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Abstract

These are lecture notes on elliptic genera, elliptic homology and topological modular
forms. They are based on a lecture course given in the summer term 2017 in Bonn, with
small updates in subsequent years. Please treat these informal notes with caution. If
you find any mistakes (either typos or something more serious) or have other remarks,
please contact the author. This (or any other) feedback is very welcome!
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1 Introduction
The main goal of this lecture course is to construct and understand certain homology
theories constructed since the late 80s.

The most classical and best-known homology theories are the different variants of
ordinary homology like singular homology or deRham cohomology.

Two further families of (co)homology theories have played a big role in topology
and geometry since the 1950s. The first family are the bordism theories. These are
based on the relation that two closed n-manifolds are cobordant if they form jointly the
boundary of a compact (n + 1)-dimensional manifold. While these theories have their
roots in the work of Poincaré1 and Pontryagin, they really came to prominence through
the work of Thom, who calculated bordism rings and got the Fields medal for it, and
Atiyah, who realized that one can actually define (generalized) homology theories by
bordism. Bordism theories have played a big role in most attempts to understand
manifolds eversince.

The other family consists of K-theory. It has its roots in Grothendieck’s version of
the Riemann–Roch theorem in algebraic geometry, but soon was transported by Atiyah,
Bott and Hirzebruch to topology. Here, one considers the monoid of isomorphism classes
of vector bundles on a compact Hausdorff space under direct sum and applies a group
completion to it to define K0(X) – one can either take complex or real vector bundles,
resulting in complex or real K-theory. Still in the 60s it was realized by Conner and
Floyd that one can also construct complex K-theory from complex bordism [CF66].

1Actually, the first attempt of Poincaré to define homology in his Analysis Situs reads almost like the
definition of bordism, but both definition and proofs have a certain vagueness, which could not be quite
resolved with the differential topology at hands at that time (meaning virtually none). Thus, he switched
to a more combinatorial definition in the spirit of cellular or simplicial homology.
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We will study in this lecture course a fourth family of homology theories, consisting
of elliptic homology theories and topological modular forms. The origins lie in the work
of Ochanine and Witten who constructed ring homomorphisms from bordism rings to
rings of modular forms (called elliptic genera or also the Witten genus) – this was
partially motivated by an attempt to do index theory on free loop spaces. Landweber,
Ravenel and Stong [LRS95] used these ideas to construct an elliptic homology theory
from complex bordism whose coefficients are a ring of modular forms. Later it was
realized that there are actually a lot of examples of such elliptic homology theories.
These can be regarded as higher analogues of complex K-theory – though an equally
close connection to geometry as the one of K-theory via vector bundles is still subject
to research.2

The next step was to find an analogue of real K-theory in this context. This was
much more demanding, but was constructed by Goerss, Hopkins and Miller (and later
Lurie) under the name of topological modular forms [DFHH14], [Lur09]. This has
seen applications to string bordism ([AHR10], [MH02] and [Hil09]), the stable homo-
topy groups of spheres ([HM98], [BHHM08], [BP04] and [IWX20]) and exotic spheres
([WX16], [BHHM20] and [BS20]). Note that the separation between stable homotopy
groups of spheres and exotic spheres is a bit articifical here since Kervaire and Milnor
have shown that the best method to study exotic spheres is to relate them to the stable
homotopy groups of spheres!

Our basic plan for this lecture course is the following: First we will recall some basics
of bordism theory and discuss some general results about genera and orientation, mostly
in the context of complex bordism. A key concept here is that of a formal group law.
Then there will be an interlude on the theory of elliptic curves. These will be used to
construct elliptic genera. These in turn will allow to construct elliptic (co)homology
theories, once we have the Landweber exact functor theorem. We will first formulate it
in elementary language, but then reformulate it in terms of stacks, which should make
it more transparent and usable.

In the final section, we will talk about the spectrum of topological modular forms
TMF. These are based on the moduli stack of elliptic curves. We will give the idea
how to construct TMF and will sketch the computation of π∗ TMF after inverting 2.
At the end, we will give some outlook to applications.

Prerequisites
Most of this document should be readable for people with “basic knowledge” in algebraic
topology and algebraic geometry (plus a certain “mathematical maturity”). For the for-
mer, this includes the theory of homology theories and classifying spaces of groups;
moreover, some encounter with spectra would be useful. For the latter, this includes
basic scheme theory; at some point, we will also use divisors and Riemann–Roch. Sec-
tion 5 is more demanding. In particular, we will use spectral sequences, homotopy
limits and E∞-ring spectra. The latter we model in orthogonal spectra as this was the
language the participants of the lecture were most likely to be familiar with.

Acknowledgments
I want to thank Jack Davies, Leon Görtz, Alice Hedenlund, Bouke Jansen, Jeroen van
der Meer, Sven van Nigtevecht, Emily de Oliveira Santos and Viktoriya Ozornova for
catching typos and I want to thank all the mathematicians involved in the development

2Which is an euphemism for “Things are difficult and unclear.”
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of elliptic curves, formal groups, elliptic cohomology and topological modular forms for
creating such beautiful theories, of which this document is only an imperfect fragment
of a shadow.

2 Bordism, genera and orientations

2.1 Homotopy colimits and limits
It is a well-known problem that taking (co)limits in spaces does not preserve (weak)
homotopy equivalences. There is a notion of a homotopy (co)limit that solves this
problem. We refer to [Dug08] and [Rie14] for the full theory. In this chapter, we
will only need directed homotopy colimits and homotopy fiber products, which we will
discuss now.

Let X0
f0−→ X1

f1−→ · · · be a directed diagram. We define its homotopy colimit
hocolimi Xi as the so-called mapping telescope. This is defined as

∐
Xi × [0, 1]/ ∼,

where (x, 1) ∼ (fi(x), 0) for x ∈ Xi. We leave it as an exercise to show that it preserves
homotopy equivalences. There is also a pointed version: If all the spaces Xi are pointed
by points xi and the maps fi are pointed, then we can define a pointed mapping
telescope hocolimXi/ ∼, where we additionally identify all xi× [0, 1] to the base point.
If the Xi are well-pointed (which we will assume), then this is homotopy equivalent to
the unpointed mapping telescope. In the well-pointed case, we have an isomorphism
colimi πkXi → πk hocolimi Xi. Indeed, we can write hocolimi Xi as the colimit over
Tn, where Tn =

∐
i≤n Xi × [0, 1]/ ∼; furthermore, Tn ≃ Xn and Tn → Tn+1 is a

cofibration. In particular, we see that hocolim preserves weak homotopy equivalences
(i.e. π∗-isomorphisms).

Given a diagram
X

f

��
Y

g // Z

we define its homotopy pullback X ×h
Z Y as the subspace of those X × Z [0,1] × Y of

(x, α, y) with f(x) = α(0) and g(y) = α(1). Again, we leave it as an exercise to show
that this construction preserves homotopy equivalences. Note that we have a long exact
sequence

· · · → πk(X ×h
Z Y ) → πkX × πkY → πkZ → πk−1(X ×h

Z Y ) → · · ·

associated to the fibration sequence

X ×h
Z Y → (X ×Z Z [0,1])× Y → Z.

This implies that homotopy pullbacks also preserve weak homotopy equivalences.

2.2 Remarks about spectra
For most of this lecture course, we will be pretty agnostic about which model of spectra
we use. Most of the time, we will actually just work in the homotopy category of
spectra, which we will denote by Ho(Sp). The most naive way to construct it is via
sequential spectra; a (sequential) spectrum X consists of a sequence Xn of pointed
spaces together with pointed maps ΣXn → Xn+1. This forms in an obvious way a
category Sp. We define πkX as the colimit

colimi πk+iXi,



5

where the transition map is given as the composite πk+iXi → πk+i+1ΣXi → πk+i+1Xi+1.
There is a way to define the homotopy category of spectra Ho(Sp) (often called the

stable homotopy category). The functor Sp → Ho(Sp) can be characterized as the
universal functor that sends π∗-isomorphisms to isomorphisms (i.e. every other functor
Sp → C with this property factors uniquely over the functor Sp → Ho(Sp)). There
are different ways to construct it more explicitly. See e.g. [Ada74] and [BF78] for two
classical approaches and [MMSS01] and [Mal11] for overviews of different approaches.

In spectra, we can also take negative suspensions of spectra by a shift construction.
Thus, a model for Σ−1X has n-th space Xn−1. Another important construction is a
homotopy colimit along a directed system. This can be constructed, e.g. as a levelwise
mapping telescope. We have π∗ hocolimn X

n ∼= colimn π∗X
n for a sequence X0 →

X1 → X2 → · · · of spectra.
The latter property implies that

X ≃ hocolimn Σ
−nΣ∞Xn,

where we define Σ∞Y for a pointed space Y as the spectrum with i-th space ΣiY and
the obvious structure maps.

There is a smash product on the homotopy (or ∞-)category of spectra. Indeed, it
is characterized3 as a symmetric monoidal product by the following two properties:

1. There is a natural equivalence: Σ∞A∧Σ∞B ≃ Σ∞(A∧B)

2. The smash product is compactible with homotopy colimits:

(hocolimi A
i)∧B ≃ hocolimi(A

i ∧B).

For us, a ring spectrum is a monoid in Ho(Sp), i.e. we have maps R∧R → R (the
multiplication) and S → R (the unit) in Ho(Sp) such that the associativity and unitality
diagrams commute in Ho(Sp). When we talk about more refined variants, we will use
terms like A∞- or E∞-ring spectrum.

Every spectrum E represents both a reduced homology and a reduced cohomol-
ogy theory. For a pointed space X, we define Ek(X) as πkΣ

∞X ∧E and we define
Ek(X) = [Σ∞X,ΣkE], where [−,−] denotes morphisms in Ho(Sp). If E is a (ho-
motopy commutative) ring spectrum, then E∗ becomes a multiplicative cohomology
theory. Note that if we want non-reduced homology theories, we just have to apply the
reduced homology theory to X union a disjoint base point.

By Brown’s representability theorem, every cohomology theory is represented by a
spectrum. We denote the spectrum representing H∗(−;A) (for an abelian group A) by
HA.
Remark 2.1. These foundations are an extensive topic, of which barely anything will
be relevant for us for most of the time, so I sweep it mostly under the rug. Let me
comment though on the smash product. There are different ways to construct it. One
can use ∞-categories as in [Lur12]. Or one can use symmetric or orthogonal spectra
(see [Sch12] or [MMSS01]). If one is only interested in the homotopy category, one can
also construct it directly on sequential spectra. First, we replace a sequential spectrum
X by a cofibrant spectrum; for example, there is a CW-approximation theorem that
we can replace X up to π∗-isomorphism (which are for us the relevant equivalences)
by a CW-spectrum, i.e. one where X0 is a CW-complex and the maps ΣXi → Xi+1

are relative CW-complexes; this is in particular cofibrant. Then we can define X ∧Y
to have 2n-th space Xn ∧Yn and (2n+1)-st space ΣXn ∧Yn, where the structure map
ΣΣXn ∧Yn → Xn+1 ∧Yn+1 commutes one suspension past the Xn to let it act on Yn

3At least in ∞-categories. See [Lur12, Corollary 4.8.2.19] for a precise statement.
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(you can either introduce a sign while commuting or don’t – both is possible). One can
check that this defines a smash product on Ho(Sp). It is non-trivial to see that this is
associative (as it is clearly not associative before passing to the homotopy category).
See either [MMSS01, Section 11] or [Len12, Section 7] for comparisons of this approach
to other approaches.

