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These are notes accompanying a lecture course given at the GQT school 2019 in Groes-
beek. I have tried to keep things rather classical and concrete. For a different kind of
introduction to stable homotopy theory, see e.g. [Mal11].

1 Stable phenomena and spectra

1.1 Homotopy groups

Recall that the fundamental group π1(X,x0) of space X with chosen base point x0 consists
of homotopy classes of loops based at x0. We will often leave the choice of base points in
our notation implicit. In any case, we can equivalently write π1(X) = [S1, X]•, where this
notation denotes pointed homotopy classes, i.e. equivalence classes of base point preserving
maps under the relation of homotopy that leaves the base points fixed. Here, we can choose
any base point of S1, but the traditional choice is to write S1 = [0, 1]/0 ∼ 1 and taking the
base point [0].

More generally, we can define the homotopy groups πn(X) = [Sn, X]• for any n ≥ 0. As
cell complexes are built out of disks and spheres, these are fundamental to compute [Y,X]•

for any cell complex Y and most spaces of interest are homeomorphic or at least homotopy
equivalent to a cell complex (e.g. every smooth manifold). Note that π0(X) is the pointed
set of path-components, πn(X) is a group for any n ≥ 1 and this is actually abelian for
n ≥ 2.

The groups πn(X) are in general very hard to compute. In a few lucky cases, πn(X)
vanishes for all n ≥ 2 (e.g. for X = S1 or a surface of genus at least 1). But there is no
finite complex, where we can compute all of its homotopy groups if they are not vanishing
for n ≥ 2. In particular, we do not know all the homotopy groups of S2!

There a some things we know though. For example:

• πk(Sn) = 0 if k < n. More generally, πk(X) = 0 if X is a cell complex with one 0-cell
and no other cells of dimension ≤ k.

• The morphism πn(Sn)
deg−−→ Z is an isomorphism.

Let us record some low-dimensional information about homotopy groups of spheres in
the following table.
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π2 π3 π4 π5 π6 π7
S2 Z Z Z/2 Z/2 Z/12 Z/2
S3 0 Z Z/2 Z/2 Z/12 Z/2
S4 0 0 Z Z/2 Z/2 Z× Z/12

S5 0 0 0 Z Z/2 Z/2

One can observe a few things from this table.

• πk(S2) ∼= πk(S
3) for k ≥ 3. Indeed, there is the Hopf fibration S3 → S2 with fiber S1

and the long exact sequence of homotopy groups shows this isomorphism.

• Most homotopy groups of spheres are finite. It is indeed true that πk(Sn) is finite
unless k = n or n is even and k = 2n− 1 (Serre)

• The groups seems to (eventually) stabilize along the diagonal.

This last point is the Freudenthal suspension theorem.

Theorem 1.1 (Freudenthal). The suspension map1 induces an isomorphism

πn+k(S
n)→ πn+1+k(S

n+1)

for k ≤ n− 2 and a surjection for k = n− 1.
More generally, let X be a pointed CW complex with one 0-cell and all other cells in

dimensions at least n. Then
πn+k(X)→ πn+1+k(ΣX)

for k ≤ n− 2 and a surjection for k = n− 1, where ΣX is the suspension of X.

This means that for every connected pointed CW-complex X, the system of groups

πkX → πk+1ΣX → πk+2Σ
2X → · · ·

will eventually stabilize (as ΣnX becomes more and more connected). This eventually stable
guy is called the k-th stable homotopy group πstk X of X.

It seems useful to collect the stable information of X into one object.

Definition 1.2. A spectrum E = (En)n≥0 is a sequence of pointed spaces En together with
pointed maps σn : S1 ∧En = ΣEn → En+1.

We define
πkE = colimn πk+nEn.

Example 1.3. For a pointed space X, we can define its suspension spectrum Σ∞X, whose
n-th space is ΣnX.

We directly see that if X is a connected CW-complex, then πkΣ∞X = πstk X.
1The suspension ΣX of a space X is defined to be the quotient of [−1, 1]×X, where we collapse {−1}×X

to a poin and {1}×X to another point. For example, ΣSn ∼= Sn+1. Strictly speaking, there is also another
suspension construction for a pointed space (X,x0), where we additionally collapse [−1, 1]×{x0} to a point,
but under very mild assumptions this is homotopy equivalent to the usual suspension construction and thus
we usually confuse these two notions. More precisely, they are equivalent if X is well-pointed, i.e. if the
inclusion of the base point is a cofibration. We will assume from now on that all our spaces are well-pointed.
If X is a CW-complex or a manifold, every choice of base-point makes X into a well-pointed space.
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1.2 Stability for vector bundles

Given a space X, denote by VectRn(X) and VectCn(X) the set of isomorphism classes of
n-dimensional vector real/complex vector bundles on X. We denote by R the trivial one-
dimensional real vector bundle and use C analogously. We obtain a map

R⊕ : VectRn(X)→ VectRn+1(X). (1.4)

Proposition 1.5. This map is a surjection if X is a CW-complex of dimension at most n
and an isomorphism if X is a CW-complex of dimension less than n.

Proof. There is a fiber sequence

GLn(R)→ GLn+1(R)→ Sn.

This implies that GLn(R) → GLn+1(R) is an (n − 1)-equivalence, i.e. an isomorphism on
πi for i > n− 1 and a surjection for i = n− 1.

We have further fiber sequences

GLn(R)→ EGLn(R)→ BGLn(R),

where BGLn(R) is the Grassmannian of n-dimensional subspaces of R∞ and EGLn(R) is
the corresponding Stiefel manifold of embeddings of Rn into R∞. The latter is contractible.
This implies that πkBGLn(R) ∼= πk+1GLnR. We see that BGLn(R) → BGLn+1(R) is an
n-equivalence. As CW-complexes are built from spheres, this implies that

[X,BGLn(R)]→ [X,BGLn+1(R)]

is a surjection if X is of dimension at most n and an isomorphism if X is of dimension less
than n. As BGLn(R) represents Vectn(R), this map is actually isomorphic to the one in
(1.4).

There is a similar result for complex vector bundles, where VectCn(X)→ VectCn+1(X) is
an isomorphism if X is a CW-complex of dimension at most 2n.

Example 1.6. The tangent bundle TSn is in the kernel of VectRn(Sn)→ VectRn+1(S
n) (just

add the normal bundle), but is only trivial for n = 0, 1, 3, 7. The latter is a hard theorem,
but it is much easier to see that TSn is non-trivial for n even (hairy ball theorem/Euler
class).

Definition 1.7. IfX is a finite connected CW-complex, we define K̃(X) = colimn VectCn(X)

and K̃O(X) = colimR
n(X). These theories are called reduced K-theory.

Remark 1.8. There are also unreduced K-theory groups K(X) and KO(X). Here, K(X)
is defined as the Grothendieck construction on the set of isomorphism classes of complex
vector bundles (of arbitrary, not necessarily constant dimension) on X. Choosing a base
point x ∈ X defines a map K(X)→ K(pt) = Z and one can identify K̃(X) with the kernel.
Moreover, K(X) ∼= K̃(X) ⊕ Z, where the isomorphism depends on the path-component
of the base-point. Note that K(X) is naturall defined as well for non-connected finite
CW-complexes and by this procedure, we can define K̃(X) as well for non-connected CW-
complexes.
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The results above imply that K̃O(X) ∼= VectRn(X) if n is greater than the dimension of
X.

One of the most important (and amazing!) results in K-theory is Bott periodicity.

Theorem 1.9 (Bott). There are natural isomorphisms

K̃(X) ∼= K̃(Σ2X)

and
K̃O(X) ∼= K̃O(Σ8X).

