangles along pairs of directed edges) we call K
a ∆-complex.2

Combinatorially, a 2-dimensional simplicial complex can be encoded in a set of vertices
V , a set E (of edges) of two-elements subsets of V and a set T (of triangles) of three-
elements subsets of V such that every two-element subset of some triangle t ∈ T is in
E. This combinatorial datum is sometimes called an abstract simplicial complex. One can

2Simplicial complexes and ∆-complexes are actually more general concepts that also exist in arbitrary
dimensions. (We also demanded that every vertex and every edge is part of a triangle and that every edge is
contained in at most two triangles, which is usually not part of the definition of a simplicial or ∆-complex.)
Except in a short outlook, we will only consider the kind of simplicial complexes and ∆-complexes as above.
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similarly define higher dimensional version, where we glue a disjoint set of higher dimensional
simplices ∆n together along faces. Here, ∆n stands for the convex hull of the unit vectors
in Rn+1, i.e. an n-dimensional analogue of triangle and tetrahedron. Abstractly, a higher-
dimensional simplicial complex is encoded in subset Ki ⊂ V i. (See [Lee11] for more details.)

Lemma 3.2. Every edge in a triangulation of a surface is contained in two triangles (in
other words: every side of a triangle is glued to another side). Moreover, every vertex has
valence at least 3, where valence refers to the number of edges adjacent to the vertex.

Proof. Assume that there is an edge e that is only part of one triangle and let x be a point
in the interior of e. Then x has arbitrary small neighborhoods V in S such that V \ {x}
is simply-connected, even contractible. In contrast, let U be a neighboorhod of x that is
homeomorphic to R2 (which exists as S is a surface). Take a neighborhood V such that
V \ {x} is simply-connected and V ⊂ U . Then take a small loop around x that is non-
nullhomotopic in U \ {x} and that is contained in V . But as it is nullhomotopic in V \ {x},
we arrive at a contradiction. Thus every edge must be part of two triangles.

Clearly, every vertex must have valence at least 2. Assume that v is a vertex of valence
2 and let w and u be the two other endpoints of the adjacent edges. Let e be one of the
edges adjacent to v and let ∆1 and ∆2 be the two triangles adjacent to e. Each of these
triangles has two edges adjacent to v and we see that both of them in ∆1 are glued to the
corresponding ones in ∆2 as v has valence 2. Thus, ∆1 and ∆2 are two triangles with the
vertices u, v and w, in contradiction with the definition of a triangulation. �

The tetrahedron and the octahedron are examples of simplicial complexes that are home-
omorphic to the sphere S2. Indeed: Embed the tetahedron T into R3 such that 0 is in its
interior and T lies inside S2. The projection R3\{0} → S2 restricts to a continuous bijection
T → S2 that is automatically a homeomorphism as T is compact and S2 is Hausdorff. The
argument for the octahedron is analogous.

What about triangulation of other surfaces such as the torus and the Klein bottle? One
could think in error that these are examples of triangulation of these surfaces.
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The torus The Klein bottle

But note that this violates the condition that every edge must have two distinct endpoints.
For example in the case of the torus, all four corners are identified to one point after glueing.
Thus we only have a ∆-complex and not a simplicial complex. To obtain a simplicial complex
(and hence a triangulation) one has to subdivide the triangles to obtain a triangulation.
A systematic procedure is the barycentric subdivision, which has additional vertices the
midpoints of all sides and the barycenter of the triangle.

If we choose the barycentric subdivision of the two triangles in the torus, we still do not
obtain a triangulation (exercise: which edges have the same endpoints?). But if we subdivide
all the triangles again barycentrically, it provides a triangulation. Actually this works for
every space glued from triangles along sides that if we doubly barycentrically subdivide all
its triangles, it yields a triangulation. In the case of the torus, this triangulation has 72
triangles. In contrast, there are simpler triangulation with only 14 triangles, of which we
depict an example.
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The barycentric subdivision The double-barycentric subdivision

A minimal triangulation of the torus

While we have proven above the easy statement that every 1-dimensional manifold has
a “triangulation”, the following 2-dimensional analogue is harder and we will use it without
proof (see [Tho92] for a modern, self-contained proof).

Theorem 3.3 (Radó, 1925). Every surface has a triangulation.

