Computing Brauer groups via coarse moduli – draft version

Lennart Meier

February 15, 2018

Throughout let X be a separated Deligne–Mumford stack and $q: X \rightarrow X$ its coarse moduli space. The goal of this note is to compute the Brauer group of X in terms of invariants of X and I want to thank Ben Antieau and Minseon Shin for helpful discussions leading to our solution. The key question will be under which conditions $R^2q_*G_m$ vanishes.

Convention 1. All quotients will be stack quotients. If not marked otherwise, cohomology of schemes or stacks is étale cohomology.

Example 2. Let l be a prime and G be a finite group such that $H^3(G; \mathbb{Z}[\frac{1}{p}]) \cong H^2(G; \mathbb{Q}/\mathbb{Z}[\frac{1}{p}])$ is nontrivial. For example, we can take $G = S_4$ and $p \geq 3$. We claim that $R^2q_*G_m$ does not vanish for $X = \text{Spec} \mathbb{F}_p/G$.

The claim is indeed equivalent to $\text{Br}(X)$ nonvanishing. We can compute it via the descent spectral sequence

$$E_2^{i,j} = H^i(G, H^j(\text{Spec} \mathbb{F}_p, G_m)) \Rightarrow H^{i+j}(X, G_m).$$

Clearly, $H^j(\text{Spec} \mathbb{F}_p, G_m)$ is zero for $j > 0$ and $G_m(\mathbb{F}_p) \cong \mathbb{Q}/\mathbb{Z}[\frac{1}{p}]$ if $j = 0$. Thus, $\text{Br}(X) = H^2(G; \mathbb{Q}/\mathbb{Z}[\frac{1}{p}]).$

We can generalize this example.

Definition 3. Let l be a prime and G be a finite group. We call this group l-rich if $H^3(G; \mathbb{Z})[l] \neq 0$ and l-poor if $H^3(G; \mathbb{Z})[l] = 0$, where the action on \mathbb{Z} is trivial. We call a group poor if it is l-poor for every l.

Example 4. Clearly, every cyclic group is poor. According to GAP, this is also true for some other groups like $\text{SL}_2(\mathbb{F}_3)$ and Dic_{12}, which are the automorphism groups of the supersingular points of characteristic 2 and 3 in $\mathcal{M}_{1,1}$. Thus, all automorphism groups of geometric points of $\mathcal{M}_{1,1}$ are poor.

The following lemma motivates the definition.

Lemma 5. A finite group G is l-poor if and only if $H^2(G; G_m(k))_{(l)} = 0$ for an (or, equivalently, every) algebraically closed field of characteristic not l. If k has characteristic l, then $H^2(G; G_m(k))_{(l)} = 0$ for all finite groups G.

Proof. By Theorem 127.3 in [Fuc73], an abelian group is of the form $G_m(k)$ for an algebraically closed field of characteristic $p > 0$ if and only if it is of the form $\mathbb{Q}/\mathbb{Z}[\frac{1}{p}] \oplus \bigoplus I \mathbb{Q}$, where I is either infinite or empty. Thus,

$$H^2(G; G_m(k)) \cong H^2(G; \mathbb{Q}/\mathbb{Z}[\frac{1}{p}]) \cong H^3(G; \mathbb{Z})[\frac{1}{p}].$$

An abelian group is of the form $G_m(k)$ for an algebraically closed field of characteristic 0 if and only if it is of the form $\mathbb{Q}/\mathbb{Z} \oplus \bigoplus I \mathbb{Q}$ where I is infinite. The argument is similar.

So we could have taken $\mathcal{X} = \text{Spec } k/G$ for an arbitrary algebraically closed field k of characteristic $p \geq 0$ and G a l-rich group for $l \neq p$ in the Example [2]. Our main aim is to show that this kind of example is essentially the only obstruction for the vanishing of $R^2 q_* G_m$.

Theorem 6. Let \mathcal{X} be a separated Deligne–Mumford stack of finite type over a locally noetherian $\mathbb{Z}[\frac{1}{l}]$-scheme S and assume that the automorphism group of every geometric point is l-poor. Then $(R^2 q_* G_m)(l)$ vanishes.