1.3 (Co)homology theories

For a pointed space (X,x), we can define H̃n(X) = ker(Hn(X) → Hn(pt)). This differs
only from usual singular cohomology for n = 0, where killed the Z-summand that is present
for all spaces. This satisfies H̃n+1(ΣX) ∼= H̃n(X). Moreover, it behaves well with respect
to mapping cones: Given a map f : X → Y , we define its mapping cone Cf as CX ∪X Y ,
where CX = X × [0, 1]/X × {1}. More precisely, H̃n satisfies the axioms of a reduced
cohomology theory:2

Definition 1.10. A reduced cohomology theory is a sequence of contravariant functors h̃n :
Top∗ → Ab, n ∈ Z together with natural isomorphisms σn : h̃n ◦ Σ → h̃n−1 fulfilling the
following axioms:

1. (Pointedly) homotopic maps induce the same map in h̃n.

2. For any map f : X → Y of pointed topological spaces and n ∈ Z, the sequence

h̃n(Cf)→ h̃n(Y )→ h̃n(X)

is exact.

3. For a collection Xi of pointed spaces, the map

h̃n(
∨
Xi)→

∏
i

h̃n(Xi)

is an isomorphism for all i. (Additivity axiom)

Note that the additivity axiom for two (and hence finitely many) wedge summands
follows already from the cone sequence: The mapping cone of X → X ∨ Y is homotopy
equivalent to Y (using that our spaces are well-pointed and thusX → X∨Y is a cofibration).
Thus we obtain a split exact sequence

h̃n(Y )→ h̃n(X ∨ Y )→ h̃n(X),

as we wanted to.
2Note that H̃n(Cf) ∼= Hn(Y,X) if f : X → Y an inclusion.
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Remark 1.11. The mapping cone of the inclusion Y → Cf is homotopy equivalent to ΣX.
Using the exact sequence for the cone and the suspension isomorphism in conjuction thus
produces for a map f : X → Y and a reduced cohomology theory a long exact sequence

· · · → h̃n−1(X)→ h̃n(Cf)→ h̃n(Y )→ h̃n(X)→ h̃n+1(Cf)→ · · ·

If we set hn(X,Y ) = h̃n(Cf), we obtain the familiar long exact sequence in cohomology.

Can we make K̃ into a reduced cohomology theory as well? For a finite CW-complex,
we set K̃0(X) = K̃(X) and K̃−1(X) = K̃(ΣX). Now we simply use Bott periodicity by
setting K̃2n−i(X) = K̃−i(X) for i = 0, 1. Similarly for K̃O. What about the two axioms?

Lemma 1.12. Let (Z, z) be a pointed space and f : X → Y be a pointed map. Then the
sequence

[Cf,Z]• → [Y, Z]• → [X,Z]•

is exact.

Lemma 1.13. Set BGL(R) = colimnBGLn(R) and BGL(C) = colimnBGL(C). Let X be
a pointed space. Then we have natural isomorphisms

[X,BGL(R)× Z]• ∼= K̃O(X)

and
[X,BGL(C)× Z]• ∼= K̃(X).

The sharper form of Bott periodicity says that ΩBGL(C) × Z ' GL(C) (you can also
leave out the Z here) and ΩGL(C) ' BGL(C)× Z. Similarly, Ω8BGL(R) ' BGL(R).

Definition 1.14. An Ω-spectrum Z is a sequence of pointed spaces Zn with weak homotopy
equivalences Zn → ΩZn+1, where Ω denotes the loop space.3

Remark 1.15. The functors Σ and Ω are adjoint. Hence, an Ω-spectrum also defines maps
ΣZn → Zn+1 and thus an Ω-spectrum is in particular a spectrum.

Proposition 1.16. Let Z be an Ω-spectrum. Then the functors

Zn : Top∗ → Ab, X 7→ [X,Zn]•

form a reduced cohomology theory on CW-complexes. If the maps in Z are actual homotopy
equivalences, it is even a reduced cohomology theory on all pointed spaces.

Example 1.17. The functors K̃n and K̃O
n
are part of reduced cohomology theories.

What is more surprising is that the converse also holds.

Theorem 1.18 (Brown representability). Every reduced cohomology is on the category of
pointed CW-complex representable by an Ω-spectrum.

3Sometimes, we will underline spectra for emphasis, but usually we won’t to simplify our notation.
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Remark 1.19. For every cohomology theory defined on CW-complexes, there is a canonical
way to extend it to all spaces. Indeed, for every space X, there is a weak homotopy
equivalence4 f : X ′ → X from a CW-complex X ′. Idea: We build X ′ inductively.

• The 0-cells of X ′ are exactly π0X and we map the 0-cells xi to corresponding points
f(xi).

• For every generator of π1(X, f(xi)) we add a loop at xi.

• For every relation in π1(X, f(xi)) we add a corresponding two-cell in X ′. Moreover,
we add for every generator of π2(X, f(xi)) as 2-cell.

• · · ·

For details see [Hat02, Proposition 4.13]. We can set now h̃n(X) = h̃n(X ′). One can show
that every other CW-complex that is weakly homotopy equivalent to X is (canonically)
homotopy equivalent to X ′, basically because a weak homotopy equivalence between CW-
complexes is a homotopy equivalence.

2 Basic properties of spectra and homology theories

There is also a corresponding story for homology theories. The definition of a reduced
homology theory is entirely analogous to that of a reduced cohomology theory, only replacing
contravariant functors by covariant functors and

∏
by
⊕

.
In the moment, we do not have many examples of homology theories except for singular

homology. But actually, every spectrum defines a homology theory.
Construction 2.1. Let E be a spectrum andX be a pointed space. We define a new spectrum
E ∧X to have n-th space En ∧X with the obvious structure maps.

Theorem 2.2. Given a spectrum E, the functor

X 7→ π∗E ∧X

is a reduced homology theory, which we will denote by Ẽ∗(X). The corresponding unreduced
homology theory will be denoted by E∗(X), i.e. for Ẽ∗(X t pt).

We will deduce the four necessary properties and structures (suspension isomorphism,
homotopy axiom, mapping cone axiom and additivity) from a list of more general results.
For this, we start with the following definition.

Definition 2.3. Let E and F be spectra. A morphism or map f : E → F is a family
fn : En → Fn of pointed maps such that the diagrams

En
fn //

σE
n

��

Fn

σF
n

��
En+1

fn+1 // Fn+1

commute for all n. We denote the category of spectra by Sp.
4Recall that a map f : X → Y is a weak homotopy equivalence if f induces isomorphisms πi(X,x) →

πiY, f(x) for every i ≥ 0 and x ∈ X.
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Definition 2.4. Let f, g : E → F be two morphisms. A homotopy between f and g is a
map E ∧ I+ → F , restricting on the boundary of I to f and g. Equivalently, It consists of
pointed homotopies between fn and gn, compatible with the suspension maps.

Lemma 2.5. Two homotopic maps f, g : E → F induce the same map π∗E → π∗F .

Proof. This is true as the maps f∗, g∗ : πn+kEn → πn+kFn are the same for all k, n.

The suspension of a spectrum E is defined levelwise: (ΣE)n = En ∧S1.

Proposition 2.6. Let E be a spectrum. Then there is a canonical isomorphism πnE ∼=
πn+1ΣE.