Moise (1952) shows that every compact 3-dimensional manifold has a triangulation as well
(i.e. it admits a homeomorphism to a 3-dimensional simplicial complex). It might come as a
surprise that for every n ≥ 4, there is a compact n-dimensional manifold (without boundary)
that does not have a triangulation. The latter results are very deep. For dimension 4 it
follows from results of Freedman (1982) and Casson (1990) – this is actually part of the work
Freedman won the fields medal for. For dimensions at least 5 the result is due to Manolescu
(2013). In contrast, it was proved much earlier by Cairns (1935) and Whitehead (1940)
that every differentiable manifold has a triangulation. Thus, these counterexamples in
dimensions at least 4 are truly weird: topological manifolds without differentiable structure
or triangulation. Luckily, in dimension 2 we do not have to face such problems.

An isomorphism between two triangulations of two surfaces consists of a bijection f : V
∼=−→

V ′ of the sets of vertices such that we have for the sets of edges and triangles the equalities
f(E) = E′ and f(T ) = T ′. Given two triangulated manifolds M ∼= K and N ∼= K ′ and an
isomorphismK ∼= K ′, we obtain a composed combinatorial isomorphism M ∼= K ∼= K ′ ∼= N .
But there are other “combinatorial” ways M and N can be homeomorphic. We may namely
subdivide a triangle into sub-triangles. We allow any subtriangulation, where the new
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triangles are (affine) linearly imbedded into the standard 2-dimension simplex. Besides the
example already depicted above, the most important example for us the following simple
subdivision, also called the stellar subdivision:

Definition 3.4. A subdivision of a simplicial complex or more generally a ∆-complex
consists of subdivision of all constituting triangles such that the subdivisions match on the
glued edges. Two ∆-complexes are combinatorially homeomorphic if they have a common
subdivision, i.e. if there exist subdivisions of the two complexes that are combinatorially
isomorphic. Two triangulated surfaces are combinatorially homeomorphic if the associated
simplicial complexes are combinatorially homeomorphic.

It is not hard to see that combinatorial homeomorphisms are indeed homeomorphisms.

Lemma 3.5. Being combinatorially homeomorphic is an equivalence relation on the class
of ∆-complexes (and hence also on the subclass of simplicial complexes).

Proof. Symmetry and reflexivity are clear. Now suppose K and L have a common subdi-
vision K ′ and L and M have a common subdivision L′. We need to show that K ′ and L′
have a common subdivision again. As they are both (up to isomorphism) subdivision of L,
it suffices to see that two subdivisions of the same ∆-complex have a common subdivision.
This follows from the fact that the intersection of two linearly embedded triangles into a
triangle has a triangulation (as illustrated in the picture below).

�

One special case of a combinatorial homeomorphism is the one between the two obvious
triangulations of a quadrilateral.
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In practice a combinatorial homeomorphism will for us be a composition of “moves”,
where we subdivide (or take the inverse of a subdivision) or change the triangulation of a
quadrilateral.

For more information about triangulations and simplicial complexes we refer to the books
by Armstrong [Arm79] and [Lee11]. For ∆-complexes see also [Hat02].

4. Statement of the classification and orientability

The classification will be of the form that every surface is homeomorphic to exactly one
in a list of standard surfaces. First we have the list of surfaces with “g holes”. For g = 0,
this is just S2 (with, say, the triangulation given by the tetrahedron), for g ≥ 1 we glue a
4g-gon in the following scheme to obtain a surface Sg:

•
•
•

a1

b1
a−11

b−11

a2

b2
a−12

b−12

a3

But there are also other surfaces, not fitting in this scheme. For example, RP2 and the
Klein bottle are not homeomorphic to any of these, as we will see. One difference is that the
surfaces Sg are orientable while the the surface RP2 and the Klein bottle are not orientable.
Intuitively, orientable means that we can give a disk in our surface an orientation (i.e. a
notion what it means to rotate clockwise or counterclockwise) and if we move our disk along
a path to the same disk again, this notion cannot change. If we can embed a Möbius strip
into our surface, our surface is thus not orientable. Combinatorially, an orientation means
that every triangle in our triangulation gets a sense of clockwise orientation such that the
corresponding orientations of the edges are opposite for two adjacent triangles. See the
discussion in [Arm79, Section 7.2] for details.

There are more non-orientable surfaces than just RP2 and the Klein bottle, namely the
surfaces Ng, which we obtain by glueing a 2g-gon in the following scheme:
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•
•
•

a1
a1

a2

a2

a3

a3
a4

a4

As an exercise find the embedded Möbius strip inside these surfaces.
The surfaces N1 and N2 are RP2 and the Klein bottle. We call the collection of S2, Sg

and Ng (with g ≥ 1) the standard surfaces. We sometimes set S0 = S2.