2.3 Bordism
We begin by recalling how to define bordism groups and Thom spectra with extra
structure.

Recall first the stable normal bundle of a manifold. Given a closed k-manifold M ,
we can embed it via some map ι into some Rn+k with normal bundle νι. If n is large
enough any two such embeddings are homotopic through immersions and even this
homotopy is unique up to homotopy [Hir59]. This implies that while νι : M → BO(n)
depends on the embedding, the composite ν : M → BO(n) → BO does not up to unique
homotopy;4 here, BO is the (homotopy) colimit of the BO(n). We call this map ν the
stable normal bundle and more generally a map into BO a stable vector bundle; an
isomorphism between two stable vector bundles is a homotopy between the two maps
into BO.

Extra structure on stable vector bundles can be encoded by a map ξ : X → BO
as follows. Given a stable vector bundle ν : M → BO, an X-structure on it consists
of an equivalence class of lifts g : M → X such that ξg = ν or such that there is at
least a chosen homotopy H between ξg and ν. Here, two such lifts g1 and g2 are called
equivalent if they are homotopic over BO; more precisely, this means that the diagram

ξg1 +3

�$

ξg2

z�
ν

of homotopies commutes up to homotopy. If we denote the stable vector bundles
classified by ξ and ν by the same names, we see in particular that an X-structure
induces an isomorphism g∗ξ ∼= ν.

An X-structure on a closed manifold M is an X-structure on its stable normal
bundle. (Strictly speaking, the notion of an X-structure depends on the precise map
ν : M → BO; but a homotopy between two maps ν and ν′ allows to transport X-
structures on ν to X-structures on ν′. As the map ν is well-defined up to homotopy
(which in turn is unique up to homotopy), there is no problem.)

Examples 2.2. 1. X = BO: An BO-manifold is just an unoriented manifold.

2. X = BSO: An BSO-manifold is equipped with an orientation of the stable normal
bundle. Exercise: This is equivalent to an orientation of the tangent bundle.

3. X = BSpin: Recall that Spin(n) is the unique connected 2-fold cover of SO(n).
Define BSpin = colimBSpin(n). Exercise: Show that a BSpin-structure on an
n-manifold is equivalent to a Spin(n)-structure on the tangent bundle. (Hint:
Show that if E ⊕ F and E are spin, then also F is spin.)

4. X = BU : This is a complex structure on the stable normal bundle of M .

5. X = pt: This is a framing of the stable normal bundle of M , i.e. an isomorphism
to the trivial stable bundle.

4We use here that the normal bundle of the composition M → Rn+k → Rn+k+1 is νι⊕1, where 1 denotes
the 1-dimensional trivial bundle.
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end of lecture 1
Remark 2.3. Passing between an X-structure on the (stable) tangent bundle and the
(stable) normal bundle is in general subtle and not always possible. Let me give two
examples, where this passage is possible.

First, consider a BSO-structure, which is equivalent to an orientation. As TM ⊕ ν
is a trivial bundle, an orientation on TM and on ν are equivalent data.

Now consider a BU -structure, i.e. a complex structure on the bundle after adding
a trivial bundle of suitable dimension. If we have a complex structure on TM (e.g. if
M is a complex manifold), then we obtain a complex structure on TM ⊕ νC. As a real
bundle, this is isomorphic to (TM ⊕ ν) ⊕ ν and TM ⊕ ν is trivial. Thus, we obtain a
BU -structure on ν.
Remark 2.4. Recall that the homotopy groups of BO are given by Bott periodicity.
More precisely, they are 8-periodic and the first 8 groups are:

π1BO = π0O = Z/2,
π2BO = π1O = π1SO(3) = Z/2,
π3BO = 0,

π4BO = Z
πkBO = 0 for 5 ≤ k ≤ 7

π8BO = Z.

(See [Mil63, Theorem 24.7].) As SO is connected, BSO = BO⟨2⟩ is the 1-connected
cover of BO. As Spin is simply-connected and π2O = 0 anyhow, we see that BSpin =
BO⟨4⟩. The next interesting case is BO⟨8⟩, which is often denoted for fancy reasons
by BString.

To define bordism groups, we also have to discuss stable normal bundles of manifolds
with boundary. The story is the same, only that we have to require for such a manifold
W that we embed it via a map i into Rn+k ×R≥0 so that the boundary of W is nicely
embedded into the boundary Rn+k of Rn+k ×R≥0; here, nice means in particular that
an open neighborhood of ∂W is embedded onto i(∂W )× [0, t). Clearly, an X-structure
on W induces an X-structure on ∂W .

Definition 2.5. We define ΩX
k to be the cobordism classes of closed k-manifolds M

with X-structure. More precisely, consider the monoid of closed k-manifolds with X-
structure and define ΩX

k to be the quotient monoid by the submonoid of manifolds of
the form ∂W with W a compact (k + 1)-dimensional manifold with X-structure. By
the decomposition ∂(M × I) ∼= M

∐
M ′ one sees that ΩX

k is a group; note that M ′ is
diffeomorphic to M , but has a different X-structure in general.

The Pontryagin–Thom construction identifies these groups with the homotopy groups
of certain spectra, so-called Thom spectra. Recall that the Thom space Th(E) of a vec-
tor bundle E → B is set-theoretically defined as E

∐
pt such that neighborhoods of pt

are complements of closed subsets of E whose intersection with every fiber is compact.
If B is compact, this is just the 1-point compactification of E.

If E1 → B1 and E2 → B2 are vector bundles, there is a canonical isomorphism
Th(E1 × E2) ∼= Th(E1)∧Th(E2). In particular, if B1 = pt and E1 = R, we get
Th(1⊕ E) ∼= ΣTh(E), where we denote by 1 the trivial 1-dimensional bundle.

Definition 2.6. Let X → BO be a map. Define Xn = X ×h
BO BO(n) and denote

the vector bundles classified by the projection Xn → BO(n) by En. Furthermore, we
get maps jn : Xn → Xn+1 and we have j∗nEn+1

∼= 1 ⊕ En, where 1 denotes the trivial
1-dimensional vector bundle.
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Define the Thom spectrum MX for X by MXn = Th(En) and the structure maps
are

ΣMXn
∼= Th(1⊕ En) ∼= Th(j∗nEn+1) → Th(En+1) = MXn+1.

Theorem 2.7 (Pontryagin–Thom). There is an isomorphism π∗MX ∼= ΩX
∗ .

Examples 2.8. 1. If X = BO (and hence Xn ≃ BO(n)), we obtain bordism of
unoriented manifolds and we call the corresponding Thom spectrum MO. It is
easy to see that π∗MO consists of 2-torsion and this theory can be understood
by Stiefel–Whitney classes (HZ/2-characteristic classes).

2. If X = BSO (and hence Xn ≃ BSO(n)), we obtain bordism of oriented manifolds
and we call the corresponding Thom spectrum MSO. Thom and Wall showed
that oriented bordism is determined by Stiefel–Whitney and Pontryagin classes
(HZ-characteristic classes). The ring π∗MSO is known, but a little hard to write
down. In contrast, π∗MSO ⊗ Q is easy to understand: It is a polynomial ring
generated by [CP2n].

3. More generally, we can take X = BO⟨n⟩. For n = 4, we obtain bordism of
spin manifolds and we call the corresponding Thom spectrum MSpin. Ander-
son, Brown and Peterson have determined the structure of π∗MSpin, but it is
complicated. It is detected by characteristic classes in HZ/2 (i.e. Stiefel–Whitney
classes) and characteristic classes in real K-theory KO. For MO⟨8⟩ = MString,
there is a connection to topological modular forms, but less is known.

4. If X = BU , we obtain bordism of stably almost complex manifolds and the
corresponding Thom spectrum is called MU . Milnor computed that π∗MU is a
polynomial ring in infinitely many generators. Rationally, it is generated by the
[CPn]. This will be a major example for us.

References: Classic books on these topics are [Swi75] and [Sto68] and the latter
also includes an extensive survey of the calculations known in 1968. If one wants to be
all fancy and ∞-categorical, one can also look at the elegant treatment in [ABG+14].
The treatment in these notes is only partially following these approaches.

end of lecture 2

2.4 Properties of Thom spaces and spectra
Definition 2.9. Let h be a multiplicative cohomology theory and E → X an n-
dimensional vector bundle. A Thom class is a class τ ∈ h̃n(Th(E)) ∼= hn(E,E0) whose
restriction to every compactified fiber Ex

∼= Sn is a generator of h̃n(Ex) ∼= h0(pt) as
an h0(pt)-module. We call a vector bundle with a Thom class h-oriented.

Theorem 2.10. Let E → X be an h-oriented vector bundle with Thom class τ . Then
there are natural Thom isomorphisms

∪τ : hm(X) ∼= hm(E) → h̃m+n(Th(E)) ∼= hm+n(E,E0)

and
∩τ : h̃m+n(Th(E)) → hm(X).

Remark 2.11. If E → X is a non-h-oriented vector bundle, there are twisted forms of the
Thom isomorphism. This is easiest if h = HZ, i.e. singular homology. Then there is an
orientation-local system Z̃ for E. This can, for example, be defined as Hn(Ex, E0,x) over
every point x ∈ X. Then there is a Thom isomorphism H̃m+n(Th(E)) ∼= Hm(X, Z̃).

Lemma 2.12. Every Thom spectrum is connective, i.e. πkMX = 0 for k < 0.
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Proof. This follows either from the Pontryagin–Thom isomorphism or from the obser-
vation that a Thom space of an n-dimensional bundle is always n-connective, i.e. its
i-th homotopy group vanishes for every i < n and every base-point.

Lemma 2.13. Let a factorization E : X
e−→ BO(n) → BO be given. We denote the

n-dimensional vector bundle classified by e by abuse of notation also by e. Then MX ≃
Σ−nΣ∞ Th(e).

Proof. Then (m+n)-th space of Σ−nΣ∞ Th(e) is Σm Th(e) ∼= Th(e⊕m). Now consider
the diagram

Xm+n
//

fm

��

BO(n+m)

��
X // BO(n)

88

// BO

We see that the pullback bundle Em+n on Xm+n agrees with f∗
me ⊕ m. Thus, the

(m+n)-th space of MX is Th(f∗
me⊕m), which maps compatibly to Th(e⊕m). Thus,

we obtain a map MX → Σ−nΣ∞ Th(e).
The (stable) vector bundle E defines compatible local orientation systems on X and

all Xm+n. The Thom isomorphism induces isomorphisms

H̃∗+m+n(Th(Em+n);Z) ∼= H∗(Xm+n; Z̃)

and thus we obtain in the (co)limit that

H∗MX ∼= colim H̃∗+n+m(Th(Em+n),Z)
∼= colimH∗(Xm+n, Z̃)
∼= H∗(hocolimXm+n, Z̃)
∼= H∗(X, Z̃)
∼= H̃∗+n(Th(e);Z)
∼= H∗(Σ

−nΣ∞ Th(e);Z).