Proof. We compute:

πkE ∼= colim (πkE0 → πk+1ΣE0 → πk+1E1 → ΣE0 · · · )
∼= colim (πk+1ΣE0 → πk+2ΣE1 → · · · )
∼= colim

(
πk+1E0 ∧S1 → πk+2E1 ∧S1 → · · ·

)
∼= πk+1E ∧S1

While the first and the last isomorphism hold by definition and the second one just by
leaving out terms, the third one is a bit more subtle. The reason is that while all the groups
in the colimit system are isomorphic (as ΣEi = S1 ∧Ei ∼= Ei ∧S1 by interchanging the
factors), the maps do not agree under this isomorphism.

Indeed: The morphism πk+1S
1 ∧E0 → πk+2S

1 ∧E1 is a composite: First we apply the
suspension map to πk+2S

1 ∧S1 ∧E0 and then we apply idS1 ∧σ0.
The morphism πk+1E0 ∧S1 → πk+2E1 ∧S1 can also be factored in first applying the

suspension πk+1E0 ∧S1 → πk+2S
1 ∧E1 ∧S1 and then σ0 ∧ idS1 .

The issue is: Interchanging S1 and E0, then applying σ0 ∧ idS1 and then interchanging
E1 and S1 produces the map S1 ∧S1 ∧E0 → S1 ∧E1 that is the composite of tw∧ idE0 and
idS1 ∧σ0, where tw: S1 ∧S1 → S1 ∧S1 interchanges the two factors. But as tw: S2 → S2

has degree −1, we see that the maps in our system differ by the sign −1.
This is still enough to obtain an isomorphism in the colimit. Indeed, we can go two

steps at a time and the maps exactly correspond to each other.

Given a map f : E → F , we can also define its mapping cone Cf levelwise by (Cf)n =
Cfn.

Proposition 2.7. Given a map f : X → Y of spectra, we have a long exact sequence of
homotopy groups

· · · ∂−→ πnX
f∗−→ πnY

i∗−→ πnCf
∂−→ πn−1X

f∗−→ · · · .

Here, ∂ is defined as the composition πnCf → πnΣX ∼= πn−1X, where the isomorphism is
from the proof of Proposition 2.6.

Proof. Exactness at πnY : Twofold composition zero is clear. Assume that α : Sn+k → Yk
is a pointed map representing an element in the kernel of i∗. After possibily enlargen k,
we can assume that the composition Sn+k → Yk

ik−→ Cfk is nullhomotopic. Thus, we can
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a map of pairs (Dn+k+1, Sn+k) → (Cfk, Yk). Collapsing gives a map β : Sn+k+1 → ΣXk.
Exercise: Check that the composition Sn+k+1 → ΣXk → ΣYk is homotopic to Σα. Thus,
σX ◦ β is a preimage of α.

The exactness at the other points follows since the mapping cone of i is level homotopy
equivalent to the suspension of X.

Given a collection Ei of spectra, we define its wedge
∨
iE

i levelwise.

Corollary 2.8. The map π∗E ⊕ π∗F → π∗E ∨ F , induced by the two wedge inclusions, is
an isomorphism.

Proof. This uses that the mapping cone of E → E ∨ F is levelwise homotopy equivalent to
F . Thus, we obtain a split exact sequence

π∗E → π∗E ∨ F → π∗F

We want to define the homotopy colimit or mapping telescope of a sequence of spaces

X0
f0−→ X1 → X2

f1−→ · · ·

as
X0 × [0, 1] ∪(x,1)∼(f0(x),1) X1 × [1, 2] ∪(x,2)∼(f1(x),2) X2 × [2, 3] ∪ · · ·

We denote it by hocolimXi. While the notation seems to indicate a countable sequence,
this works as well for other ordinals. There is also a pointed version collapsing {xi}×[i, i+1]
to a point, where xi is the base point of Xi. Under our well-pointedness assumption, this is
equivalent to the unpointed construction. The following lemma is extremely useful.

Lemma 2.9. Let K be compact, X0 → X1 → X2 → · · · be a sequence of closed inclusions
of T1-spaces and X be the union

⋃
Xi. Then:

(a) Every map f : K → X factors over some Xi.

(b) The canonical map colimi[K,Xi]→ [K,X] is a bijection. If all inclusion are pointed,
the corresponding statement is also true for pointed homotopy classes.

Proof. As K × I is also compact, (b) follows directly from (a). For (a): Suppose not so.
Then we can choose xi ∈ K with f(xi) ∈ Xi/Xi−1 (after possibly taking a subsequence
of Xi). A subset of {f(xi)}i∈N0 is closed if and only if its intersection with each Xi is
closed. But this intersection is always finite and all finite subsets of Xi are closed (as it is
T1). Thus {f(xi)} is discrete. But it is also compact as a closed subset of f(K). This is a
contradiction.

This implies the first half of the following lemma (at least for T1-spaces).

Lemma 2.10. There is a canonical isomorphism colimπkXi
∼= πk hocolimXi. Moreover,

if the maps fi are cofibrations, colimXi ' hocolimXi.

We can similarly define the homotopy colimit of a sequence of maps of spectra levelwise.
Likewise, we define all colimits of spectra to be levelwise. Moreover, we call a map E → F
of spectra a level cofibration if all the map En → Fn are cofibrations.
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Lemma 2.11. Let
E0 f0−→ E1 f1−→ · · ·

be sequence of spectra. There is a canonical isomorphism colimπkE
i ∼= πk hocolimEi.

Moreover, if the maps fi are level cofibrations, colimEi ' hocolimEi.

Finally, we are ready to prove Theorem 2.2.

Proof of Theorem 2.2. The suspension isomorphism follows from Proposition 2.6 as

E ∧ΣX ∼= Σ(E ∧X).

The homotopy axiom follows from Lemma 2.5. The cone sequence follows from Propo-
sition 2.7. Lastly, the additivity axiom follows from Corollary 2.8 and Lemma 2.11 as
E ∧

∨
i∈I Xi is a directed colimit (over an ordinal with the same cardinality as I) and we

can show via transfinite induction that π∗E ∧
∨
i∈I
∼=
⊕

i∈I E ∧Xi. The suspension isomor-
phism is also not hard:

Example 2.12. Consider the sphere spectrum S = Σ∞S0. Then S∧X ∼= Σ∞X. We see
that the homology theory defined by S is precisely the functor X 7→ πst∗ (X). Note that
usual homotopy groups are very far from being a homology theory, but stable homotopy
groups are one. This could have also been deduced by contemplating the Blakers–Massey
theorem, but our proof does not use ingredients of this difficulty and is more formal.

Remark 2.13. From the previous example, we obtain in particular that πstk (X ∨ Y ) ∼=
πstk (X) ⊕ πstk (Y ). The corresponding statement for unstable homotopy groups is not true.
Indeed, S2 × S2 has a cell structure with one 2-skeleton S2 ∨ S2 and one 4-cell. Let
f : S3 → S2 ∨ S2 be the corresponding attaching map. Then [f ] ∈ π3(S

2 ∨ S2) is not
in the image of π3(S2) ⊕ π3(S2). Indeed, by a change of basis it would be in the image
from one of the wedge summands, say of some [g] ∈ π3(S

2). But this would imply that
S2 × S2 ' Cf ' Cg ∨ S2. The cup product structure on H∗(S2 × S2) shows that this is
impossible.

Example 2.14. Say, we want to compute some low-dimensional stable homotopy groups
of CP2. We obtain CP2 by attaching a 4-cell to S2 along the Hopf map η : S3 → S2.
Contemplating the associated long exact sequence of stable homotopy groups of CP2 yields
the following table for πstk CP

2.