Question 7. Can we replace the hypothesis with the assumption that $S_{\mathbb{Z}[\frac{1}{l}]}$ is dense in S?

We need the following proposition essentially proven in [Ols06, Theorem 2.12] and [AV02, Lemma 2.2.3].

Proposition 8. Let \mathcal{X} be a separated Deligne–Mumford stack of finite type over a locally noetherian scheme S with coarse moduli $\mathcal{X} \to X$. Let X^{sh} be the spectrum of the (strictly Henselian) local ring of a geometric point x: Spec $k \to X$ in the étale topology. Then $\mathcal{X}^{sh} = X \times_X X^{sh}$ is of the form Spec R/Γ for a strictly Henselian local ring R with residue field k and Γ is the automorphism group of x (or rather its pendant in \mathcal{X}). The group Γ acts trivially on the residue field k.

Proof. The cited sources prove that after base change to an étale neighborhood V of x, the stack \mathcal{X} is of the form U/Γ for Γ as above. This U is finite over V and $U \times_X X^{sh}$ is the spectrum of a strictly Henselian ring R. Its residue field must be finite over k and thus equals k. By definition of Γ, the field k is elementwise fixed by it.

As Spec $R \to X^{sh}$ is the pullback of the Γ-torsor $U \to X$ along $\mathcal{X}^{sh} \to \mathcal{X}$, we see that it is a Γ-torsor as well, i.e. that $X^{sh} \simeq \text{Spec } R/\Gamma$. □

Lemma 9. Let R be a strictly Henselian domain with residue field k of characteristic $p \geq 0$ and with an action by a finite group G. Set $\mathcal{X} = \text{Spec } R/G$. Then $H^2(\mathcal{X}; G_m)(l) = H^2(G; G_m(k))$ if $l \neq p$.

Proof. We will use the descent spectral sequence

$$E_2^{i,j} = H^i(G, H^j(\text{Spec } R, G_m)) \Rightarrow H^{i+j}(\mathcal{X}, G_m).$$

Because R is strictly Henselian, $H^j(\text{Spec } R, G_m)$ vanishes for $j > 0$. Thus, $H^2(\mathcal{X}; G_m) \cong H^2(G; G_m(R))$. Let K be the kernel of the natural map $G_m(R)[\frac{1}{p}] \to G_m(k)[\frac{1}{p}]$. We obtain a G-equivariant short exact sequence

$$0 \to K \to G_m(R)[\frac{1}{p}] \to G_m(k)[\frac{1}{p}] \to 0.$$

For $u \in G_m(R)$ and n a natural number not divisible by p, the equation $x^n = u$ has a solution in R because R is strictly Henselian. Thus, $G_m(R)[\frac{1}{p}]$ (or just $G_m(R)$ if $p = 0$) is divisible and thus by [Fun70, Theorem 23.1] a direct sum of groups of the form Q_r/Z_r (for primes r) or Q. The same is true for $G_m(k)[\frac{1}{p}]$. By [AMU, Tag 06RR], the torsion of $G_m(R)[\frac{1}{p}]$ maps isomorphically onto the torsion of $G_m(k)[\frac{1}{p}]$. Thus K is also the kernel of $G_m(R)[\frac{1}{p}]/\text{tors} \to G_m(k)[\frac{1}{p}]/\text{tors}$, which is map of Q-vector spaces. Thus, K is a Q-vector space as well. We deduce that

$$H^2(G, G_m(R))(l) \cong H^2(G, G_m(R)[\frac{1}{p}]) \cong H^2(G, G_m(k)[\frac{1}{p}]) \cong H^2(G, G_m(k))(l).$$

Proof of theorem: To show that $(R^2 q_* G_m)(l)$ vanishes, it is enough to show that $H^2(\mathcal{X}^{sh}; G_m)(l)$ vanishes for every geometric point x of X (with \mathcal{X}^{sh} as in Proposition [8]). By the same proposition, \mathcal{X}^{sh} is of the form Spec R/G with R strictly Henselian and G the stabilizer group of x. Thus, we are exactly in the situation of the last lemma, where we use that G is l-poor. □
Corollary 10. Let S be a separated, regular and noetherian scheme over \(\mathbb{Z}[\frac{1}{n}] \). Then we have a short exact sequence

\[
0 \to Br'(S)_{(l)} \to Br'(M_S)_{(l)} \xrightarrow{s} H^1(S; \mathbb{Z}/12)_{(l)} \to 0,
\]

which is split (up to isomorphism) by the map

\[
s : H^1(S; \mathbb{Z}/12)_{(l)} \to Br'(M_S)_{(l)}, \quad [\chi] \mapsto [(\chi, \Delta)_{12}].
\]

Here, \([(\chi, \Delta)_{12}] \) is the cup product with the class of the \(\mu_{12} \)-torsor defined by taking a 12-th root of \(\Delta \).