One can see that the map MX → Σ−nΣ∞ Th(e) induces an isomorphism between
the homologies of these connective spectra and thus we can conclude by the Whitehead
theorem that the map MX → Σ−nΣ∞ Th(e) is an equivalence.

Example 2.14. For X = pt → BO, we obtain as the Thom spectrum the sphere
spectrum that thus represents framed bordism.

Lemma 2.15. Let X0 → X1 → · · · be a sequence of spaces with compatible maps
En : X

n → BO and denote by E the map X = hocolimn X
n → BO. Then ME ≃

hocolimn MEn.

Proof. We just have to use that both homotopy fiber products and the Thom space
construction commute with homotopy colimits.

Lemma 2.16. Let X E−→ BO and Y
F−→ BO be maps and let X×Y

E×F−−−→ BO×BO →
BO classify the external sum of the corresponding vector bundles. Then there is a
natural equivalence M(E × F ) ≃ ME ∧MF .
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Proof. Let Xn and En as above and consider analogously Yn and Fn. Then M(En ×
Fn) ≃ MEn ∧MFn because the analogous statement is true for Thom spaces. Thus,

ME ∧MF ≃ hocolimn MEn ∧hocolimm MFm

≃ hocolimn,m MEn ∧MFm

≃ hocolimn M(En × Fn).

As hocolimn Xn × Yn ≃ X × Y , we see by the last lemma that this is equivalent to
M(E × F ).

Proposition 2.17. Let X
E−→ BO be a map of H-spaces (where BO is equipped with

the direct sum H-space structure). Then ME attains the structure of a ring spectrum.
If X is homotopy commutative, then ME is homotopy commutative as well.

Proof. This follows directly from the last lemma.

Examples 2.18. Obviously, BO → BO and BSO → BO and BU → BO are H-space
maps as these things are compatible with direct sums. It is also true (more generally)
that if X is an H-space, then its connective covers X⟨n⟩ are H-spaces and the map
X⟨n⟩ → X is an H-space map. The reason is that the map X⟨n⟩×X⟨n⟩ → X×X → X
factors over X⟨n⟩ as the source is 2n-connective.

Thus, we see that all the Thom spectra we have considered are actually homotopy
commutative ring spectra. Actually, a more careful argument shows that they are all
E∞-ring spectra (i.e. they can be represented by commutative orthogonal ring spectra).

2.5 Orientations
We rephrase the theory of Thom classes from Thom spaces to Thom spectra. We will
fix throughout a ring spectrum E:

Definition 2.19. Let X
ξ−→ BO be a map. Every point x ∈ X determines a map

S ∼= Mx → MX (where the isomorphism S ∼= Mx in Ho(Sp) depends on the chosen
trivialization of ξ|X .) We say that τ ∈ E0(MX) is a Thom class if τ |x ∈ E0(Mx) is a
generator of this rank-1 free E0(S)-module for every x ∈ X. If a Thom class exists, we
say that ξ has an E-orientation.

If ξ actually comes from an n-dimensional vector bundle e, this reduces to the earlier
notion of a Thom class. Here, we use that MX is in this case just Σ−nΣ∞ Th(e) so
that E0MX ∼= En Th(e).

We observe that for a map f : Y → X and a stable vector bundle X
ξ−→ BO with

a Thom class τ ∈ E0(MX), the pulled back class f∗τ ∈ E0(MY ) is a Thom class as
well. In particular, a Thom class for ξ is the same as a natural choice of Thom classes
for all stable vector bundles with an X-structure.

We also obtain a Thom isomorphism in this world:

Theorem 2.20. Let X ξ−→ BO be a stable vector bundle with an E-orientation. Then
E∗MX ∼= E∗X and E∗MX ∼= E∗X.

Proof. All the Xk
ξk−→ BO(k) inherit E-orientations because they are pulled back from

ξ. Thus, Ẽm+k(Th(ξk)) ∼= Em(Xk). Now the argument is as in the proof of Lemma
2.13.
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Remark 2.21. There is a theorem by Spanier and Milnor (see e.g. [Swi75, Theorem
14.43]) that for a closed n-manifold N with stable normal bundle ν, the Thom spectrum
ΣnMν is equivalent to the Spanier–Whitehead dual DN+. This can be constructed as
the function spectrum F (Σ∞

+ N, S). This implies that

E∗Mν ∼= E∗DN+

∼= π∗(F (Σ∞
+ N, S)∧E)

∼= π∗F (Σ∞
+ N,E)

∼= E−∗(N)

for every spectrum E. If ν is E-oriented, the source is isomorphic to E∗Σ
−nN ∼=

E∗+nN . Thus, N satisfies Poincaré duality for E if ν is E-oriented.

Definition 2.22. Let X → BO be a map of connected H-spaces and E be a ring
spectrum. An X-orientation of E is a choice τξ of E-Thom class for every stable vector
bundle ξ with X-structure, where we demand

1. naturality, i.e. τf∗ξ = f∗τξ, and
2. multiplicativity, i.e. if ξ and η are stable vector bundles on spaces Y and Z, then

τξ×η corresponds to τξ×τη under the identification M(Y ×Z) ≃ MY ∧MZ. Here,
we use the X-structure on ξ× η given by the composition Y ×Z → X ×X → X.

Example 2.23. Integral singular homology HZ is BSO-oriented: oriented vector bun-
dles have Thom classes in singular cohomology and these are multiplicative.

Example 2.24. If X → BO is a map of connected H-spaces, then MX has a tau-
tological X-orientation τ can: If Y g−→ X → BO classifies a stable vector bundle with
X-structure, we obtain an element τ cang = Mg ∈ [MY,MX] = MX0(MY ). This is
clearly natural. For e ∈ X, the neutral element, e∗τ cang ∈ [S,MX] is precisely the unit,
where we use the identification M pt = S. Since X is connected, the map pt → X
corresponding to any other x ∈ X is homotopic to e : pt → X and thus we see indeed
that τ cang is a Thom class. For multiplicativity, we use the (homotopy) commutative
diagram

MY ∧MZ

≃

��

// MX ∧MX

&&
≃

��

MX

M(Y × Z) // M(X ×X)

88

We add a small observation: If u : E → F is a map of ring spectra and E has an
X-orientation {τξ}, then {u∗τξ} is an X-orientation for F .

Proposition 2.25. Let X → BO be a map of connected H-spaces. Then

(Maps MX → E of ring spectra) → (X-orientations of E)

u 7→ {u∗τ
can
ξ }

is a bijection. Here, maps are understood to be in the homotopy category Ho(Sp).

Proof. We can construct an inverse as follows: Let an X-orientation of E be given. In
particular, we obtain a Thom class E0(MX) = [MX,E] of the universal stable bundle
with X-structure. Multiplicativity of the Thom class shows that this is a map of ring
spectra. And it is also easy to see that this is an inverse to the map described in the
statement of the proposition.
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2.6 Complex orientations
Definition 2.26. We call a ring spectrum E complex oriented if it is equipped with a
BU -orientation (or equivalently with a ring spectrum map MU → E).

Example 2.27. Clearly, MU itself is complex orientable and also HZ (because every
complex vector bundle is oriented). We will see later that complex K-theory KU is also
complex oriented.

end of Lecture 3

Definition 2.28. Let ξ be a complex n-dimensional vector bundle on a space X and
E be complex oriented. Then we define the Euler class of ξ to be the pull back
e(ξ) ∈ E2n(X) of the Thom class τξ ∈ E2n(Th(ξ)) along the zero section X → Th(ξ).

Proposition 2.29. Let E be complex oriented and let xn ∈ E2(CPn) (with n possibly
∞ and x = x∞) the Euler class of the tautological line bundle ηn. Then we have ring
isomorphisms

E∗(CPn) ∼= E∗[xn]/x
n+1
n

E∗(CP∞) ∼= E∗JxK.

Here, E∗ = E∗(pt).

Proof. We start with some general remarks. Clearly, x and xn+1 restrict to xn on CPn.
One can see that CPn+1 is the Thom space of ηn ([KT06, Lemma 3.8]) and the usual
inclusion CPn → CPn+1 corresponds to the zero section. Thus, xn+1 is a Thom class
for ηn.

Now we argue by induction on (finite) n. The Thom isomorphism theorem im-
plies that Ẽ∗(CPn+1) is a free E∗(CPn) ∼= E∗[xn]/x

n+1
n -module on xn+1. As xn is

the restriction of xn+1, we see that xn acts on Ẽ∗(CPn+1) as xn+1. It follows that
E∗(CPn+1) ∼= E∗[xn+1]/x

n+2
n+1.

The statement for n = ∞ follows from the Milnor sequence, which we will state
next. Indeed, it is easy to see that lim1 vanishes along a tower of surjective maps.

Proposition 2.30 (Milnor sequence). Let E be a cohomology theory (satisfying the
wedge axiom), X0 → X1 → X2 → · · · a diagram of spaces with homotopy colimit X
(e.g. Xi might be the i-skeleton of a CW-complex X). Then there is a short exact
sequence

0 → lim1
i E

∗−1(Xi) → E∗X → lim
i

E∗(Xi) → 0.

Proof. One can write X as the homotopy coequalizer of two maps
∐

i Xi →
∐

i Xi,
namely the identity and the map induced by the Xi → Xi+1. After taking Σ∞

+ (i.e.
adding a disjoint base point and doing the suspension spectrum), we obtain a cofiber
sequence ⊕

i

Σ∞
+ Xi

F−→
⊕
i

Σ∞
+ Xi → Σ∞

+ X,

where F is the difference of the two induced maps. Taking E-cohomology we obtain a
long exact sequence∏

i

E∗−1Xi
F∗−1

−−−→
∏
i

E∗−1Xi → E∗X →
∏
i

E∗Xi
F∗

−−→
∏
i

E∗Xi.

From this, we obtain short exact sequences

0 → cokerF ∗−1 → E∗X → kerF ∗ → 0.

This implies the result by the definition of limit and lim1.
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Remark 2.31. An alternative definition of complex orientability is the existence of a
class x ∈ Ẽ2CP∞ whose restriction to Ẽ2(CP1) ∼= Ẽ2(S2) ∼= E0(pt) is a generator. We
have only proved that it is a necessary condition. For the equivalence of this approach
with ours see either Adams [Ada74, Part II, Section 2 and 4] for an approach using the
Atiyah–Hirzebruch spectral sequence or Kono–Tamaki [KT06], which is a rather nice
read.
Remark 2.32. We can use this computation to show that not every spectrum is complex-
orientable. The easiest counter example is the sphere spectrum S itself. Indeed, consider
the cofiber sequence

S3 η−→ CP1 ∼= S2 → CP2

and the corresponding long exact sequence

Ẽ2CP2 → Ẽ2CP1 ∼= E0 η−→ Ẽ2(S3) ∼= E1.

If E is complex-orientable, we can lift 1 ∈ Ẽ2S2 ∼= E0 to Ẽ2CP2. This is possible if and
only if η operates as 0 on 1 ∈ E0, i.e. iff the Hurewicz image of η ∈ π1S in π1E = E−1

is zero. For E = S, this is well-known to be non-zero and the same is true for E = KO.
There is a wealth of other computations that can be done purely formally for

complex-oriented cohomology theories E. Let us list some of them.

1. E∗((CP∞)×n) ∼= E∗Jx1, x2, . . . , xnK, where the generators are the pullbacks of x
along the projections prn : (CP

∞)×n → CP∞.