Theorem 4.1. Every surface is homeomorphic to exactly one of the standard surfaces.

What we will actually prove is a slightly different theorem, but it will directly imply
Theorem 4.1 together with Theorem 3.3.

Theorem 4.2. Every triangulated surface is combinatorially homeomorphic to one of the
standard surfaces.

Remark 4.3. The classification of (oriented) surfaces was first stated by Möbius in 1861,
but his proof precedes the modern notions of topological spaces and manifolds by several
decades and is thus not rigorous by modern standards. The first rigorous proof of the
classification of triangulated surfaces was maybe given by Dehn–Heegard (1907). Together
with Radó’s theorem, one can say that the history of the classification of surfaces, from its
first statements to a complete proof, stretches from 1861 to 1925.

One thing we can directly prove is that none of the standard surfaces are homeomorphic
(or even homotopy equivalent) to each other and so that every surface can be homeomorphic
to at most one of these. We use the fundamental group. We have

π1(Sg) ∼= 〈a1, b1, . . . , ag, bg | (a1b1a−11 b−11 ) · · · (agbga−1g b−1g )〉.

In contrast, we have:
π1(Ng) ∼= 〈c1, . . . , cg | c21 · · · c2g〉.

Are any of these groups isomorphic? They seem different, but proving whether two non-
abelian groups are isomorphic is a bit tricky. (In general, there is not even an algorithm to
decide whether a given group presentation defines the trivial group!) But for abelian groups,
it is usually much easier. Thus, we introduce the abelianization Gab of a group G. It comes
with a group homomorphism φ : G → Gab. Formally speaking, it is characterized by the
following universal property: Every group homomorphism G → H into an abelian group
factors uniquely as a composition G → Gab → H. Alternatively it can be characterized as
the maximal abelian quotient. Given a presentation, we can construct it by just adding the
relations that all generators commute. E.g. in case of π1(Ng) we would add the relations
cicj = cjci. Note that if two groups are isomorphic, also their abelianizations are isomorphic
(as follows from the universal property).
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We directly see that in the abelianization of π1(Sg) the relation becomes trivial and
thus π1(Sg)ab is just the free abelian group on the generators a1, b1, . . . , ag, bg, i.e. Z2g.
The abelianization of π1(Ng) is isomorphic to the free abelian group of the generators
c1, . . . , cg modulo the relation 2c1 + · · ·+ 2cg (we switched to addtive notation as we are in
an abelian group now). We can change the basis of the free abelian group to e1, . . . , eg with
ei = ci for 1 ≤ i ≤ g − 1 and eg = c1 + · · · + cg, where the relation reads 2eg = 0. Thus,
π1(Ng)ab ∼= Zg−1⊕Z/2. We see that no two of the groups π1(Sg) and π1(Ng) are isomorphic
and thus no two of the Sg and Ng are homotopy equivalent or even homeomorphic. (See
also [Lee11, p. 264-267].)

5. Handles and cross-caps

There is also a different way of building surfaces than via polygonal gluings. To gain some
intuition, we will first describe this construction without triangulations and only introduce
triangulations on them only later.

We can obtain a surface of genus g by attaching g handles to a sphere. Here, attaching
a handle means the following: Embed two disks disjointly via maps φ1, φ2 : D2 → S into a
surface S – if S is orientable, we demand that the disks have opposite orientation.3 Remove
the interiors of the two disks to obtain a space S′ and attach a cylinder at the resulting two
boundary circles. More precisely, we obtain this as the quotient space of S′

∐
S1× I, where

we identify (x, 0) ∈ S1 × I with φ1(x) ∈ S′ and (x, 1) with φ2(x). A cross-handle is the
same, but the orientations of the disks agree. If we have a surface embedded into R3 and
attach a handle, it can still be embedded into R3, while a cross-handle cannot be embedded
anymore, but would need some self-intersection.4 It is not hard to see that the resulting
space of attaching a (cross-)handle is still a surface. For pictures of this process we refer to
the book [Arm79] and the notes [Zee66].

Remark 5.1. Let φ1 and φ2 be as above and D2
r be a disk of radius r. Then an alternative

way to obtain the surface that results from attaching a (cross-)handle along the φi is the
following: Remove the interiors of the disks φi(D2

1
2

) from S to obtain a new space S′′. Now

identify φ1(x) with φ2(x) for x ∈ ∂D2
1
2

.