0 1 2 3 4 5 6 7
0 0 Z 0 Z Z/12 0 Z/24

Example 2.15. The spectrum KU representing K-theory also defines a homology theory,
calledK-homology. The geometric interpretation is a bit more tricky than forK-cohomology
(aka K-theory), but quite important in index theory.
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3 Thom spectra and bordism theories

3.1 Definitions and motivation

Definition 3.1. Let Nn be the set of equivalence classes of n-dimension smooth closed
manifolds, where two manifolds M and N are equivalent if they are bordant, i.e. if there is
a compact (n+ 1)-dimensional manifold W with ∂W ∼= M tN .5

More generally, we define Nn(X) for a space X to be the set of bordism classes of maps
f : M → X from closed n-dimensional manifolds M . Two maps f : M → X and g : N → X
are bordant if there is a map H : W → X from a compact manifold such that H restricts to
f and g under a diffeomorphism ∂W ∼= M tN .

Following Thom, we will interpret Nn as the homotopy groups of a spectrumMO. More
generally, it will be true that Nn(X) ∼= MOn(X).

How can we associate with a closed n-manifold M an element of a homotopy group,
i.e. a map from a sphere? Embed M into a sphere Sn+k. We would like to define a map
Sn+k → M+ by just collapsing everything outside of M to one point; but this clearly not
continuous. We can consider instead a tubular neighboorhod of M , i.e. an injective map
φ : νi → Sn+k from the normal bundle of M identifying M ⊂ Sn+k with the zero section of
νi. Note that the metric on Sn+k induces a metric on νi.

Definition 3.2. Given a vector bundle ξ : E → B on a space B, we define the Thom space
Th(ξ) to be E t∞ as a set (where ∞ is a point)and with the following topology: For every
point in E, a system of fundamental neighborhoods is given by those in E. A neighborhood
of ∞ is given by U 3 pt with ξ−1(x)− U ∩ ξ−1(x) compact for every x ∈ B.

Given an Euclidean metric on ξ, there is an alternative description: Let Dξ → B be
the disk bundle, i.e. the subbundle of all vectors of length ≤ 1 and Sξ → B be the sphere
bundle, i.e. the subbundle of all vectors of length exactly 1. Then Th(ξ) ∼= Dξ/Sξ.

We get now a map g(M, i, φ) : Sn+k → Th(νi) as follows: For x = φ(y) ∈ φ(Dξ), choose
(g(M, i, φ))(x) to be the image of y = φ−1(x) in Th(νi) = Dνi/Sνi. For x outside of φ(Dξ),
send x to the point ∞. This is clearly continuous.

We would like to show that g(M, i, φ) is independent of the choices of i and φ. But this
does not even make sense as the target depends on i. Trick: Map into the Thom space
of the universal vector bundle. So let γk be the universal bundle over the Grassmannian
BO(k). As we can describe νi as a pullback of γk, we get a map of total spaces between these
bundles, so a map of Thom spaces Th(νi)→MOk := Th(γk). Set f(M, i, φ) : Sn+k →MOk
postcomposed by this map.

Is f(M, i, φ) independent of the choice of i and φ (up to homotopy)? For φ, the answer
is yes by the following theorem:

Theorem 3.3. Given two tubular neighborhoods φ1, φ2 : νi → Sn+k, there is an isotopy
Φ : νi × I → Sn+k restricting to φ1, φ2 on the boundary.

For two such tubular neighborhoods, define now a homotopy H : Sn+k × I → Th(νi) on
(x, t) as follows. If x ∈ Φ(•, t)(Dνi), set H(x, t) to be the image of Φ(•, t)−1(x) in Th(νi).
If x /∈ Φ(•, t)(Dνi), set H(x, t) =∞. This is continuous.

5This is a set (as opposed to a proper class) as diffeomorphic manifolds are bordant (with W a cylinder)
and the Whitney embedding theorem shows that there are only set many diffeomorphism classes of manifolds.
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In general, f(M, i, φ) will be not be independent of i. We have two problems:

1. Not all embeddings are isotopic.

2. If we embed into Sn+k+1 instead of Sn+k, source and target of the maps will not even
be the same!

Solution: Consider the bundle γk ⊕ εR on BO(k). As this is (k+ 1)-dimensional, we get
a map into the total space of γk+1 on BO(k+1) and thus a map Th(γk⊕εR)→ Th(γk+1) =
MOk+1. In general, we have Th(ξ × ν) ∼= Th(ξ)∧Th(ν). In particular Th(ξ ⊕ εR) ∼=
Th(ξ)∧S1 = Σ Th(ξ). Thus, we get a map σk : ΣMOk →MOk+1.

Definition 3.4. The (unoriented) Thom spectrum MO is defined by the spacesMOk (with
base point ∞) and the maps ΣMOk →MOk+1 above.

Theorem 3.5 (Thom). We obtain a well-defined map Pn : Nn → πnMO, which is an
isomorphism. This is called the Pontryagin–Thom isomorphism

More generally, one can construct an isomorphism Nn(X) ∼= MOn(X+).

Corollary 3.6. The functor X 7→ N∗(X) is part of a homology theory.

In the next subsection, we will sketch a proof of Theorem 3.5.

3.2 Proof of Theorem 3.5

We want to sketch a proof of Theorem 3.5. Recall that we associated with a closed n-
manifold M the class [f(M, i, φ)] ∈ πnMO and want to show that this is independent of
the choice of i.

First observe: If we postcompose our embedding i with the inclusion ι : Sn+k → Sn+k+1

the class [f(M, i, φ)] does not change. Indeed, we can choose a product tubular neighborhood
of M in Sn+k × I ⊂ Sn+k+1. The map

Sn+k+1 ∼= ΣuS
n+k → Sn+k ∧S1 → Th(ν)∧S1 ∼= Th(ν ⊕ ε)

is not the identity on the second factor, but contracts an interval (the things outside the
tubular neighborhood of M); this is homotopic to the identity. Thus, we can identify
[f(M, ι ◦ i, φ⊕ ε)] with σk ◦ Σf(M, i, φ).

Next we use the theorem:

Theorem 3.7. For k big enough, any two embeddings of M into Sn+k are isotopic.

Now assume that i : M → Sn+k and j : Sn+k are isotopic. This gives us an embedding
H : M×I → Sn+k×I (compatible with the projection onto the second coordinate). We can
choose a “product tubular neighborhood” Φ : ν⊕ ε→ Sn+k× I for H in the sense that if we
intersect it with Sn+k×{t}, we get again a tubular neighborhood. [We can do this as follows:
Choose on Sn+k × I the product metric. Choose a radius ε and the standard Riemannian
tubular neighborhood.] Then clearly f(M, i,Φ ∩ Sn+k × 0) ' f(M, j,Φ ∩ Sn+k × 1).

So, we have shown independence of tubular neighborhood and embedding. But more is
true:
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Lemma 3.8. If M and N are bordant closed n-dimensional, then [M ] = [N ] ∈ πnMO.

Proof. By a form of the Whitney embedding theorem, we can embed a bordism W between
M and N into Sn+k × I such that the intersections with Sn+k × 0 and Sn+k × 1 ar exactly
M and N . As above, we get a homotopy.

So, we get a map Pn : Nn → πnMO is called the Pontryagin–Thom homomorphism.

Lemma 3.9. This map is a homomorphism.

Proof sketch: If we consider M
∐
N , we embed M and N into different hemispheres of

Sn+k. Then we can view them separately.

It remains to show the following:

Theorem 3.10 (Thom). The maps Pn : Nn → πnMO are bijections.

We want to construct a map T : πnMO → Nn that is an inverse. So let [f ] ∈ πn+kMOk
with f : Sn+k →MOk.