2. E∗BU(n) ∼= E∗Jc1, . . . cnK and E∗BU ∼= E∗Jc1, c2, . . .K. The classes ci are called
Chern classes.

3. E∗(CP∞) ∼= E∗{1, β1, . . . } (this is an additive isomorphism of E∗-modules!)

4. E∗(BU) ∼= E∗[β1, β2, . . . ]. Here, the isomorphism is multiplicative, using the H-
space structure on BU given by direct sum of vector bundles. The map E∗CP∞ →
E∗BU does the expected.

To prove all of these, there are two strategies. The first is to do more elaborate versions
of our arguments for the case CP∞. The second is to assume the result for ordinary
integral homology as known and deduce the general results by the Atiyah–Hirzebruch
spectral sequence. The second approach appears to be much faster, but if one adds the
work for deriving the formulae for ordinary homology, the work is about the same. We
will skip this.

References: Good references are [Ada74], Part II, and [KT06].

2.7 Formal group laws
So far, we have already used the H-space structure on BU coming from adding vector
bundles. But one can also tensor vector bundles and, in particular, line bundles. This
induces a multiplication map m : CP∞ × CP∞ → CP∞. Commutativity and associa-
tivity of the tensor product show that this makes CP∞ into a homotopy commutative
H-space.

This induces a map

m∗ : E∗(CP∞) ∼= E∗JxK → E∗Jx1, x2K ∼= E∗(CP∞ × CP∞).

This map is continuous for the usual topologies defined on rings of power series, i.e.
for every k, l the preimage (m∗)−1(xk

1 , x
l
2) contains (xn) for some n. This follows from



14

the fact that the image of m|CPk−1×CPl−1 lies in some CPn−1 because CPk−1 ×CPl−1 is
compact.

As furthermore, m∗ is an E∗-algebra morphism (as it is induced by a map of spaces),
it follows that m∗ is equivalent data to the power series F = m∗(x). We record how
the axioms for a homotopy commutative H-space translate into properties of F .

We know that the composition CP∞ id× pt−−−−→ CP∞ × CP∞ m−→ CP∞ is homotopic
to the identity (right unitality). As the map E∗JxK → E∗ induced by pt → CP∞ sets
x = 0, we see that this translates into F (x1, 0) = x1. Likewise, left unitality translates
into F (0, x2) = x2. These two conditions are equivalent to

F (x1, x2) = x1 + x2 + higher terms. (2.33)

The twist map CP∞ × CP∞ → CP∞ × CP∞ just permutes x1 and x2. Thus, the
homotopy commutativity of CP∞ translates into

F (x1, x2) = F (x2, x1). (2.34)

The homotopy associativity of m translates into

F (x1, F (x2, x3)) = F (F (x1, x2), x3). (2.35)

Definition 2.36. Let R be a commutative ring. A power series F ∈ RJx1, x2K satisfying
(2.33), (2.34) and (2.35) is called a formal group law over R.

If R has a grading, we say that F is a graded formal group law if the coefficient in
front of xk

1x
l
2 has degree 2k + 2l − 2. This corresponds to |x1| = −2, |x2| = −2 and

|F | = −2.

Example 2.37. If E is a complex oriented ring spectrum, we obtain a graded formal
group law over E∗ = E−∗.

end of lecture 4
Part of the strength of this observation is that formal group laws are well-studied ob-

jects in number theory and algebraic geometry (and since the 70s in algebraic topology
as well!).
Remark 2.38. We may reinterpret the formal group law as a formula for the first Chern
class of a line bundle. Let E be complex oriented and let x be the Euler class of
the tautological bundle over CP∞. Given a line bundle L on a space X, we obtain a
classifying map l : X → CP∞. We define c1(L) ∈ E2(X) as l∗x.

What is c1(L1 ⊗ L2)? We obtain it as the pullback of x along X
l1×l2−−−→ CP∞ ×

CP∞ m−→ CP∞. We obtain

c1(L1 ⊗ L2) = (l1 × l2)
∗F (x1, x2) = F (c1(L1), c1(L2)).

You might worry what this actually means as the power series F can be infinite.
This is easy to say if X has finite cup-length (for example if it is covered by finitely
many contractibles, like a finite simplicial complex). In general you can topologize the
abelian group E∗X by declaring all kernels of maps E∗X → E∗Y for Y a finite complex
with a map Y → X to be open. One can check that this is natural and in particular
maps between spaces preserve convergent power series.

Example 2.39. Take E = HZ, ordinary integral homology. What is m∗ : Z ∼=
H2(CP∞) → H2(CP∞ × CP∞) ∼= Z ⊕ Z? Actually, grading and unitality directly
imply that it has to send x to x1 + x2, i.e. F (x1, x2) = x1 + x2. This is called the
additive formal group law.
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Example 2.40. The next example is complex K-theory KU .
For a compact connected Hausdorff space X, we define KU0(X) to be the group

completion of the monoid VectC(X) of isomorphism classes of (finite-dim) complex
vector bundles on X. Here, in general for an abelian monoid M , its group completion
Gp(M) is the initial abelian group M is mapping into. This can be constructed as
equivalence classes of pairs (m1,m2) with equivalence relation generated by (m1,m2) ≃
(m1+m,m2+m). One usually writes the elements of the group completion as m1−m2.

The reduced theory is slightly easier to define. By definition K̃U
0
(X) is the quotient

of KU0(X) by KU0(pt) = Z. Actually, VectC(X) modulo the trivial vector bundles is
already a group as for every vector bundle ξ, there is a vector bundle η such that ξ⊕ η

is trivial. Thus, K̃U
0
(X) ∼= VectC(X)/N and there is no need to group complete. On

the other hand, choosing a base point x ∈ X, we can embed K̃U
0
(X) into KU0(X) via

ξ 7→ ξ − dimx ξ.
For X connected compact Hausdorff, we can identify K̃U

0
(X) with

colimn Vect
n
C(X) ∼= colimn[X,BU(n)] ∼= [X,hocolimBU(n)] ∼= [X,BU ].

As KU0(X) ∼= K̃U
0
(X) ⊕ Z, we can deduce that KU0(X) ∼= [X,BU × Z]. Indeed,

X → BU × Z factors over some BU(n) × Z, i.e. we obtain a vector bundle V and a
number k. To this we associate the K-theory class [V ] − (n − k). Thus, we obtain for
X still Hausdorff, compact and connected a map

0 // K̃U
0
(X) // KU0(X) // Z // 0

0 // [X,BU ]

OO

// [X,BU × Z]

OO

// [X,Z]

OO

// 0

of short exact sequences, where the outer two terms are isos.
In general, we define KU0(X) as [X,BU ×Z] and obtain K̃U

0
(X) = [X,BU ×Z]•,

where we assume for the latter that X is pointed and consider pointed maps.
We have Ω(BU × Z) ∼= ΩBU ≃ U . (Indeed, for any topological group G, we have

a principal G-fibration EG → BG with EG contractible. Thus, G ≃ ΩBG.) By Bott
periodicity, we also have ΩU ≃ BU × Z. Thus, we obtain an Ω-spectrum made out of
BU × Z in degrees 2n and of U in degrees 2n+ 1. We call this spectrum KU . As KU
is an Ω-spectrum, we have that πkKU is simply πkBU × Z or more generally πk+l of
its l-th space.

Clearly, π∗KU is 2-periodic. We easily compute π0KU = π0BU × Z ∼= Z and
π−1KU ∼= π0U = 0. One can check that KU is actually a ring spectrum (using the
tensor product of vector bundles) and that π∗KU ∼= Z[u±1] with |u| = 2.

Explicitly, one can show that u ∈ π2KU ∼= K̃U
−2

(S0) ∼= K̃U
0
(S2) corresponds to

the class of the tautological line bundle η1 on S2 ∼= CP1. Thus, [η1]/u corresponds to
1. The class x = [η]/u ∈ K̃U

2
(CP∞) is a lift of this class, which is the Euler class,

yielding KU∗(CP∞) ∼= KU∗JxK. Thus, the corresponding Chern class of a line bundle
in reduced K-theory is c̃1(L) = [L]/u. We obtain c̃1(L1 ⊗ L2) = [L1][L2]/u and hence
F (x1, x2) = x1 +x2 +ux1x2. This is called (a form of ) the multiplicative formal group
law.

Other examples are harder to write down, but we will see them later.
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References: Accessible references for vector bundles and KU0 are [Hat03] and
[Ati67]; see also [Swi75] and [KT06] for K-theory as cohomology theories. For for-
mal group laws see e.g. [Ada74], Part II, and [KT06] or [Haz12] for a comprehensive
treatment.

end of lecture 5

2.8 π∗MU and the universal formal group law
Given a morphism of (graded) rings f : R → S, we can pushforward a (graded) formal
group law F ∈ RJx1, x2K to S by just applying f to the coefficients of F . Given a map
E → F of ring spectra, we can also pushforward every complex orientation of E to
F and it is easy to check that the corresponding formal group law over F∗ is just the
pushforward of that from E∗. As MU carries the universal complex orientation, we see
that every formal group law associated to a complex oriented theory is actually pushed
forward from MU∗. Amazingly, we can decouple this statement from topology.

Theorem 2.41 (Quillen). The formal group law FMU over MU∗ is the universal for-
mal group law, i.e. for every (graded) commutative ring R, pushforward defines a 1-1
correspondence between (graded) morphisms MU∗ → R and (graded) formal group laws
over R.

Remark 2.42. It is easy to see that the ungraded version implies the graded version.
The universal ring for formal group laws is often called the Lazard ring L as it was first
computed by Lazard to be a polynomial ring Z[x2, x4, x6, . . . ], where |x2i| = 2i. The
existence of L is actually easy; the determination that L ∼= Z[x2, x4, x6, . . . ] is harder,
but was done before Quillen’s theorem. An important point is that the generators xi

are not canonical – while there are some explicit choices, they are rather hard to work
with.

There are two kinds of proofs of Quillen’s theorem that the morphism L → π∗MU
classifying the formal group law of MU is an isomorphism. One is working from the
knowledge of L and π∗MU (see e.g. [Lur10, Lecture 10]). Another proof of Quillen
shows that L ∼= π∗MU differently (see [Qui71]).

Definition 2.43. A (graded) ring homomorphism MX∗ → R∗ is called a genus.

Thus, Quillen says that genera for MU are “classified” by formal group laws.
Remark 2.44. Clearly, every complex orientation MU → E induces a genus MU∗ → E∗.
It is an interesting question whether we can lift a given genus to a transformation of
ring spectra! This is the topic of Landweber’s exact functor theorem, which we will
deal with later.

2.9 Rational formal group laws
We will state most things for formal group laws, but they hold mutatis mutandis also
for graded formal group laws.

Definition 2.45. Let F,G be two formal group laws over a ring R. A power series
f ∈ RJxK with no constant term is called a homomorphism from F → G if

F (f(x1), f(x2)) = f(G(x1, x2)).

An invertible homomorphism is called an isomorphism.

Note that a homomorphism f is an isomorphism if and only if the linear coefficient
is invertible.
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Lemma 2.46. Let R be a Q-algebra. Then any two formal group laws over R are
isomorphic.

Proof. Left as an exercise. See e.g. [Rav86, Appendix].