Here we use that we obtain the cylinder by glueing D2 \ D̊2
1
2

with itself along the inner
boundary circle.

Attaching a cross-cap means to remove the interior of an embedded disk and identifying
opposite points on the boundary. It is not hard to see that the resulting space of attaching
a cross-cap is still a surface. Again we refer for pictures to [Arm79] and [Zee66].

Next we want to explain versions of this for a triangulated surfaces, where we triangulate
the resulting new surface again.

In this setting, instead of choosing embedded disks to attach a (cross-)handle at, we
will choose two triangles in our triangulation that are not connected by any edge. We
remove the interiors of the triangles and identify their corresponding sides. This produces

3We have not discussed orientations of non-triangulated surfaces and we will not actually use them either.
But one way to define this is to say that that the two embeddings φ1, φ2 : D2 → S are not isotopic, i.e. there
is no homotopy (Ht) from φ1 to φ2 such that Ht is an embedding for each t ∈ I – such a homotopy is called
an isotopy.

4This is a fact we actually won’t prove here. One approach to see this is that after attaching a cross-
handle the surface becomes non-orientable and non-orientable (closed) surfaces cannot be embedded into
R3.
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a triangulation on the new surfaces with the three less vertices, two less triangles and three
less edges. (See the remark above why we call this attaching a (cross-)handle.)

For attaching cross-caps, we pick a vertex v of valence 2g (g ≥ 3)5 and consider the disk
that is the 2g-gon obtained from all the triangles touching v. Removing the interior and
identifying opposite sides produces a cross-cap.

6. Surgeries and Euler characteristic

Attaching a handle or a cross-cap makes our surface topologically more complicated (if
we say that the sphere is the simplest surface). We can also go in the opposite direction to
make our surface simpler.

Suppose there is a path γ = v1v2v3v1 on a triangulated surface S (along edges) that does
not separate S, i.e. its complement is still connected. There are now two cases, depending
on whether γ is orientation-preserving or orientation-reversing. In the former case, a neigh-
borhood of the curve will look like a cylinder, while in the latter case it looks like a Möbius
strip. (I encourage you to try to cut a Möbius strip along the middle circle to see that this
cut does not separate it into two components.)

More precisely, we distinguish these two cases by considering what happens if we cut the
surface S along γ. This process can be described as follows: S is glued from a number of
triangles along their boundaries. We look at the triangulated surface S′ (with boundary!)
where we leave out the gluings along the edges of γ. The resulting boundary is a graph with
six edges and two properties: Every two vertices are connected by at most one edge and
every vertex has valence two. This shows that the boundary consists either of two triangles
or of one hexagon. In the former case we say that γ is orientation-preserving, in the latter
that γ is orientation-reversing.

A hexagon

If S′ has two boundary triangles, we produce a surfaces S′′ by gluing
two triangles along these boundary curves. In the other case, we glue
a hexagon (as consisting of six triangles) into the boundary curve. The
resulting surface S′′ does not have a boundary anymore is said to be
obtained via a surgery along γ.

It is direct from the definition that if γ was orientation-preserving,
we can get S back from S′′ by attaching a (cross-)handle and if it was
orientaton-reversing by attaching a cross-cap.

Now we need a measure to say that the surface became simpler. This
is the Euler characteristic. If the triangulation T of S has n vertices, e
edges and t triangles, its Euler characteristic is defined to be t− e+ n. We denote it either
by χ(T ) or by χ(S) when the triangulation is understood. (We will see later that the Euler
characteristic only depends on the homeomorphisms or even homotopy type of S, not on
the specific triangulation. But in the moment, we do not need to use this fact yet.)

If we do a surgery along a orientation-preserving path, we gain three vertices, three edges
and two triangles. Thus the Euler characteristic is raised by 2.

If we do a surgery along a orientation-reversing path, we gain four vertices, nine edges
and six triangles. Thus the Euler characteristic is raised by 1.

Lemma 6.1. If S is a triangulated surface, then χ(S) ≤ 2.

5This means that there are 2g edges adjacent with v.



12 LENNART MEIER

Proof. Look at the graph G of vertices and edges and choose a maximal tree T inside of it.
Now consider the dual graph D of T , i.e. its vertices are the triangles of S and its edges are
those edges not in T .