Step 1: Tranversality

Definition 3.11. Let f : X →M be a differentiable map of manifolds and N ⊂M a closed
submanifold. Then f is called transverse to N (written: f t N) if for every x ∈ f−1(N),
we have im(Txf) + Tf(x)N = Tf(x)M . Equivalently, for every x ∈ f1(N) the projection of
TxX onto the normal bundle part of Tf(x)M is surjective.

Example 3.12. Let x ∈ R. Then f : M → R is transverse to {x} ∈ R iff x is a regular
value of f .

Proposition 3.13. Let f : X → M be a differentiable map of manifolds, N ⊂ M a closed
submanifold and f transverse to N . Then f−1(N) is a submanifold of X. If X is a manifold
with boundary and M is without boundary, then ∂f−1(N) = ∂M ∩ f−1(N).

Theorem 3.14 (Transversality theorem and differentiable approximation). Let f : X →M
be a map of manifolds and N ⊂M a closed submanifold. Assume that there is a closed subset
A ⊂ X such that there is a neighborhood U of A such that f |U is differentiable and transverse
to N . Then there exists a g : X → M and a homotopy from f to g that is constant on A
such that g is differentiable and transverse to N .

The space MOk is the colimit colimn Th(γk,m) of the Thom spaces of the tautological
bundles γk,m on Grk(Rm). As Sn+k is compact, f factors over some map Sn+k → Th(γk,m),
which we also call f . We would like to make f differentiable and transverse to the zero-
section Grk(Rm), but Th(γk,m) is not a manifold. Consider E = Th(γk,m) −∞, which is
a manifold. Now choose a closed codimension-0-submanifold V ⊂ Sn+k with V ⊂ f−1(E)
and f−1(Grk(Rm) ⊂ V ◦. This can be achieved as follows: Choose an Urysohn function
u : Sn+k → I such that u(f−1(Grk(Rm)) = 0 and u(Sn+k − f−1(E)) = 1. We can assume
that u is smooth and has a regular value t ∈ (0, 1). We can take V = u−1([0, t]). Set
W = u−1[t, 1].

Choose a homotopy H : ∂V × I → γk,m − Grk(Rm) with H|∂V×0 = f |∂V and H|∂V×1
smooth. By choosing a (bi)collar, we can view Sn+k as W ∪ ∂V × [−1, 1] ∪ V . We define
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now a new map f2 : Sn+k → Th(γk,m) as f |W on W , as f |V on V and as H respectively
the inverse of H on ∂V × [−1, 0] and ∂V × [0, 1]. Note also that f2|∂V×0 is transverse to
Grk(Rm). So, we can find a homotopy from f2|∂V×[0,1]∪V : ∂V × [0, 1]∪V → γk,m to a map
that is smooth and transverse to Grk(Rm) and the homotopy is constant on ∂V × 0. So,
we get a map g : Sn+k → Grk(Rm), homotopic to f such that there is a codimension-0-
submanifold N ⊂ Sn+k such that g−1(Grk(Rm)) ⊂ N ⊂ g−1(γk,m) and g|N is differentiable
and transverse to Grk(Rm).

Step 2: Well-definedness The choice of m obviously does not matter.
Consider a homotopy H : Sn+k × I →MOk. By similar arguments as above, it factors

over some Th(γk,m), and we can homotope it relative boundary so that it is differentiable in a
neighborhood of the preimage of the zero section and transverse to it. Then H−1(Grk(Rm))
is a bordism between H|−1

Sn+k×0(Grk(Rm)) and H|−1
Sn+k×1(Grk(Rm)).

Now consider f : Sn+k →MOk and the corresponding map σk◦Σf : Sn+k+1 →MOk+1.
We can choose f so that it is transverse to the Grassmannian (i.e. zero section) insideMOk.
The preimage of this zero section lies completely in Sn+k. So T ([f ]) ∈ Nn is well-defined.

Step 3: Inverseness T (P (M)) = M is easy: ransversality follows as the induced map of
normal bundles of M in Sn+k and that of BO(k) in γk is an isomorphism.

As T (f), we get a closed submanifold M ⊂ Sn+k together with a map g : M → BO(k)
such that g∗γk is the normal bundle of M . [This tubular neighborhood does not need to be
Riemannian; need uniqueness up to isotopy.] Then P (T (f)) is homotopic to f since we can
push f out to ∞.

This proves the theorem.

3.3 Complex bordism

There are many variants of Thom spectra. We will just mention one.

Definition 3.15. Define a spectrum MU as follows: Let γn be the universal bundle over
the Grassmannian Grn(C∞). We set MU2n = Th(γn) and MU2n+1 = ΣMU2n. As the
pullback of γn+1 to Grn(C∞) is isomorphic to γn ⊕ C, we obtain maps

S2 ∧MU2n
∼= Th(γn ⊕ C)→ Th(γn+1) = MU2n+2.

This defines the structure maps for MU .

The geometric meaning is a bit less transparent than forMO. There is still a Pontryagin–
Thom isomorphism, but now πnMU classifies closed n-manifolds M together with a stable
almost complex structure up to bordism. This is essentially a choice of complex structure
on the normal bundle of an embedding M ↪→ Sn+k for k large.

4 The stable homotopy category

4.1 Homotopy categories

We would like to define the stable homotopy category to be category of spectra, where every
π∗-isomorphism becomes an isomorphism. The abstract categorical framework is given by
the following definition.
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Definition 4.1. Let C be a category andW be a collection of maps in C. Then a localization
of C at W is a functor F from C to a category W−1C with the following universal property:
Given a functor G : C → D such that G(f) is an isomorphism for all f ∈ W, then there
exists a unique functor H :W−1C → D such that G = H ◦ F .

The localization, if it exists, is unique up to unique isomorphism. Furthermore, it can
be shown to exist for all small categories, i.e. all categories that have only a set of objects.
As a first example we take Ho(Top), i.e. the category with all topological spaces as objects
and homotopy classes of maps as morphisms.

Proposition 4.2. The functor F : Top→ Ho(Top) defines a localization at the class of all
homotopy equivalences.

Proof. Let G : Top → D be a functor such that G(h) is an isomorphism for all homotopy
equivalences h. We want that G(f) = G(g) for homotopic maps f, g : X → Y . This
produces then a (unique) factorization of G through Ho(Top).

Consider the cylinder X × I, the two inclusion i0, i1 : X → X × I and the projection
r : X × I → X. Then there exists a map H : X × I → Y such that f = Hi0 and g = Hi1.
Postcomposing with r gives G(f)◦G(r) = G(H)◦G(i0◦r) and G(g)◦G(r) = G(H)◦G(i1◦r).
Note now that G(r) is an isomorphism and G(r) ◦G(i0) = id = G(r) ◦G(i1). Thus,

G(i0 ◦ r) = id = G(i1 ◦ r).

Thus, G(f) ◦G(r) = G(g) ◦G(r) and thus G(f) = G(g).

What happens if we localize the category of spaces at the class W of weak homotopy
equivalences? A refinement of the statement that every space is weakly equivalent to a
CW-complex and the Whitehead theorem shows:

Proposition 4.3. The localization W−1 Top of Top at the class W exists and is equivalent
to Ho(CW ), the homotopy category of CW-complexes.

4.2 The stable homotopy category

Recall that we denote the category of spectra by Sp. Denote by W the class of morphisms
inducing isomorphisms on π∗, i.e. the π∗-isomorphisms.

We can define the naive homotopy category Ho(Sp)naiv as having the same objects as
Sp and setting [X,Y ]naiv to be the homotopy classes of morphisms of spectra. Likewise, we
can define Ho(C)naiv for every subcategory C of Sp.

Our aim is to describe the localization W−1 Sp as Ho(C)naiv of a suitable subcategory.