Proof. We have \(q_*G_m = G_m \) and \(R^1q_*G_m \cong \mathbb{Z}/12 \) by [10]. Indeed, \(\mathbb{Z}/12 \to R^1q_*G_m \) is a morphism of sheaves, which is an isomorphism after base change to an arbitrary local ring of \(S \). By our main theorem, we have \((R^2q_*G_m)_{(l)} = 0 \). By \(\mathbb{A}^1 \)-invariance of étale cohomology [AM16, Proposition 2.5], [Mil80, Corollary VI.4.20], we have \(H^1(\mathbb{A}^1_S; G_m)_{(l)} \cong H^1(S; G_m)_{(l)} \) and \(H^2(\mathbb{A}^1_S; \mathbb{Z}/12)_{(l)} \cong H^2(S; \mathbb{Z}/12)_{(l)} \). This shows the existence of an exact sequence

\[
0 \to Br'(S)_{(l)} \to Br'(M_S)_{(l)} \to H^1(S; \mathbb{Z}/12)_{(l)}.
\]

The composition \(sr \) defines a natural transformation of \(H^1(S; \mathbb{Z}/n) \) to itself, where \(n = 4 \) if \(l = 2 \), \(n = 3 \) if \(l = 3 \) and zero else. The map \(s \) certainly makes sense for \(S = BC_{n, \mathbb{Z}[\frac{1}{n}]}(\mathbb{A}^1) \) as well and \(r \) does so as well: Consider the map \(q : M_{BC_{n, \mathbb{Z}[\frac{1}{n}]}(\mathbb{A}^1)} \to \mathbb{A}^1_{n, \mathbb{Z}[\frac{1}{n}]} \) given by base changing the map \(M \to \mathbb{A}^1 \). As étale locally \(BC_{n, \mathbb{Z}[\frac{1}{n}]}(\mathbb{A}^1) \) is a separated, regular and noetherian scheme, our computation from above applies to show that \(R^2q_*G_m = 0 \) and \(R^1q_*G_m = \mathbb{Z}/12 \); thus, we obtain the required map \(r \) from the Leray spectral sequence.

Let \([\chi] \) be the tautological class in \(H^1(BC_{n, \mathbb{Z}[\frac{1}{n}]}(\mathbb{A}^1), \mathbb{Z}/n) \). Clearly, \(rs([\chi]) \) becomes zero after base change to \(\text{Spec} \mathbb{Z}[\frac{1}{n}] \). By the descent spectral sequence, the kernel \(H^1(BC_{n, \mathbb{Z}[\frac{1}{n}]}(\mathbb{A}^1), \mathbb{Z}/n) \to H^1(\text{Spec} \mathbb{Z}[\frac{1}{n}], \mathbb{Z}/n) \) is isomorphic to \(\mathbb{Z}/n \) and generated by \([\chi] \). Thus, we see that there is an element \(u \in \mathbb{Z}/n \) such that \(rs \) is multiplication by \(u \).

We claim that \(u \) is a unit. It is enough to provide an \(\mathbb{Z}[\frac{1}{n}] \)-scheme \(S \), where the image of \(s \) has an element of order 4, and an \(\mathbb{Z}[\frac{1}{n}] \)-scheme, where the image of \(s \) has an element of order 3. Examples abound in [AM16]. For example, we can take \(S = \text{Spec} \mathbb{F}_p \) for \(p > 3 \).