The maximal tree T is marked in blue

The dual graph D is marked in red

We claim that the dual graph D is connected and actually more generally the dual graph
D′ of every tree T ′ inside G is connected. We prove this by induction on the number of
vertices n in T ′. Assume we have proven it for all trees with less than n vertices and choose
a vertex v in T ′ just adjacent to one edge e. We know by induction that the dual graph of
T ′ \ {e} is connected. The only way D′ can not be connected is if the two triangles ∆1 and
∆2 adjacent to e are not connected in D′. But none of the other edges e1, . . . , ek (ordered
clockwise) adjacent to v are in T ; thus e1, . . . , ek forms a path in D′ connecting ∆1 and ∆2.
Thus the dual graph is indeed connected.

∆1

∆2
e

e4

e3
e2

e1

An inductive argument shows that every tree and in particular T has Euler characteristic
1, while every connected graph and thus D has Euler characteristic at most 1. As T contains
all vertices, χ(T ) + χ(D) = χ(S) and we see χ(S) ≤ 1 + 1 = 2. �

In particular, we can only do finitely many surgeries at one surface and none at one of
Euler characteristic 2.

Remark 6.2. It is an important observation that the Euler characteristic does not change
by subdivision. This is very easy to see for the only two types of subdivision we use, namely
the stellar subdivision (where we add one vertex, three edges and two triangles) and the
one moving from one triangulation of the quadrilateral to another.

In general, there is an induction argument on the number of edges, which is easiest to
set up not just considering triangulations, but arbitrary graphs inside the triangle (with the
count of triangles replaces by the count of faces, i.e. connected regions in the complement of
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the edges and vertices). If you want to see the details of the proof, google Euler’s formula
for graphs.

7. The main proof

In this section, we will prove a weak version of our main classification theorem, but which
will be sufficient with some extra work to obtain Theorem 4.2.

Theorem 7.1. Every triangulated surface S is combinatorially homeomorphic to a surface
that is obtained from a tetrahedron by iteratively attaching (cross-)handles and cross-caps
(and possibly subdividing in this process). The Euler characteristic of S equals 2 − 2h − c,
where h is the number of (cross-)handles and c the number of cross-caps attached.

Proof. Start with any triangulation T of our surface S. Let χ(T ) be the Euler characteristic
of this triangulation of S. In case that (S, T ) does not satisfy the conclusion of the theorem,
we call it a counterexample. We assume that S is a counterexample with the following
properties:

(1) The Euler characteristic χ(T ) is maximal among all counterexamples (we can assume
this as χ(T ) ≤ 2 by Lemma 6.1),

(2) The number of vertices in T is minimal among all counterexamples subject to (1),
(3) The minimal valence of a vertex of T is minimal among all counterexamples subject

to (1) and (2), where valence still refers to the number of edges adjacent to the given
vertex.

Let v be a vertex in T with minimal valence. By Lemma 3.2, the valence must be at least
3. If the valence is 3, we can remove v and the three edges adjacent to v as in the picture
and obtain a triangulation T ′ such that (S, T ) is combinatorially homeomorphic to (S, T ′).
(Here we are using that T is not already a tetrahedron.)

v
Deleting a vertex of valence 3

Moreover, we have χ(T ) = χ(T ′), but the latter triangulation has less vertices than T .
This is in contradiction with (2).

Thus, the valence of v is at least 4. Call the adjacent vertices v1, . . . , vq. Assume first
that there is an i such that vi and vi+2 (cyclically counted so that e.g. vq+2 = v2) are not
connected by an edge. The following picture demonstrates how to change the triangulation
to a combinatorially homeomorphic one, where the vertex corresponding to v has lower
valence, in contradiction to (3).

v

vivi+1

vi+2 v

vivi+1

vi+2
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Thus, we can assume that vi and vi+2 are connected by edges for all i = 1, . . . , q. We
claim that the path vv1v3 does not separate the surface. Indeed, the intersection of a small
neighboorhood of it with S \ vv1v3 has at most two components and because of the cyclic
ordering v2 and v4 must lie in different ones of them if there are two. Every path on S
crossing vv1v3 must cross this neighborhood and it is thus enough to observe that v2 and
v4 are connected by an edge as these two points are connected to every other point in the
neighborhood.

Now we do a surgery along the path vv1v3. Our discussion about surgeries implies that
after the surgery, the Euler characteristic of the triangulated surface becomes larger and
thus the resulting surface S′ can be obtained via attaching (cross-)handles and crosscaps
from the sphere (with its tetrahedron triangulation) by induction. Moreover, we have seen
that S can be obtained from S′ via attaching a (cross-)handle or cross-cap. Thus S cannot
be a counterexample. �

This already implies that every surface of Euler characteristic 2 is combinatorially home-
omorphic to the tetrahedron. We call such surfaces just spheres.