Definition 4.4. A spectrum E is called a CW-spectrum if E0 is a CW -complex and each
structure map ΣEk → Ek+1 is the inclusion of a relative CW-complex.

As before, one can show that one can replace every spectrum up to level equivalence by
a CW-spectrum. Here, we say that a morphism f : X → Y of spectra is a level equivalence
if every fn : Xn → Yn is a weak homotopy equivalence. Moreover, every level equivalence
between CW-spectra is already a homotopy equivalence. This suggests the following propo-
sition.
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Proposition 4.5. The localization of Sp at the class of level equivalences exists and is
equivalent to Ho(CW )naiv, where CW ⊂ Sp denotes the subcategory of CW-spectra.

Every level equivalence is a π∗-isomorphism, but not every π∗-isomorphism is a level
equivalence. These notions are only equivalent if source and target are Ω-spectra. Moreover,
one can show that every spectrum is π∗-isomorphic to an Ω-spectrum. This suggests the
following theorem.

Theorem 4.6. The localization of Sp at W exists and is equivalent to the naive homotopy
category of all Ω-CW spectra.

Definition 4.7. We call the localization W−1 Sp the stable homotopy category and denote
it by SHC. The morphism set between two spectra X,Y in SHC is denoted by [X,Y ].

One can calculate the morphism with the following proposition, which essentially is a
refinement of the theorem above.

Proposition 4.8. Let X be a CW-spectrum and Y be arbitrary. Then [X,QY ]naiv ∼= [X,Y ]
for any Ω-spectrum QY with a π∗-isomorphism f : Y → QY .

Remark 4.9. This is essentially a special case of the general philosophy of model categories.
Model categoriesM have a class of weak equivalences W and subcategories of cofibrant and
fibrant objects satisfying certain axioms. Quillen has shown that the localization W−1M
always exists and morphisms in this localization can be computed as morphisms in a naive
kind of homotopy category after replacing the source cofibrantly and target fibrantly. There
is a model structure on Sp withW the π∗-isomorphism, the Ω-spectra as fibrant objects and
the CW-spectra as a subclass of the cofibrant objects. See for example [MMSS01], where
also model structures on several variants of spectra are constructed (and our spectra are
called prespectra).

At least if all the spaces in the spectrum Y are Hausdorff, one can construct an ex-
ample of an Ω-spectrum QY with a π∗-isomorphism Y → QY as follows: Set (QY )n =
hocolim ΩkYk+n. We have a structure map

Σ(QY )n = Σ hocolim ΩkYk+n ∼= hocolim ΣΩkYk+n → hocolim Ωk−1Y(k−1)+(n+1) = (QY )n+1

induced by the adjunction ΣΩk → Ωk−1. It is not hard to check that this is an Ω-spectrum
as Ω commutes (under very mild assumptions) with directed homotopy colimits.

Corollary 4.10. Let X be a finite CW-complex and Y be a spectrum. Then [Σ∞X,Y ] ∼=
colimn[ΣnX,Yn]•. In particular, πkX = [ΣkS, X] for S = Σ∞S0.

Proof. Clearly, Σ∞X is a CW-spectrum (as the suspension spectrum of every CW-spectrum).
Thus [Σ∞X,Y ] = [Σ∞X,QY ]naive, i.e. an element consists of compatible maps ΣnX →
hocolimk ΩkYk+n. The compactness of X allows us to show that

[ΣnX,hocolimk ΩkYk+n] ∼= colimk[Σ
nX,ΩkYk+n] ∼= colimk[Σ

k+nX,Yk+n].

This implies the result.

Corollary 4.11. For X,Y finite CW-complex [Σ∞X,Σ∞Y ] agrees with [ΣkX,ΣkY ]• for k
large.
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Proof. Freudenthal suspension. Note: [ΣkX,ΣkY ]• ∼= πk Map•(X,Σ
kY ).

Proposition 4.12. The hom-sets in SHC have natural structures of abelian groups.

Proof. A variant of the argument in Proposition 2.6 shows that the map Y → ΩΣY is a
π∗-isomorphism for all Y , where ΩΣX has n-th space Ω(Yn ∧S1). The same is true for
the map ΣΩX → X. We obtain that every spectrum X is isomorphic to Σ2X ′ for another
spectrum X ′ in SHC. Replacing X ′ by a CW-spectrum, we can assume that Σ2X ′ is a CW-
spectrum as well. Thus, [X,Y ] = [Σ2X ′, QY ]naiv]. Naive homotopy classes out of double
suspensions form abelian groups, by the same argument that πk of spaces are abelian groups
for k ≥ 2.

Example 4.13. There are many examples of spaces that are not weakly equivalent, but
their suspension spectra become equivalent in SHC. For example, let T be the 2-torus. One
can easily show that ΣT ' S2 ∨ S2 ∨ S3 and thus Σ∞T ∼= Σ∞(S1 ∨ S1 ∨ S2) in SHC.

4.3 Homology- and cohomology of spectra

Let E and Z be two spectra. We define the n-th E-cohomology of Z to be [Z,ΣnE]. This
generalizes our earlier definition if X if Z = Σ∞X.

Actually, there is also a smash product of spectra. The smash product E ∧Z of two
CW-spectra can be defined via (E ∧Z)2n = En ∧Zn And (E ∧Z)2n+1 = En+1 ∧Zn. Quite
remarkably this asymmetric definition induces a symmetric monoidal structure on SHC (at
least if we restrict our definition to CW-spectra). This is a quite non-trivial fact. (See e.g.
the treatment in [Swi75] of the smash product or the more modern approach in [MMSS01,
Section 11].)

This allows us to define the n-th E-homology of Z En(Z) to be πnE ∧Z. Again this is
generalizing our earlier definition in case of Z = Σ∞X. More precisely, En(Σ∞X) = Ẽn(X).
Concretely, one can calculate En(Z) as colimk En+kZk.

Lemma 4.14 (Yoneda lemma). Let C be a category and

hX , hY : Cop → Set

functors represented by X,Y ∈ C. Then the map

C(X,Y )→ Nat(hX , hY )

to the set of natural transformation from hX to hY is a bijection.

Specializing to SHC we obtain:

Lemma 4.15. Let E,F be spectra. The set of natural transformations of the represented
cohomology theories on all spectra is in bijection with [E,F ].

Remark 4.16. We will later see that this set does not need to agree with the set of stable
natural transformations between cohomology theories just defined on spaces.6 Let’s denote

6There are many unstable operations between cohomology theories. For example, the cup square defines
a natural transformation Hn(−,Z) → H2n(−,Z). As this is not compatible with suspension, this has no
chance of being induced by a map of spectra. All unstable operations are by the Yoneda induced by a map
of the corresponding spaces. For example, the set of natural transformation Hn(−,Z) → Hk(−,Z) is in
bijection with [K(Z, n),K(Z, k)] ∼= Hk(K(Z, n);Z).
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the category of the latter by Coh. Brown’s representability theorem (in a strong form) says
that the functor

SHC→ Coh

is essentially surjective and full. We will later see that it does not need to be faithful.

Example 4.17. The algebra [HZ/2,Σ∗HZ/2] is called the (2-primary) Steenrod algebra A.
It is generated by the Steenrod squares Sqn.

The Z/2-cohomology of every spectrum becomes a module over A.

Theorem 4.18. The cohomology (HZ/2)∗MO is free as an A-module in the graded sense,
i.e. isomorphic to

⊕
iA[ni], where ni denotes the shift. Moreover, there are only finitely

many generators gi in every degree.