Definition 2.47. Let R be a Q-algebra and F be a formal group law over R. Then the
unique isomorphism from the additive formal group law Ĝa to F is called the logarithm
logF of F :

logF (F (x1, x2)) = logF (x1) + logF (x2).

Example 2.48. Consider the multiplicative formal group law Ĝm(x, y) = x+ y + xy.
It satistifes 1 + Ĝm(x, y) = (1 + x)(1 + y). Recall the classical logarithm series

f(x) = log(1 + x) = x− 1

2
x2 +

1

3
x3 − · · · .

We know from calculus that log((1 + x)(1 + y)) = log(1 + x) + log(1 + y). That is,
f(x) + f(y) = f(Ĝm(x, y)). Thus, f is the logarithm for Ĝm.

There is also the variant for F (x, y) = x + y + uxy, where u is invertible (as for
K-theory!). Then (1 + ux)(1 + uy) = 1 + uF (x, y). Thus, the logarithm is

f(x) = log(1 + ux) = ux− 1

2
u2x2 +

1

3
u3x2 − · · · .

This already suggests that we need denominators in R if the additive formal group
law should be isomorphic to a multiplicative one. This is indeed so. Before we prove
this, we need some notation.

Definition 2.49. Let F be a formal group law over a ring R. Define inductively [n]F (x)
by [1]F (x) = x and [n]F (x) = F ([n− 1]F (x), x). I.e. we “multiply by n”.

Examples 2.50. For F (x, y) = x+ y, we obtain [n]F (x) = nx.
For F (x, y) = x+ y + uxy, we obtain [n]F (x) =

(1+ux)n−1
u .

Lemma 2.51. Fix a ring R and an invertible element u ∈ R. The additive formal
group law Ĝa(x, y) = x+ y is only isomorphic to F (x, y) = x+ y + uxy over R if R is
a Q-algebra.

Proof. Let f be such an isomorphism Ĝa → F . Then

0 = f([n]Ĝa
(f−1(x))) = [n]F (x) =

(1 + ux)n − 1

u

over R/n. Thus un−1 = 0 in R/n for every prime number n and hence R/n = 0 as u
is invertible. Thus, the ring R must be a Q-algebra.

Lemma 2.52. Let x, x′ ∈ E2(CP∞) correspond to two different complex orientations
of a ring spectrum E. Then the resulting formal group laws F and F ′ are isomorphic.
More precisely, we can express x′ as a power series f(x) as E∗(CP∞) ∼= E∗JxK. Then

f(F (x1, x2)) = F ′(x′
1, x

′
2) = F ′(f(x1), f(x2)).

Corollary 2.53. The integral homology H∗(KU ;Z) is a rational vector space. In
particular, H∗(KU) ∼= Q[u±1] and H∗(KU ;Fp) ∼= H∗(KU/p;Z) = 0.
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Proof. By definition H∗(KU ;Z) ∼= π∗HZ∧KU . The spectrum HZ∧KU admits ring
spectra maps from HZ and KU and thus carries both the additive and a multiplicative
formal group law from the two different complex orientations. These are isomorphic by
the last lemma. By Lemma 2.51, it follows that π∗HZ∧KU is a Q-algebra.

The rational Hurewicz map

π∗KU ⊗Q → H∗(KU ;Q) ∼= H∗(KU ;Z)

is (as always) an isomorphism and π∗KU ∼= Z[u±1].
The last part follows by the Bockstein sequence

· · · → H∗(KU ;Z) p−→ H∗(KU ;Z) → H∗(KU ;Fp) → · · · .

2.10 Mischenko’s theorem
In this section, we will give a proof of Mischenko’s theorem modulo some parts from
Adams’s book [Ada74, Part II]. One reason that we give the proof here (though we did
not treat it in detail in the lecture) is that Adams’s proof of the crucial Lemma 9.1 is
rather short.

Theorem 2.54 (Mischenko). The logarithm of the formal group law on MU∗ equals
∞∑

n≥0

[CPn]

n+ 1
xn+1.

Example 2.55. Let Td: MU∗ → Z be the ring homomorphism classifying the formal
group law x+y−xy. This is called the Todd genus. Mischenko’s theorem and Example
2.48 imply that Td([CPn]) = 1.

end of lecture 6
We know that π∗MU → H∗MU = π∗HZ∧MU is a rational isomorphism. Thus, we

can identify the logarithm on the easier side of H∗MU . As H∗ is complex oriented, we
have in particular H∗MU ∼= Z[b1, b2, . . . ] with |bi| = 2i. The two complex orientations
x (coming from H) and xMU (coming from MU) can be translated into each other as
follows [Ada74, II.6.3, 6.6]:

Lemma 2.56. We have xMU =
∑

i≥0 bix
i+1.

By Lemma 2.52, we see that this power series is the exponential of FMU , i.e. the
inverse of the logarithm. A purely algebraic manipulation shows the following [Ada74,
II.7.5].

Lemma 2.57. Setting logF (x) =
∑

i≥0 mix
i+1, we have

mn =
1

n+ 1

( ∞∑
i≥0

bi)
−n−1


2n

,

where the lower n denotes the degree 2n-part.

Now recall the Pontryagin–Thom construction to see what kind of element [CPn]
defines in H∗MU . Let ν be the (complex) normal bundle of some embedding CPn →
S2n+2k. Then the element πnMU corresponding to [CPn] is defined by the composition
S2n+2k → Th(ν) → Th(ξunivk ) = MU2k. On H2n+2k this induces:

H2n+2kS
2n+2k //

((

H2n+2k(Th(ν))

∼=
��

// H2n+2k(Th(ξ
univ
k ))

∼=
��

// H2nMU

∼=
��

H2nCPn // H2nBU(k) // H2nBU
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The diagonal map sends 1 to the fundamental class. All in all, we see that the image
of [CPn] in H∗MU corresponds under the Thom isomorphism to ν∗[CPn] ∈ H∗BU ∼=
Z[β1, β2, . . . ] with βi corresponding to bi under the Thom isomorphism. We thus have
to show the following:

Proposition 2.58. We have ν∗[CPn] =
[
(
∑∞

i≥0 βi)
−n−1

]
2n

∈ H∗BU .

Milnor–Stasheff, Theorem 14.10, gives us the following:

Lemma 2.59. The total Chern class of the tangent bundle of CPn is (1 + x)n+1 in
H∗(CPn) ∼= Z[x]/xn+1. Thus, the total Chern class of the (stable) normal bundle νCPn

is (1 + x)−n−1 (seen as a power series in x).

This determines completely the map H∗BU
ν∗

−→ H∗CPn. The challenge is now to
describe the dual map H∗CPn → H∗BU in terms of the bi. Our trick is to guess the
correct map and then show that it dualizes to ν∗.

Denote the generator of H2kCPn by βk. The coproduct on H∗CPn is given by
Ψ(βk) =

∑
i+j=k βi ⊗ βj . The same formula is true for the βk (which are the images of

the βk ∈ H2kCPn under the standard map CP∞ = BU(1) → BU). A map H∗CPn →
H∗BU is compatible with coproducts iff the dual map is multiplicative.

Lemma 2.60. The map

H∗CPn Φ−→ H∗BU∑
k

βk 7→ [(
∑
k

βk)
−n−1]≤2n

is compatible with coproducts. Thus, Φ∗ is multiplicative.

Proof. This is a simple check.

Proof of proposition: To show that Φ∗ : H∗BU → H∗CPn equals ν∗, we just have to
show that for c ∈ H∗BU the total Chern class, we have Φ∗(c) = c(νCPn). Indeed,

Φ∗(c) =
∑
i

⟨Φ(βi), ci⟩xi

=
∑
i

⟨(
∑
k

βk)
−n−1, ci⟩xi

=
∑
i

⟨(1 + β1)
−n−1, ci⟩xi

= (1 + x)−n−1

= c(νCPn).

Here, we use that the only monomial in the βk that pairs non-trivially with ci is βi
1

and ⟨βi
1, ci⟩ = 1. ([Ada74, Lemma 4.3])

Thus, Φ = ν∗. As [CPn] = xn, the result follows.

Corollary 2.61. The [CPn] are generators for π∗MU ⊗Q.

Proof. By Mischenko’s theorem, it is enough to show that the mn are rational gener-
ators. By the inverse formula to Lemma 2.57, the bi are expressible in terms of the
mn. As the bi generate H∗MU , which is rationally isomorphic to π∗MU , the corollary
follows.
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2.11 Exercises
Exercise 2.62. Let M be a compact 2-dimensional complex manifold (like e.g. CP2).
Show that the value of the Todd genus on M can be computed as 1

12 ⟨c1(TM)2 +
c2(TM), [M ]⟩. Hint: You can use that this expression is invariant under bordism of
manifolds with BU -structure.
Exercise 2.63. Let x ∈ (HZ∧MU)2(CP∞) be the image of the standard generator
x ∈ H2(CP∞). Consider the map

[ΣkCP∞, HZ∧MU ] → Hom(H∗−kCP∞, H∗MU),

sending f : ΣkCP∞ → HZ∧MU to the composition H∗Σ
kCP∞ H∗f−−−→ H∗(HZ∧MU) →

H∗MU using the ring structure of HZ. Show that it sends
∑

i aix
i+1 to the map send-

ing βi to ai.
Does the argument change if I replace MU by any other spectrum E?

3 Algebraic geometry and elliptic genera

3.1 Schemes and group schemes
We start with a reminder on the functor of points approach to schemes. Denote the
category of commutative rings by Alg.

Proposition 3.1. The functor Sch → Fun(Alg,Set), sending a scheme X and a com-
mutative ring R to HomSch(SpecR,X) is fully faithful.

Proof. Every scheme can be covered by affine schemes. We directly see that the functor
is faithful. For fullness: To describe a map X → Y , it is enough to give a compatible
map from all affine open subschemes of X to Y .

By abuse of notation, we will often denote by SpecR just the functor Alg → Set
represented by R.

We can also describe the image of the embedding Sch → Fun(Alg,Set). We call a
functor Alg → Set (or also a functor Schop → Set) a Zariski sheaf if it is a Zariski
sheaf restricted to the open subsets of any given SpecR (or X). We call a subfunctor
U ⊂ X : Fun(Alg,Set) open if U×X SpecR ⊂ SpecR is representable by an open affine
subscheme of SpecR.

Proposition 3.2. A functor X : Alg → Set is a scheme iff it is a Zariski sheaf and
there is a collection of open subfunctors SpecRi ⊂ X such that

∐
i SpecRi(K) → X(K)

is surjective for every field K.

Definition 3.3. A group scheme is a group object in schemes, i.e. a lift of the functor
Schop → Set to groups. (Equivalently, just lift Alg → Set to groups. Indeed, maps into
a group object obtain a group structure.)

A group scheme over S is a lift of the functor (Sch /S)op → Set to groups.

Example 3.4. The scheme A1
R represents the underlying set functor on R-algebras.

We can lift this to abelian groups by addition. This gives the group schemes Ga,R.

Example 3.5. The scheme SpecR[t±1] represents the set of invertible elements. This
obtains a group structure by multiplication. This is called Gm,R.