8. Well-definedness of attaching (cross-)handles and cross-caps

We prove the classification of surfaces with boundary only in the simplest cases. First,
we will need a lemma.

Lemma 8.1. Let S be a connected compact surface with boundary. Then χ(S) ≤ 1.

Proof. Let c1, . . . , ck be the boundary cycles of S such that ci has ni edges each. Let Dn

be an n-gon that is triangulated with one inner vertex and n triangles. Thus χ(Dn) = 1.
We can glue S and Dn1 , . . . , Dnk

by glueing ci with the boundary of Dni . The resulting
surface does not have boundary anymore and will have Euler characteristic χ(S) + k ≤ 2
(by Lemma 6.1). Thus χ(S) ≤ 1. �

Proposition 8.2 (Disk and annulus theorem). Let S be a triangulated surface with bound-
ary.

If S has one boundary component and Euler characteristic 1, the surface is combinato-
rially homeomorphic to a disk (more precisely, to a triangle). We call such a surface a
combinatorial disk. If S has two boundary components and Euler characteristic 0, the sur-
face is combinatorially homeomorphic to an annulus (as in the picture below). We call such
a surface a combinatorial annulus.6

A triangulated annulus

6The proof actually gives the following more precise statement: Given two combinatorial disks any
combinatorial homeomorphism of their boundaries extends to a combinatorial homeomorphism of the com-
binatorial disks. For combinatorial annuli, any combinatorial homeomorphism of one of the boundary cycles
of the first annulus to one of the boundary cycles of the second annulus extends to a combinatorial home-
omorphism of the annuli. (But we are not allowed to prescribe combinatorial homeomorphisms of both
cycles.) This will be the result we will actually use.
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Proof. The proof is an adaption of the argument in Theorem 7.1. Let S be a surface of Euler
characteristic 1 with one boundary cycle with n edges. Assume first that S has an inner
vertex. Then there exists an inner vertex v of minimal valency. If the valency is 3, then
we can remove v to obtain a triangulation with less inner vertices as in the proof above. If
the valency is at least 4, we can consider all adjacent vertices v1, . . . , vq (cyclically ordered).
If not every vi and vi+2 are adjacent, we can make a move to reduce the valency of v as
in the proof above. We claim that not all vi and vi+2 can be adjacent. Indeed, if both v1
and v3 are inner, we can make a surgery along the triangle vv1v3 as before and get a larger
Euler characteristic, which is impossible (as the resulting surface will still have non-empty
boundary). If v1 or v3 is not inner, we can attach to the boundary of S a “ring” so that all
vertices on the boundary become inner; for a concrete ring, it is easy to see that the Euler
characteristic of S does not change and so the same argument applies.

All in all we obtain by induction a triangulation without inner vertices of an n-gon (as
there must be exaxctly one boundary curve). Choosing any edge that separates the n-gon
lets us show by induction that all of these triangulations are combinatorially homeomor-
phic. Thus, all surfaces of Euler characteristic 1 with one boundary cycle with n edges
are combinatorially homeomorphic. Subdivision shows that the triangle is combinatorially
homeomorphic to such a surface for every n.

Now let S be a surface of Euler characteristic 0 with two boundary cycles of lengths m
and n, respectively. Choose a path P of length l from one boundary cycle to the other.
We can cut at this path to obtain new surface S′ with just one boundary cycle and Euler
characteristic 1, whose boundary is divided into segments of lenght m, l, n and l. The
arguments above show that without any subdivision of the boundary, this is combinatorially
homeomorphic to any other combinatorial disk with an analogous division of the boundary.
Glueing along the paths of length l again, we obtain a surface that is combinatorially
homeomorphic to S. Clearly, l ≥ 1, and also m,n ≥ 3 as else the resulting “triangulation”
of S is not really a triangulation as there will be either a loop or two edges with the same
endpoints. The following picture indicates part of a triangulation of a a combinatorial disk
with the required segmentation of the boundary.

l l

n

m

The (part of the) triangulation displayed is a subdivision of the same triangulation with
the blue edges removed. By this removal, the red-marked pairs of edges are becoming one
edge each. Thus, we have shown how to find a combinatorially homeomorphic triangulation
with smaller l, m, n if l > 1 or m or n is bigger than 3. This way we can assume inductively
up to combinatorial homeomorphism that l = 1 and m,n = 3 and as we just said, all
triangulation with this property are combinatorially homeomorphic. �
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Proposition 8.3. Let S be a triangulated surface, possibly with boundary. Let D1, D2 be
two simplicial subcomplexes that are combinatorial disks and do not touch the boundary.
Then there is a combinatorial homeomorphism S → S restricting to a combinatorial home-
omorphism D1 → D2.