By definition, the generators gi define maps MO → ΣniHZ/2 and thus a map

g : MO →
∏
i

ΣniHZ/2.7

As there are only finitely many generators in every degree, the map

H :=
∨
i

ΣniHZ/2→
∏
i

ΣniHZ/2

turns out to be a π∗-isomorphism and thus an isomorphism in SHC. This relies on the fact
that π∗ of a wedge is a direct sum, while π∗ of a product is a product; in this case, we
have only finitely many summands/factors in each degree and so they agree. Essentially by
construction, the map g is an isomorphism in Z/2-cohomology.

Proposition 4.19 (Hurewicz). A map of connective spectra is a π∗-isomorphism if it is
an equivalence in Z-homology. Here, a spectrum X is connective if πiX = 0 for i << 0.

The spectraMO and H are connective (forMO you can see it as there are no non-empty
manifolds of negative dimension).

Lemma 4.20. The integral homologies (HZ)∗MO and (HZ)∗H are 2-torsion.

Proof. We know that MO∗(X) ∼= N∗(X) is 2-torsion for all spaces X. Indeed, for a map
M → X, its double M tM → X is null-bordant via the cyclinder M × I. By definition,
we have

(HZ)nMO ∼= MOn(HZ) ∼= colimkMOn+kK(Z, k).

As these groups are all 2-torsion, the colimit is 2-torsion as well.
For H, it suffices to show that (HZ)∗HZ/2 is 2-torsion. But even the identity map in

[HZ/2, HZ/2] = (HZ/2)0(HZ/2) = Z/2 is 2-torsion.

Moreover, the Z-homology of both MO and H is finitely generated in every degree (as
can be seen by CW-models for MO and H). Playing with the universal coefficient sequence
(which is also true for spectra) shows that g being an isomorphism in Z/2-cohomology also
implies that g is an isomorphism in Z-homology and hence a π∗-isomorphism.

7The product of spectra is defined levelwise. It turns out to define not only a product in Sp but in SHC
as well.
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Theorem 4.21 (Thom). The map g : MO → H above is a π∗-isomorphism. In particular,
there is an isomorphism

N∗(X) ∼= MO∗(X+) ∼= H∗(X+) ∼= H∗(X;Z/2)⊗Z/2 π∗MO.

Moreover, looking more closely at (HZ/2)∗MO, one can read of the dimensions of the
generators gi and obtains:

Theorem 4.22 (Thom). We have

N∗ ∼= π∗MO ∼= Z/2[x2, x4, x5, x6, x8, . . . ],

with generators in all dimensions not of the form 2i−1. The elements xi can be represented
by RPi for i even.

4.4 Rationalizing

We have the following remarkable theorem.

Theorem 4.23 (Serre). The groups π∗S⊗Q are concentrated in degree 0 with π0S⊗Q = Q.

Actually, (HQ)0(S) ∼= colimkH
k(Sk;Q) ∼= Q. Picking the generator 1, this produces a

map S → HQ, which induces by the theorem by Serre above an isomorphism on rational
homotopy groups. This can be used to deduce the following theorem.

Theorem 4.24. Define SHCQ to have the same objects as Sp with SHCQ(X,Y ) = [X,Y ]⊗
Q. Then

π∗ ⊗Q : SHCQ → graded Q-vector spaces

is an equivalence of categories.

This theorem is very remarkable again. The category SHC is extremly complicated, but
after rationalizing, almost all difficulties go away. We obtain for example that πst∗ (X)⊗Q ∼=
H̃∗(X;Q) in general etc.

5 Complex-oriented cohomology theories and the non-existence
of an integral Chern character

Recall that there exists a Chern character K∗(X) →
∏
iH

2i(X;Q). Restricting to degree
0, we have in particular a morphism K → HQ. Is there a similar transformation K → HZ?
This is a question we will answer in this section in a rather roundabout way.

5.1 Ring spectra and cup product

Definition 5.1. A ring spectrum E is a monoid in SHC with respect to the smash product.
More concretely, it has a unit map ι : S → E and a multiplication map µ : E ∧E → E
satisfying unitality and associativity. If we have additional commutativity, we call E a
commutative ring spectrum.
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We also denote the image of ι under the isomorphism [S, E] = E0(S) ∼= π0E by 1.
Let E be a ring spectrum and X be a space. We obtain a cup product by the following

construction. We first obtain a map:

Ek(X)⊗ El(X) ∼= [Σ∞X+,Σ
kE]⊗ [Σ∞X+,Σ

lE]
∧−→ [Σ∞X+ ∧Σ∞+X,Σ

k+lE ∧E].

The smash product in the source is isomorphic to Σ∞(X×X)+. Using the map E ∧E → E
and the diagonal map X → X × X, we can map further into [Σ∞X,Σk+lE] = Ek+l(X).
Ths is the cup product for E-cohomology. It is associative and unital. If E is a commutative
ring spectrum, the cup product will also be graded commutative.

Examples 5.2. All the spectra considered so far (S, HZ, HQ, HF2,K,KO,MO,MU, . . . )
are commutative ring spectra.

Remark 5.3. There are stricter notion of commutativity that do not just work in the stable
homotopy category, but in some variant of spectra (e.g. symmetric spectra or orthogonal
spectra) that supports a good notion of smash product before passing to a homotopy cate-
gory. Actually, all the examples above also admit the stricter notion, but this is a bit more
difficult to show, especially for K and KO.

5.2 Complex orientations

Say we want to set up a theory of Chern classes for our favorite cohomology theory E
(represented by a ring spectrum with the same name) and say we are very modest and we
just want to have the first Chern class c1 of line bundles. For a paracompact space X,
there is a one-to-one correspondence between isomorphism classes of line bundles on X and
[X,CP∞], given by pulling back the tautological line bundle γ over CP∞. Thus, it suffices
to define c1(γ) ∈ Ẽ2(CP∞). The usual normalization condition says that c1(L) ∈ Ẽ2(CP1)
corresponds to 1 under the isomorphism Ẽ2(CP1) ∼= Ẽ2(S2) ∼= Ẽ0(S0) for L the tautological
line bundle on CP1. This translates into the following notion.

Definition 5.4. A complex orientation is a class x ∈ E2(CP∞) restricting to 1 ∈ E2(CP1).

Example 5.5. The spectrum HZ has a complex orientation, just taking the standard
generator of H2(CP∞;Z).

Example 5.6. The spectrum K has a complex orientation. Indeed, u ∈ K2(S0) be the
Bott periodicity element. Then ([γ] − 1)u ∈ K2(CP∞). One can check that this indeed a
complex orientation.

Some other spectra like S and KO do not have complex orientations.

Theorem 5.7. There are isomorphisms

E∗(CP∞) ∼= E∗(pt)JxK

more generally
E∗((CP∞)n) ∼= E∗(pt)Jx1, . . . , xnK.
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This has a remarkable consequence. Observe that CP∞ has the structure of a com-
mutative topological monoid by identifying C∞ with the polynomial ring C[t] and using
multiplication of polynomials. The morphism CP∞ × CP∞ → CP∞ induces a morphism

E∗(pt)JxK→ E∗(pt)Jx1, x2K.

The image of x is a power series F (x1, x2). The space CP∞ being a commutative topological
monoid implies that F (x1, x2) is (graded) formal group law over E∗(pt) in the following
sense.

Definition 5.8. A formal group law over a ring R is a power series F ∈ RJx1, x2K satisfying

1. F (x1, x2) = F (x2, x1),

2. F (x1, 0) = x1 and F (0, x2) = x2,

3. F (x1, F (x2, x3)) = F (F (x1, x2), x3).

If R is graded and the coefficients in front of xi1x
j
2 has degree −2i− 2j − 2.