References: See e.g. the last chapter of [EH00] for this “functor of points”-approach.
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3.2 Formal groups
On an affine scheme SpecA, a group scheme structure is the same as a Hopf algebra
structure on A, i.e. we need a map A → A⊗R A with certain properties. Can we use a
formal group law to define the structure of a group scheme on SpecRJxK? Tricky. We
need a map RJxK → RJx1K ⊗R RJx2K of R-algebras. Neither is such a map determined
by the image of x nor is the image isomorphic to RJx1, x2K. (We can look at the
coefficients fi of xi

1. In the tensor product RJx1K ⊗R RJx2K, these span a finitely
generated R-submodule of RJx2K. This is not true for general power series in two
variables.)

Solution: Use the topology on the power series ring. Let A be a ring with an ideal
I ⊂ A. We can equip A with the minimal topology, where all In are open and which is
closed under translation. We denote by Spf A the functor Alg → Set, sending B to the
continuous ring homomorphisms from A → B. If A is an R-algebra, Spf A can also be
seen as a functor

AlgR → Set, B 7→ Homcts(A,B),

where B carries the discrete topology.
For example, Spf RJtK sends each R-algebra to its set of nilpotent elements. This

functor is denoted by Â1
R. Its n-fold product with itself is denoted by Ân

R.
The functor Spf can indeed be extended to (Sch /R)op by precomposing with the

functor
(Sch /R)op → AlgR, X 7→ H0(X;OX).

Lemma 3.6. Formal group laws over R are in one-to-one correspondence with lifts of
Â1

R to the category of groups.

Proof. Exercise.

A homomorphism of formal group laws corresponds to a homomorphism of the
corresponding group valued functors on R-algebras. Note that this (obviously) is not
the identity on Â1

R. So we might try to define a formal group to be a functor from
AlgR to groups whose underlying functor to sets is isomorphic to Â1

R. But this is an
idea, which works as well as defining a vector bundle on M to be something that is
isomorphic to M × Rn. You only want it locally!

end of lecture 7

Definition 3.7. Let S be a scheme. An n-dimensional commutative formal group
over S is a Zariski sheaf F : SchopS → Ab such that there exists an open cover {Ui =

SpecRi ⊂ S} such that F |Ui
is equivalent to Ân

Ri
.

Let X be an S-scheme with an ideal sheaf I ⊂ OX (corresponding to a closed
subscheme). Then the formal completion X̂I is defined by

X̂I(Y ) = {f : Y → X : f∗I locally nilpotent}.

Here, a sheaf is locally nilpotent if there is an open cover and pulled back to every open
in it, the sheaf is nilpotent. This agrees with the colimit in Zariski sheaves on Sch /S
of the vanishing loci of the In. For example, we can take X = SpecR[t] and I = (t).
Then X̂(t) = Â1

R. More generally, it generalizes the Spf-construction above.
Note that if X is a separated S-scheme and e : S → X is a section of p : X → S,

then e is automatically a closed immersion and hence defines an ideal sheaf. Indeed,
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look at the pullback diagram
S //

��

X

∆

��
X

(id,e) // X ×S X.

In particular, this is true for the identity section e : S → G of a separated group
scheme G. We claim first that the group structure on G induces one on the formal
completion Ĝ. Indeed, let I be ideal sheaf corresponding to e. Let f, g : X → G be
morphisms such that f∗I and g∗I are locally nilpotent. Equivalently, the compositions
fi, gi : Xred → X → G from the underlying reduced scheme X factor over the vanishing
locus of I, namely im(e). The same is true for (fi) · (gi) = (f · g)i as e is the identity
section. Thus, the pullback of I along f · g is locally nilpotent.

One can show that Ĝ does not only have a group structure, but is actually often a
formal group:

Theorem 3.8. Let G be a commutative group scheme that is smooth of relative dimen-
sion n over S. Then Ĝ is a formal group of dimension n over S.

If S is a field, one can for example argue as follows: Every complete regular local
ring containing a field k is of the form kJx1, . . . , xnK.

We are only interested in one-dimensional formal groups. To produce interesting
formal groups, we should look for one-dimensional smooth group schemes. Over C, tori
come to mind, so we might expect in addition to Ga and Gm also genus 1 curves as
examples. Over algebraically closed fields this is all there is:

Theorem 3.9. Every one-dimensional smooth connected group scheme over an alge-
braically closed field is isomorphic to Ga or to Gm or proper of genus 1 (and this case
is called an elliptic curve).

The argument goes roughly as follows: Let k be algebraically closed and G a smooth
connected group scheme over k. Then it’s easy to see that its cotangent bundle Ω1

G/k

is trivial. If G is proper, then dimkH
0(G; Ω1

G/k) is the genus of G, which must thus be
1. The non-proper case is slightly more difficult. Embed G into a proper curve C (i.e.
G is C without finitely many points). To do this note that every smooth connected
curve over an algebraically closed field is quasi-projective (see e.g. [Oss]; a variety is
for him an irreducible, separated scheme that is Zariski locally isomorphic to an affine
variety over an algebraically closed field). The action of G on itself can be extended to
an action of G on C via automorphisms. Curves of genus ≥ 2 have only finitely many
automorphisms by Hurwitz. Hence, C has genus at most 1. The rest of the argument
can be found in [You], who assumes that G is affine, but the quasi-projective case is
similar. (See also [Con02] for another important result in the classification of group
schemes.)

Summarizing: We care about elliptic curves.

References: There are several different approaches to formal groups, which makes
the subject a bit confusing. See e.g. [Str99] or [Zin] for different approaches.

3.3 Elliptic curves over algebraically closed fields
We will begin with the theory over an algebraically closed field k. A variety will for us
be a separated integral scheme of finite type over k and a curve is a variety of dimension
1.
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Definition 3.10. An elliptic curve over k is a smooth proper curve C of genus5 1 with
a chosen point e ∈ C(k), i.e. a section of the structure morphism C → Spec k.

In the case k = C, every elliptic curve is a torus, i.e. of the form C/L for a lattice
L ⊂ C. There are different ways to show this. The first uses uniformization: The
universal cover of the elliptic curve C must be C or H or S2 by uniformization. Thus,
C = C/G or H/G or S2/G, where G is a group of automorphisms (acting properly
discontinuous), which is isomorphic to π1C ∼= Z2. The last case is clearly impossible (S2

cannot cover a genus 1-curve). If the universal cover of C is H, then C gets a hyperbolic
metric; this implies by Gauss–Bonnet that the Euler characteristic is negative. Thus,
C ∼= C/G, where G is isomorphic to Z2. You can show that only translation subgroups
can act properly discontinuously. Thus, G is a lattice inside of C.

We can also sketch a different way: Let (C, e) be elliptic curve over C. The dimension
of the vector space H0(C; Ω1) of differentials equals the genus of C, i.e. 1. For every
path γ in C and every differential ω ∈ H0(C; Ω1), we can consider the integral

∫
γ
ω.

This is homotopy invariant in γ if we leave the endpoints fixed. In particular, we obtain
a map H1(C;Z) → H0(C; Ω1)∨ by evaluating on paths. Set Jac(C) to be the quotient.
It is not too hard to see that H1(C;Z) embeds as a lattice so that Jac(C) is a complex
torus. Note also that it has a group structure.

Define a map D : C → Jac(C) as follows: Given a differential ω ∈ H0(C; Ω1) and a
point x ∈ C, we choose a path γ from e to x and integrate:

∫
γ
ω. While this depends

on the choice of γ, any two choices of γ differ by an element of H1(C;Z) so that the
image in Jac(C) is well-defined.

A holomorphic map is open if it is not constant. Clearly the map is not constant
(locally, we can work in C and just write down examples). Thus D is open. As the
image is also closed, D is surjective. The Abel–Jacobi theorem says that it is also
injective and hence an isomorphism.

In the following, we will need some facts about divisors and their correspondence
to line bundles. See e.g. [Har77, Sections II.6 and IV.1] or [Ful69, Chapter 8] for a
more elementary account. We will use the notation O(D) to denote the line bundle
associated with a divisor D. We will use the notation K to denote a divisor such that
O(K) ∼= Ω1

C/k on a curve C. This has degree 2g − 2, where g is the genus of C. We
denote by l(D) the dimension of the global sections H0(C;O(D)).

end of lecture 8

Theorem 3.11. An elliptic curve has the (unique) structure of a group scheme over k
with e as unity.

Proof. We will just give an indication. We denote by Jac(C)(k) the set of all formal
linear combinations

∑
i aiPi of k-points of C (i.e. divisors) such that

∑
i ai = 0 (degree

0) modulo the subgroup of principal divisors: Given a meromorphic function f on C,
we give Pi the valuation ai if f has a pole of order ai at Pi or a zero of order −ai; the
formal combination

∑
i aiPi is called a principal divisor. As the principal divisors form

a subgroup of all divisors (just take f · g), we see that Jac(C)(k) has an abelian group
structure.

We have a map C(k) → Jac(C)(k), sending P to [P − e]. We will show using
Riemann–Roch that this is a bijection. Let D be a divisor of degree 0. Then Riemann–
Roch implies that

l(D + e)− l(K −D − e) = deg(D + e) + (1− g(C)) = 1.

5This is defined as dimk H
0(C; Ω1

C/k) = dimk H
1(C;OC).
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As K has degree 0, we see that K−D−e has degree −1. Thus l(K−D−e) = 0. (Indeed,
if there is a section of O(D) (without poles), then there is a divisor D′ equivalent to
D with all coefficients ≥ 0, i.e. an effective divisor.) We see that l(D + e) = 1. This
means there is an effective divisor of degree 1 equivalent to D+e, which must be of the
form P ; thus D is equivalent to P − e. If Q is another point whose divisor class equals
that of D + e, we see that there is a section of O(D + e) whose only zero is at Q. As
the space of sections of O(D + e) is 1-dimensional, we see that P = Q.

One way to actually prove that C is a group scheme is to strengthen this theorem
to see that C represents the functor T 7→ Pic0(C/T ) from k-schemes (of finite type) to
abelian groups. Here, Pic0(C/T ) is the group of line bundles on C ×k T that restrict
to a degree 0-line bundle on each fiber of pr2 : C ×k T → T modulo those of the form
pr∗2 L for L a line bundle on T . (For details, see [Har77, Section IV.4].)

Theorem 3.12. Every elliptic curve (C, e) can be embedded into P2
k and is cut out by

an equation of the form

Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3. (3.13)

The point [0 : 1 : 0] is the chosen point. Conversely, such an equation defines an elliptic
curve iff a certain polynomial ∆ in the ai does not vanish.

Proof. Consider the divisor n · e. By Riemann–Roch, we have l(n · e) = n for n ≥ 1.
We have obvious inclusions O(n · e) ⊂ O((n + 1) · e). We have H0(C;OC) = k ·
1. As H0(C;O(2e)) is 2-dimensional, we have one basis vector 1 and call another
x. In H0(C;O(3e)), we have one more basis vector and call it y. We can consider
1, x, x2, x3, xy, y, y2 in O(6e). As this is only 6-dimensional, there must be a relation

a0y
2 + a1xy + a3y = a′0x

3 + a2x
2 + a4x+ a6. (3.14)

If not both a0 and a′0 are nonzero, the pole orders on the two sides do not agree. We
can replace x by a0a

′
0x and y by a0(a

′
0)

2y and divide everything by a30(a
′
0)

4 and can
thus set a0 = a′0 = 1.