Proof. Let D be a combinatorial disk inside S. Draw a “ring” R around D as in the picture.

D

R

More precisely, we choose a point on every edge adjacent but not contained in D. As
the vertices of D have a cyclic ordering and the edges adjacent to a vertex have one as
well, these new points have a cyclic ordering as well. With respect to this cyclic ordering
we connected every of these points to the next one, forming a polygon, which is the ring
R. The resulting figure will not only contain triangles, but also quadrilaterals. Drawing
diagonals in the latter produces a subdivision of the original triangulation.

The area AD between R and D is a combinatorial annulus as it has two boundary com-
ponents (the boundary of D and R) and the Euler characteristic is easily calculated to be
zero. Let T be an arbitrary triangle in D. We claim that the area AT between R and T is
also a combinatorial annulus. Indeed: The area F enclosed by R has Euler characteristic
χ(D) + χ(AD) = 1 as the intersection of D and AD has Euler characteristic zero. As AT is
F with one missing triangle, we see that χ(AT ) = 0.

Thus AD and AT are combinatorially homeomorphic by the last proposition and this
combinatorial homeomorphism ϕ can be chosen to be the identity on R. Moreover, D and
T are combinatorially homeomophic by the last proposition as well and we can choose the
combinatorial homeomorphism to be the restriction of ϕ on ∂D. Thus, these combinatorial
homeomorphism glue to a combinatorial homeomorphism of S to S that is the identity
outside of F and takes D to T .

We see that it suffices to find for two triangles combinatorial homeomorphisms that take
one to the other. As two adjacent triangles T1 and T2 form together a combinatorial disk D,
this is clear for adjacent triangles (using the composite of the combinatorial homeomorphism
transporting T1 to D and the one transporting D to T2). It is easy to see that any two
triangles are connected by a chain of adjacent triangles by just following a path between
the two triangles. �

Corollary 8.4. Attaching a (cross-)handle along two chosen (non-touching) triangles does
not depend on the chosen triangles, only possibly on their orientations, up to combinato-
rial homeomorphism. Attaching a cross-cap does not depend on the chosen 2g-gon up to
combinatorial homeomorphism as well.

Proof. For the first case, let T1 and T2 respectively T ′1 and T ′2 such triangles. Use the
preceding proposition to produce a combinatorial homeomorphism that sends T1 to T ′1.
Thus we can assume T1 = T ′1. Remove the interior of T1 to obtain a surface with boundary.
Then there is still a combinatorial homeomorphism sending T2 to T ′2, fixing the boundary
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(possibly not pointwise). Glueing T1 in again shows in total that there is a combinatorial
homeomorphism of our surface to itself sending T1 to T ′1 and T2 to T ′2. This easily implies
the first part.

The second part is similar. �

Remark 8.5. The arguments of this section also imply that we have more freedom in attach-
ing (cross-)handles and crosscaps than previously stated. For a cross-cap we can take an
arbitrary combinatorial disk with an even number of boundary edges, take out the interior
and identify opposite sides. The triangulation in the interior does not matter. Similarly
for (cross-)handles, where have only to ensure that both combinatorial disks have the same
number of boundary edges. It might be necessary to subdivide afterwards to obtain a
triangulation again.

Example 8.6. Choose the 4-gon on a tetrahedron consisting of two of the triangles. At-
taching a cross-cap at this produce the usual rectangle with gluings that defines RP2. (We
need to subdivide to provide a triangulation again)

Example 8.7. Attaching a cross-cap to RP2 (in its representation as above) produces a
Klein bottle. (Exercise)

Example 8.8. Attaching a cross-handle to S2 also produces a Klein bottle. (Exercise)

Definition 8.9. Let S1 and S2 be two triangulated surfaces. Choose combinatorial disks D1

and D2 in S1 and S2, respectively, that have the same number of boundary edges. Remove
the interiors of D1 and D2 from S1 and S2, respectively, and glue the resulting surfaces with
boundaries along the boundaries. (When we identify the two boundary cycles there are two
possibilities, depending on in which direction we transverse the cycle and we have to choose
one.) The result is called the connected sum of S1 and S2 and denoted by S1#S2.