In particular, this shows that \(r \) is surjective. \(\square \)

Remark 11. The \(\mathbb{A}^1 \)-invariance of the Brauer group is indeed more generally true than used in the last corollary. Let \(R \) be a regular noetherian ring such that \(Spec R[\frac{1}{p}] \) is dense in \(Spec R \). We claim that \(Br(R)_{(p)} \cong Br(\mathbb{A}^1_R)_{(p)} \). Indeed, consider the diagram

\[
\begin{array}{ccc}
Br(\mathbb{A}^1_R)_{(p)} & \longrightarrow & Br(\mathbb{A}^1_{R[\frac{1}{p}]}(p)
\end{array}
\]

\[
\begin{array}{c}
\approx
\end{array}
\]

\[
\begin{array}{ccc}
Br(R)_{(p)} & \longrightarrow & Br(R[\frac{1}{p}])_{(p)}
\end{array}
\]

induced by choice of an \(R \)-point of \(\mathbb{A}^1_R \). The right vertical morphism is an isomorphism by classical \(\mathbb{A}^1 \)-invariance. The horizontal arrows are injections by density (using that \(\mathbb{A}^1_R \to \text{Spec} R \) is open). Thus, \(Br(\mathbb{A}^1_R)_{(p)} \to Br(R)_{(p)} \) must be an injection as well. On the other hand, it is a split surjection. This implies that it is an isomorphism.

\footnote{If we did not want to make the splitting \(s \) explicit, there would have been an easier proof, without recourse to [AM16]. Indeed, the split surjectivity of \(r \) is only a question if \(l = 2 \) or 3. Then there is a section of \(M_S \to S \) and we can use the induced map \(Br'(M_S) \to Br'(S) \) for the collapse of the Leray spectral sequence and the splitting.}
Corollary 12. Let S be a separated, regular and noetherian scheme such that $S_{\mathbb{Z}[\frac{1}{l}]} \subset S$ is dense (e.g. if S is an integral domain and $l \neq 0$). Then the map
\[s: H^1(S; \mathbb{Z}/12)_l \rightarrow Br'(M_S)_l, \quad [\chi] \mapsto (\chi, \Delta)_{12} \]
is injective.

Proof. Consider the commutative square
\[
\begin{array}{ccc}
H^1(S; \mathbb{Z}/12)_l & \longrightarrow & H^1(S_{\mathbb{Z}[\frac{1}{l}]; \mathbb{Z}/12})_l \\
\downarrow & & \downarrow \\
Br'(M_S)_l & \longrightarrow & Br'(M_\mathbb{Z}[\frac{1}{l}])_l
\end{array}
\]

The right vertical map is an isomorphism by Corollary 10. We claim that the upper horizontal arrow is injective. We can assume that S is connected and hence integral. Let $\eta: Spec K \rightarrow S$ be the generic point of S (and of $S_{\mathbb{Z}[\frac{1}{l}]}$) and $\overline{\eta}: Spec K^{sep} \rightarrow S$ the corresponding map from the separable closure. By [Aut Tag 0BQM], the map $Gal(K^{sep}/K) \rightarrow \pi^et_1(S, \eta)$ is surjective and hence also the map $\pi^et_1(S_{\mathbb{Z}[\frac{1}{l}]; \eta}) \rightarrow \pi^et_1(S, \eta)$. This implies that the induced map
\[H^1(S_{\mathbb{Z}[\frac{1}{l}]; \mathbb{Z}/12}) \cong \text{Hom}(\pi^et_1(S_{\mathbb{Z}[\frac{1}{l}]; \eta}), \mathbb{Z}/12) \rightarrow \text{Hom}(\pi^et_1(S, \eta), \mathbb{Z}/12) \cong H^1(S; \mathbb{Z}/12) \]
is injective.

It follows that $H^1(S; \mathbb{Z}/12)_l \rightarrow Br'(M_S)_l$ is injective as well. \hfill \qED

One might conjecture that the map $H^1(S; \mathbb{Z}/12)_l \rightarrow Br'(M_S)_l$ is an isomorphism under the conditions of the last corollary, where $Br'(M_S)$ denotes the cokernel of the map $Br'(S) \rightarrow Br'(M_S)_l$. Note however that it is not an isomorphism for $S = \mathbb{F}_2$ and $l = 2$ as Minseon Shin has recently computed that $Br(M_{\mathbb{F}_2}) \cong \mathbb{Z}/2$ [Shi17].

References