We get a map Φ: C → P2
k that we can informally describe by Φ(p) = [x(p), y(p), 1].

This makes sense unless e = p; in this case y has the highest pole order, so we set this to
be [0 : 1 : 0]. General theory says that this is a morphism of schemes and the image is
exactly given by the projective variety E cut out by (3.13), which is the homogenization
of (3.14).

We sketch now, why Φ: C → E is an isomorphism. The degree of a map C1 → C2

can be computed as the number of preimages of a point in the target weighted by the
order; this is multiplicative. The map C → E → P1 sending p to [x(p), 1] is of degree 2
because ∞ has e as preimage with order 2. Thus, E → C has degree dividing 2. The
map C → E → P1 sending p to [y(p), 1] is of degree 3 because ∞ has e as preimage
with order 3. Thus, C → E has degree 1. Next, we show that E is smooth. An explicit
argument with the equation defining E shows that if it is singular, there is a rational
map E → P1 of degree 1. Thus, the composite C → E → P1 would be a rational map
between smooth curves; such a map can be extended to a morphism, which is of degree
1 and hence an isomorphism, which is absurd. Thus, E is smooth and thus Φ is an
isomorphism. [For details see [Sil09, Proposition 3.1]

Remark 3.15. In class, we presented a different argument why Φ is an isomorphism.
Essentially, we had to show that Φ is a closed immersion; in this case one says that
3e is a very ample divisor. Hartshorne [Har77, Prop 3.1] gives a criterion when a
divisor is very ample. In our case, we could just use the Riemann–Roch formula that
l(D) = dim|D| = degD if degD > 0. This is actually done in Example IV.3.3.3 in
[Har77].
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Remark 3.16. We will later see that one can simplify this equation tremendously if
char(k) is neither 2 or 3, namely to y2 = x3 + a4x + a6. The discriminant ∆ is a
constant multiple of ∆ = 27a26+4a34. If char(k) is indeed neither 2 or 3, the factor does
not matter, of course. Let us actually prove in this case that the nonvanishing of ∆ is
equivalent to smoothness: Let f(x, y) = x3 + a4x+ a6 − y2 and C be the curve defined
as its zero set. Then a point (x0, y0) on C is singular iff ∂f

∂x (x0, y0) = 3x2
0 + a4 = 0 and

∂f
∂y (x0, y0) = 2y0 = 0. Assume that this is the case. Then y0 = 0 and x3

0 +
1
3a4x0 = 0.

Substract the latter from f(x0, 0) and get 2
3a4x0 + a6 = 0, i.e. x0 = − 3a6

2a4
. Plugging

this into the equation for ∂f
∂x , wee see that a4 = − 27a2

6

4a2
4

or, equivalently, 27a26 +4a34 = 0.
This only checked smoothness on the affine part. We still have to check smoothness at
[0 : 1 : 0], i.e. smoothness of x3 + a4xz

2 + a6z
3 − z at (0, 0). This is clear. (See [Sil09,

III.1] for an extensive treatment of these equations.)
We can see what happens with the group law under this embedding. Consider a line

H ⊂ P2
k defined by an equation s = ax+ by + cz = 0. Suppose that H intersects Φ(C)

in three points P,Q and R; if counted with multiplicities, Bezout’s theorem actually
implies that it will always intersect C in three points. We can view s as a section of
O(1) on P2

k; thus Φ∗s is a global section of Φ∗O(1) = O(3e), namely ax+ by+ c (where
x, y, 1 ∈ H0(C;O(3e))) as in the previous proof. The zero locus of Φ∗s consists exactly
of P,Q and R. Thus, P +Q+R−3e is zero in the class group. Thus, P +Q+R = 0 in
the group law. Upshot: To compute P +Q, draw a line connecting P and Q (tangent
if P = Q); denote the third intersection with C by −R. Then draw a line connecting e
and −R; the third point of intersection is R = P +Q.

One can use this description to show that the addition morphism of the group struc-
ture on points described above is actually given a morphism of schemes. (Morphisms
of varieties are determined by what they do on points [GW10, Section 3.13].)

3.4 Elliptic curves over general base schemes
Definition 3.17. Let S be a scheme. An elliptic curve E over S is a smooth proper
morphism p : E → S with a section e : S → E such that for every morphism x : Spec k →
S (with k algebraically closed), x∗E is an elliptic curve over k.

Theorem 3.18. Every elliptic curve over S has the unique structure of a group scheme
over S with unity e.

We will not prove this statement. The basic idea is the same as for the algebraically
closed case, but the details are quite a bit harder (and actually the general proof reduces
at a crucial point to the case of a field). See [KM85, Theorem 2.1.2].

end of lecture 9

Theorem 3.19. For every elliptic curve E, we can find a Zariski covering S =
⋃

i Ui

with Ui = SpecRi so that E ×S Ui has a Weierstrass form, i.e. can be embedded into
P2
Ri

and is cut out by an equation

Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3

with ∆ invertible.

For proofs see [Ols16, Section 13.1.6] or [KM85, Section 2.2]; a more detailed account
appears in [MO17]. Note here the following lemma:

Lemma 3.20. An element x of a ring R is invertible iff f(x) ̸= 0 for every map
f : R → k to a field k.
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Proof. The only if is clear. If x is not invertible, choose a maximal ideal m ⊂ R not
containing x. Then x is zero in the field R/m.

Remark 3.21. Under certain assumptions, the general Weierstrass equation of an elliptic
curve C can be simplified. We will choose some ad hoc conventions. These will be
different from e.g. [Sil09].

Assume first that 1
2 ∈ R. Then set y′ = y− 1

2a1x−
1
2a3. The coefficient in front of xy

and y become zero and thus Weierstrass equation gets the form y2 = x3+b2x
2+b4x+b6.

Assume further that 1
3 ∈ R. Set x′ = x − 1

3b2. Then the x2-term vanishes and we
get an equation of the form y2 = x3 + c4x+ c6.

Going back to the case where only 1
2 ∈ R and we have simplified the Weierstrass

equation to 0 = f(x, y) = x3+ b2x
2+ b4x+ b6−y2. Points of the form (t, 0) are exactly

those of exact order 2. Indeed: Exact order 2 means that the tangent line at that point
goes through [0 : 1 : 0] that is: of the form ax + d = 0. This happens iff ∂f

∂y = −2y
is zero at that point, i.e. iff y = 0. Suppose that there is is a point on C of the form
(t, 0) with t ∈ R. By the coordinate change x′ = x− t, we can move this point to (0, 0).
That (0, 0) is on C means exactly that b6 = 0. Upshot: If we have a point of exact
order 2 on our elliptic curve (with 1

2 ∈ R, we can simplify the Weierstrass equation to
y2 = x3 + b2x

2 + b4x.
This already shows that the Weierstrass form is not unique. But we understand

isomorphisms between them. Let C be an elliptic curve over SpecR with a Weierstrass
form given by chosen coordinates (x, y). Then H0(C;O(2e)) ∼= R · 1 ⊕ R · x and
H0(C;O(3e)) ∼= R · 1 ⊕ R · x ⊕ R · y. Other Weierstrass coordinates (x′, y′) must be
of the form x′ = vx + r and y′ = wy + sx + t with v, w ∈ R×. If we plug this into
(y′)2 + · · · = (x′)3 + · · · , we get w2y2 + · · · = v3x3 + · · · . This must be a invertible
multiple of y2 + · · · = x3 + · · · and thus w2 = v3. Putting u = w/v, we see that
u3 = w2 and u2 = v3. Thus, the general form of coordinate change is x′ = u2x+ r and
y′ = u3 + sx+ t. (Note that e.g. [Sil09, III.1] has a slightly different convention.)

We don’t want to compute what a general coordinate change does to the ai (though
Silverman does). We just want to see what coordinate changes preserve the simpler
Weierstrass forms we have.

Example 3.22. Let y2 = x3 + b2x
2 + b4x+ b6. Then a coordinate change can only fix

the form of the equation (i.e. a1 = a3 = 0) if y′ = u3y and x′ = u2x+ r.
Even simpler: Let y2 = x3 + c4x+ c6 be a Weierstrass form. Set x′ = u2x+ r and

y′ = u3y + sx+ t. It is easy to see that this is of the form (y′)2 = (x′)3 + c′4x
′ + c′6 iff

r = s = t = 0 and c′4 = u4c4 and c′6 = u6c6.

Is there any way, we can actually nail down c4 and c6 precisely? This we will see in
the next section.

3.5 Invariant differentials
Proposition 3.23. Let p : G → S be a group scheme with multiplication m : G×SG →
G and unit section e : S → G. Set ωG/S = e∗Ω1

G/S. Then there is a natural isomorphism
Ω1

G/S
∼= p∗ωG/S.

Proof. View G×SG as a G-scheme via pr2. Consider now the automorphism (m, pr2) : G×S

G → G ×S G. As this is an automorphism over G, we obtain (m, pr2)
∗Ω1

G×SG/G
∼=

Ω1
G×SG/G. Combined with Ω1

G×SG/G
∼= pr∗1 Ω

1
G/S , we obtain m∗Ω1

G/S
∼= pr∗1 Ω

1
G/S .

Pulling this back along (ep, id) : G → G ×S G, this gives Ω1
G/S

∼= (ep)∗Ω1
G/S =

p∗ωG/S .
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Let C = G be an elliptic curve. Then C is smooth of relative dimension 1 over S
so that Ω1

C/S is a line bundle and thus also ωC/S . Zariski locally on S, this is trivial
and hence also Ω1

C/S . A non-vanishing section (and hence a trivialization) of Ω1
C/S

is called an invariant differential. Actually, every elliptic curve in Weierstrass form
has an invariant differential. The explicit formula is η = dx

2y+a1x+a3
. (Idea: write the

elliptic curve as the zero locus of f(x, y). Then (∂f∂y )
−1dx = −(∂f∂x )

−1dy. Thus, if the
differential (∂f∂y )

−1dx has a pole somewhere, then ∂f
∂y = ∂f

∂x = 0 at that point; this
point would be thus singular, which cannot happen. Thus, η is a section of Ω1

C/S . If η
has a zero somewhere, then it has a zero over a point of S; thus, we can show over an
algebraically closed field that η is nowhere vanishing. In this case Ω1

C/S is isomorphic to
the structure sheaf; thus every section that vanishes somewhere, vanishes everywhere.
But η is clearly not identically zero for any choice of a1 and a3.)
Remark 3.24. By adjunction, the proposition gives a map ωC/S → p∗Ω

1
C/S . If S =

Spec k for k a field, this is an isomorphism. Indeed: Both sides have one-dimensional
global sections (as the genus of C is one) and the map cannot be zero as else the
adjoint would not be an isomorphism. By a technique called cohomology and base
change (combined with Grothendieck duality) one can deduce that it is actually always
true that ωC/S → p∗Ω

1
C/S is an isomorphism. Thus, an invariant differential can be

equivalently seen as a trivialization of ωC/S .