Using Proposition 8.3 again we see that the connected sum does not depend on the chosen
disks (up to combinatorial homeomorphism), only possibly on the chosen orientations of the
boundaries of the disks. (Although a posteriori one sees that it does not for surfaces though
it does in higher dimensions.)

Example 8.10. The connected sum of a surface S with a sphere is combinatorially home-
omorphic to S again. Indeed, taking the sphere S2 to be a tetrahedron and the disk in S
to be triangle, we see that S#S2 is just subdividing the chosen triangle.

Example 8.11. Attaching a cross-cap is the same (up to combinatorial homeomorphism)
as connected sum with RP2. Indeed, RP2 is S2 with one cross-cap attached.

Likewise, the examples above show that attaching a cross-handle is the same as connected
sum with the Klein bottle. Attaching a handle is the same as attaching a torus. (Exercise)

9. The conclusion

The rest is now not very difficult. We will use the result Corollary 8.4 freely.

Lemma 9.1. Attaching two cross-caps gives a combinatorially homeomorphic result to at-
taching a cross-handle.

Proof. This follows directly from Example 8.7 and Example 8.11. �

Lemma 9.2. If the surface is not orientable, attaching a (cross-)handle does not depend up
to combinatorial homeomorphism on the orientations of the triangle. This is in particular
true after attaching a cross-cap.



18 LENNART MEIER

Proof. It suffices to produce a combinatorial homeomorphism of the surface that sends
a triangle to its oppositely oriented one. Arguing as in Proposition 8.3 we just have to
choose a path of a triangles that changes the orientation, which exists as our surface is not
orientable. �

Now we are ready to prove our main result, which we state again.

Theorem 9.3. Every triangulated surface S is combinatorially homeomorphic to one of the
standard surfaces. More precisely, every oriented triangulated surface of Euler characteris-
tic 2 − 2g is combinatorially homeomorphic to Sg and every non-oriented one with Euler
characteristic 2− g to Ng.

Proof. By Theorem 7.1, S can be obtained by attaching (cross-)handles and cross-caps to
a tetrahedron. Using the lemma above, we see that we can get S by either only attaching
handles (if S is orientable) or only attaching cross-caps (if S is non-orientable). Using the
formula of the Euler characteristic from Theorem 7.1 we see in particular that we obtain Sg
by attaching g handles to the tetrahedron (as Sg is orientable) and Ng by attaching g cross-
caps (as Ng is not orientable). As we have seen that the result of attaching handles/cross-
caps is up to combinatorial homeomorphism independent of the chosen disks, we obtain
that every oriented triangulated surface of Euler characteristic 2 − 2g is combinatorially
homeomorphic to Sg and every non-oriented one of Euler characteristic 2− g to Ng. �

10. Outlook

While there were already some subleties in the case of surfaces, the case of higher-
dimensional manifolds is considerably more complicated. In any higher dimension a com-
plete classification is hopeless (in dimensions ≥ 4 it is even impossible in a precise sense
as it would in partiular involve deciding whether two groups with given presentation are
isomorphic and Markov has proven that there is no algorithm deciding this).

If we restrict to simply-connected manifold in contrast, there is some hope. Perelman
(2002) proved Poincaré’s conjecture that every simply-connected 3-dimensional compact
connected manifold without boundary is homeomorphic to S3. For this he was awarded
the Fields medal and one million dollar (as the Poincare conjecture was a Millenium Prize
Problem), which he both declined. Freedman (1982) could already earlier classify simply-
connected 4-dimensional manifolds up homeomorphism in terms of algebraic data (and
obtained a Fields medal for that). For simply-connected manifolds in dimension 5 a clas-
sification is still known, but for higher-dimensional manifold it becomes more and more
complicated.

This was about classification up to homeomorphism. How about classification of differ-
entiable manifolds up to diffeomorphism? In dimension 2 or 3 it turns out that there is no
difference of classifications (Moise). In contrast, in higher dimension there can be homeo-
morphic differentiable manifolds that are not diffeomorphic. If we talk about differentiable
structures on the sphere, these are called exotic sphere. Milnor showed already in 1956 the
existence of exotic spheres in dimension 7 (and was awarded the Fields medal for it...) and
in many dimensions complete lists of exotic spheres up to diffeomorphism are known. In
contrast, in dimension 4 the existence of an exotic sphere is still open and is one of the most
important and difficult problems in geometric topology.
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