Examples 5.9. The formal group law for HZ is x1 + x2. This is called the additive formal
group law Ĝa.

For K, the formal group law is x1 + x2 + ux1x2.

5.3 Formal group laws

Definition 5.10. Let F,G be two formal group laws over a ring R. A power series f ∈ RJxK
with no constant term is called an homomorphism from F → G if

F (f(x1), f(x2)) = f(G(x1, x2)).

An invertible homomorphism is called an isomorphism.

Note that a homomorphism f is an isomorphism if and only if the linear coefficient is
invertible.

Example 5.11. Consider the multiplicative formal group law Ĝm(x, y) = x + y + xy. It
satistifes 1 + Ĝm(x, y) = (1 + x)(1 + y). Recall the classical logarithm series

f(x) = log(1 + x) = x− 1

2
x2 +

1

3
x3 − · · · .

We from calculus that log((1 + x)(1 + y)) = log(1 + x) + log(1 + y). That is f(x) + f(y) =
f(Ĝm(x, y)). Thus, f is an isomorhism between Ĝa and Ĝm over Q.

This already suggests that we need denominators in R if the additive formal group law
should be isomorphic to a multiplicative one. This is indeed so. Before we prove this, we
need some notation.

Definition 5.12. Let F be a formal group law over a ring R. Define inductively [n]F (x)
by [1]F (x) = x and [n]F (x) = F ([n− 1]F (x), x). I.e. we “multiply by n”.
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Examples 5.13. For F (x, y) = x+ y, we obtain [n]F (x) = nx.
For F (x, y) = x+ y + uxy, we obtain [n]F (x) = (1+ux)n−1

u .

Lemma 5.14. Fix a ring R and an invertible element u ∈ R. The additive formal group
law Ĝa(x, y) = x+y is only isomorphic to F (x, y) = x+y+uxy over R if R is a Q-algebra.

Proof. Let f be such an isomorphism Ĝa → F . Then

0 = f([n]Ga)(f−1(x)) = [n]F (x) =
(1 + ux)n

u
− 1

over R/n. Thus un−1 = 0 in R/n and thus R/n = 0 as u is invertible. As this is true for
every n, the ring R must be a Q-algebra.

5.4 (Co)homology of K-theory

Lemma 5.15. Let x, x′ ∈ E2(CP∞) correspond to two different complex orientations of a
ring spectrum E. Then the resulting formal group laws F and F ′ are isomorphic. More
precisely, we can express x′ as a power series f(x) as E∗(CP∞) ∼= E∗JxK. Then

f(F (x1, x2)) = F ′(x′1, x
′
2) = F ′(f(x1), f(x2)).

Corollary 5.16. The integral homology H∗(K;Z) is a rational vector space. In particular,
H∗(K) ∼= Q[u±1] and H∗(K;Fp) ∼= H∗(K/p;Z) = 0, where K/p denotes the mapping cone
of p · idK : K → K.

Proof. By definition H∗(K;Z) ∼= π∗HZ∧K. The spectrum HZ∧K admits ring spectra
maps from HZ and K and thus carries both the additive and a multiplicative formal group
law from the two different complex orientations. These are isomorphic by the last lemma.
By Lemma 5.14, it follows that π∗HZ∧K is a Q-algebra.

The rational Hurewicz map

π∗K ⊗Q→ H∗(K;Q) ∼= H∗(K;Z)

is (as always) an isomorphism and π∗K ∼= Z[u±1].
The last part follows by the Bockstein sequence

· · · → H∗(K;Z)
p−→ H∗(K;Z)→ H∗(K;Fp)→ · · ·

This shows that the Hurewicz theorem only holds for connective spectra (as it is not
true for K/p). More interestingly, one can now apply the universal coefficient sequence

0→ Ext1Z((HZ)i−1(K),Z)→ (HZ)i(K)→ HomZ((HZ)i(K),Z)→ 0

to obtain:

Proposition 5.17. We have

[K,HZ] = (HZ)0(K) = 0

and
[K,ΣHZ] = (HZ)1(K) = Ext1Z(Q,Z).
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As SHC→ Coh is full, this shows that there is no nonzero transformation of cohomology
(of spaces or spectra) from K to HZ. On the other hand, Ext1Z(Q,Z) is uncountable! In
contrast, we have:

Proposition 5.18. There is no nonzero natural transformation of the cohomology theories
represented by K to that for ΣHZ on spaces. In particular, SHC→ Coh is not faithful.

Proof. It suffices to show that all natural transformations from K2n to H2n+1(−,Z) are zero
on all spaces. As the former is represented by BU × Z, these natural transformations are
in one-to-one correspondence with H2n+1(BU × Z;Z), which turns out to be zero. Indeed,
H∗(BU ;Z) ∼= Z[c1, c2, . . . ] with |ci| = 2i.

6 Exercises

Exercise 6.1. Show the following homeomorphism/homotopy equivalence for pointed spaces
X and Y .

(a) ΣX ∼= X ∧S1

(b) Σ(X × Y ) ' ΣX ∨ ΣY ∨ Σ(X ∧Y ) (if X, Y are CW-complexes)

Exercise 6.2. In this exercise, you compute two colimits.

(a) Let (Xi)i∈N be a sequence of spaces. Show that the colimit over

X1 → X1 ∨X2 → X1 ∨X2 ∨X3 → · · ·

is isomorphic to
∨
i∈NXi.

(b) Compute the abelian group colim(Z 2−→ Z 2−→ Z 2−→ · · · )

Exercise 6.3. Use the classification of vector bundles on S1 to compute π1K ∼= K̃(S1) = 0

and π1KO ∼= K̃O(S1) ∼= Z/2.
Exercise 6.4. Fill in the details in the proof of the long exact sequence of homotopy groups
associated with a map f : X → Y of spectra.
Exercise 6.5. Compute the first few stable homotopy groups of S2 ∨ S4, S2 × S2, RP2 and
CP2.
Exercise 6.6. In this exercise we will demonstrate the different behavior of unstable and
stable homotopy groups.

(a) Let η : S3 → S2 be the Hopf map sending (z1, z2) ∈ S3 ⊂ C2 to z1
z2
∈ C ∪ {∞} ∼= S2.

Show that the postcomposition with the complex conjugation map is homotopic to
η, but that η is not homotopic to −η (which is precomposition with a map of degree
−1). [Hint: Use that η is a fibration with fiber S1]

(b) Show that in general for a map f : Sn → Sk the precomposition with a degree (−1)
map Sn+1 → Sn+1 of Σf : Sn+k+1 → Sk+1 is homotopic to to the postcomposition
with a degree (−1) map Sk+1 → Sk+1. Deduce that indeed 2[Ση] ∈ π4S3 ∼= πst1 S

0

is zero. If you know Steenrod operations, use the Freudenthal suspension theorem to
deduce further that πst1 S0 ∼= Z/2.
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Exercise 6.7. This exercise is about the bordism relation.

(a) Show that bordism is an equivalence relation.

(b) Show that M#N is bordant to M
∐
N and deduce that [RP2] generates N2.

Exercise 6.8. Given a spectrum X, define a new spectrum X ′ by X ′n = Xn for n ≥ 10 and
X ′n = pt for n < 10. Show that X and X ′ become isomorphic in SHC.

Exercise 6.9. Compute the localization of the category of abelian groups at the class of
morphisms f : A→ B that induce an isomorphism A⊗Q→ B ⊗Q.

Exercise 6.10. If you are familiar with derived categories, compute for the category ChR of
nonnegatively graded chain complexes over a ring R the localization at

(a) the class of chain homotopy equivalences, and

(b) the class of homology-isomorphisms.8
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