Now assume that C is given as y2 = x3+b2x
2+b4x+b6 so that η = dx

2y . If we do the
coordinate change (x′, y′) = (u2x, u3y), the new differential dx′

2y′ is u−1η. Thus, c4 and
c6 (in the case 1

6 ∈ R) are uniquely determined, once we fix an invariant differential!
end of lecture 10

This implies the following proposition:

Proposition 3.25. The scheme SpecZ[ 16 ][c4, c6][∆
−1] represents the moduli problem

that associates to each scheme S over Z[ 16 ] the set of isomorphism classes of elliptic
curves with a chosen invariant differential.

The scheme SpecZ[ 12 ][b2, b4][∆
−1] represents the moduli problem that associates to

each scheme S over Z[ 12 ] the set of isomorphism classes of elliptic curves with a chosen
invariant differential and a chosen point of exact order 2.

Proof. We only prove the first thing. We first claim that every elliptic curve over a
scheme S over Z[ 16 ] with an invariant differential has a Weierstrass form. Indeed, it
has one Zariski locally on S, namely one of the form y2 = x3 + c4x+ c6 and c4, c6 are
canonically determined (by using the chosen invariant differential); thus, they glue to
functions c4, c6 ∈ H0(S;OS). Likewise, the functions x, y are canonically determined
and they glue to a map C → P2

S that is locally a closed immersion with image cut out
by y2 = x3 + c4x+ c6 and thus also globally.

Thus, every elliptic curve over S with a chosen invariant differential is isomorphic
to a unique elliptic curve of the form y2 = x3 + c4x+ c6 with invariant differential dx

2y

such that ∆(c4, c6) is invertible.

This gives two elliptic curves over a localization of a polynomial ring in two variables.
Both of these seem to have a natural grading (|bi| = i and |ci| = i). How does this
correspond to the functors they represent?

Proposition 3.26. Let R be a ring. There is a natural one-to-one correspondence
between Gm-actions on the functor SpecR represented by R on Alg and Z-gradings of
R (with

⊕
i∈Z Ri

∼= R).
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Proof. We will only sketch the argument. Denote the functor represented by R on Alg
by SpecR. A Gm-action on SpecR is a map

Spec(R⊗ Z[t±1]) ∼= Gm × SpecR → SpecR

satisfying the group action axioms. By Yoneda it corresponds to a map

Φ: R → R⊗ Z[t±1].

Denote the ti-component of Φ by Φi. The group action property corresponds to r =∑
i∈Z Φi(r) and Φj(Φi(r)) = δijΦi(r). If we set Ri = Φi(R), we see that Φ defines an

isomorphism R →
⊕

i∈Z Ri with the summing map as inverse.

The two functors in Proposition 3.25 have obvious Gm-actions: We can just multiply
the chosen invariant differentials with a unit. I leave it as an exercise to check that the
gradings match.
Remark 3.27. One can generalize the last proposition to gradings by an arbitrary
abelian monoid M if one replaces Gm by SpecZ[M ] (monoid ring). For example,
N≥0-gradings.

3.6 The formal group
Every elliptic curve is smooth, so its completion is a formal group. Actually, a Weier-
strass equation gives an explicit identification of the formal completion with Â1

R. For
simplicity, we will only explain this in the case when the Weierstrass form is Y 2Z =
X3 + c4XZ2 + c6Z

3, defining an elliptic curve C over a ring R. We want to have coor-
dinates at the origin [0 : 1 : 0]. Thus, we see y = 1 and obtain z = x3 + c4xz

2 + c6z
3.

Thus, we can express z in terms of x and higher powers in z. Iterating, we obtain:

z = x3 + c4xz
2 + c6z

3

= x3 + c4x(x
3 + c4xz

2 + c6z
3)2 + c6(x

3 + c4xz
2 + c6z

3)3 = x3 + c4x
7 + c6x

9 + · · · =: f(x)

There is a resulting morphism Â1
R → C; on every R-algebra T , this sends a nilpotent

element x to [x : 1 : f(x)]. One sees that this induces an isomorphism Â1
R → Ĉ:

Indeed, on every R-algebra T , where x and z are nilpotent elements satisfying z =
x3 + c4xz

2 + c6z
3, we have z = f(x) (with no additional constraints on x).

Via this isomorphism, the group structure on Ĉ induces a group structure on Â1
R,

which is the same as a formal group law over R. Thus, every elliptic curve over a ring
R in Weierstrass form produces a formal group law over R (which depends not only on
the elliptic curve, but also on the chosen Weierstrass equation).

For the general case of a Weierstrass equation and also a procedure that computes
the formal group law explicitly, see [Sil09, Section IV.1]. We record a general fact:

Proposition 3.28. Let C be an elliptic curve over a ring R in Weierstrass form.
Assume that R is graded and |ai| = 2i. Then the formal group law corresponding to the
coordinates chosen above is graded.

Proof. The idea is that choice |x| = −2 and |z| = −6 gives a consistent choice of grading
everywhere.

Remark 3.29. You will have noticed a confusing issue. Before, we said that the natural
algebraic grading of, say, ci is i. Now we need it to be 2i to be compatible with our
topological conventions. There’s nothing that forbids us to double all the degrees of
our generators, but we have to be careful about which convention we need at which
place.
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3.7 Weierstrass Elliptic genera
Definition 3.30. Let C be an elliptic curve over a ring R in Weierstrass form. Let
R = R∗ be graded such that |ai| = 2i and let F be its associated graded formal group
law as above. This defines a genus MU∗ → R∗.

We call such a genus a complex Weierstrass elliptic genus.

To really do something with it, we have to compute its logarithm, which gives
the values on CPn by Mischenko’s theorem. We will do this later using complex-
analytic methods. One thing we want to do already now though is to define versions of
Weierstrass elliptic genera that go from oriented bordism, which is geometrically maybe
more important. Recall to that purpose the following theorem:

Theorem 3.31. The ring MU∗ ⊗ Q is a polynomial ring generated by the [CPi] and
the ring MSO∗ ⊗Q is a polynomial ring generated by the [CP2i].

If we denote the forgetful morphism MU∗ → MSO∗ by u, it follows that uQ : MU∗⊗
Q → MSO∗⊗Q is onto with kernel generated by the CP2i+1. There is also the following
refinement of this observation.

Theorem 3.32. The morphism u : MU∗ → MSO∗/tors is onto.

Proof. See [Sto68, p. 180].

Proposition 3.33. Let R∗ be a torsionfree graded ring and ϕ : MU∗ → R∗ be a ring
morphism. Then ϕ factors over u : MU∗ → MSO∗ if and only if ϕ([CP2i+1]) = 0. This
happens if and only if the logarithm of the formal group law classified by ϕ is of the
form

∑
λ2i+1x

2i+1.

Proof. As R is torsionfree, ϕ factors over u if and only if it factors over u. The kernel of
u : MU∗ → MSO∗/tors equals the intersection of ker(uQ) with MU∗ as MSO∗/tors →
MSO∗ ⊗ Q is injective. Thus, ker(u) ⊂ ker(ϕ) if and only if ker(uQ) ⊂ ker(ϕQ). The
latter happens iff ϕ([CP2i+1]) = 0.

The last observation follows directly from Mischenko’s theorem 2.54. Indeed, if we
write the logarithm of the formal group law classified by ϕ as logF =

∑
λix

i, we have
λn+1 = ϕ([CPn])

n+1 ; thus λ2i = 0 iff ϕ([CP2i−1]) = 0.

In particular, this applies if R∗ is concentrated in degrees divisible by 4. If we equip
Z[ 12 ][b2, b4,∆

−1] with the gradings |bi| = 2i, we obtain thus a Weierstrass elliptic genus
MSO∗ → Z[ 12 ][b2, b4,∆

−1]. The same works with Z[ 16 ][c4, c6,∆
−1].

3.8 The Jacobi quartic
So far, we have considered elliptic curves defined by cubic equations. For applications
of elliptic genera it is more convenient to define elliptic curves via quartic equations
instead.

Let’s consider the affine curve C defined by

y2 = 1− 2ux2 + vx4

over some Z[ 12 ]-algebra R. This is nonsingular iff u2 − v is invertible. We assume this
and further that v is invertible (so that we really have a quartic curve).

By homogenization, we obtain a curve in P2
R defined via the equation:

Y 2Z2 = Z4 − 2uX2Z2 + vX4.
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If this were a smooth curve (over a field), it would have genus 3 (by the general genus
formula g = (d−1)(d−2)

2 ), but we will see that it is singular. There is only one solution
with Z = 0, namely [0 : 1 : 0]. We claim that this is singular. Dehomogenizing with
Y = 1, indeed gives z2 = z4 − 2ux2z2 + vx4 and (0, 0) is obviously singular. (Actually,
this singularity is quite bad: it is not ordinary. Else, the genus-degree formula for
ordinary singularities would give the wrong answer!)

We would like to produce a proper smooth curve that is birational to this curve.
Consider to that purpose an affine curve C ′ defined by the equation

y2 = x4 − 2ux2 + v.

Under our assumptions on u and v this is also smooth. Consider the part C◦ of C with
x ̸= 0 (i.e. if R is an integral domain, we are taking out two copies of SpecR, namely
(0,±1)). This maps via the transformation

(x, y) 7→
(
1

x
,
y

x2

)
isomorphically onto the open part of C ′ also defined by x ̸= 0. We define C = C

∐
C◦ C ′,

where we embed C◦ into C ′ using the transformation above. As the gluing of two smooth
R-curves, this is clearly a smooth R-curve again. The curve C has a section as C has
one, namely e = (0, 1).

end of lecture 11
We have morphisms

C → P1
R, (x, y) 7→ [x : 1]

C ′ → P1
R, (x, y) 7→ [1 : x]

that glue to a morphism Φ: C → P1
R. The morphism Φ is finite as it is finite when

restricted to the preimage of the two standard A1
R. [Indeed: Let’s do it for the preimage

of the first A1
R, which is C. Then we have to check that R[x, y]/(y2 − 1 + 2ux2 − vx4)

is a finite R[x]-module. It is clearly generated by 1 and y.] Thus, C is a proper over R.
To show that C is an elliptic curve, it remains to compute the genus if R = k is

an algebraically closed field. The map Φ has degree 2 (as generically for every x, there
are two possibilities for y). Moreover, there are four points where the map ramifies,
namely the points in C and C ′ with y = 0 (the quartic polynomial has 4 zeros because
u2 ̸= v and x = 0 is no zero). By the Riemann-Hurwitz formula, we obtain that the
Euler characteristic of C is 2(−2) + 4, where −2 is the Euler characteristic of P1

k and 4
is total ramification number (all 4 points are just ordinary double points as the degree
of the map is 2). Thus, C is a genus 1 curve.

Thus, we have shown that C is an elliptic curve over SpecR, called a Jacobi quartic.
The universal case is R = Z[ 12 ][u, v][(u

2 − v)−1v−1].
Remark 3.34. It is indeed true that the universal Jacobi quartic is isomorphic to the
universal elliptic curve with Γ1(2)-structure and an invariant differential. We give a
sketch. To produce a map, we have to give a 2-torsion point and a nowhere vanishing
differential on the universal Jacobi quartic C.

We claim that the point P = (0,−1) is a 2-torsion point. It is enough to check this
in the algebraically closed case (e.g. by reducing the universal case R = Z[ 12 ][u, v][(u

2−
v)−1v−1] to the algebraic closure of its quotient field). Then the 2-torsion property is
equivalent to (P − e) + (P − e) is equivalent to (e − e) = 0 as divisors, i.e. that there
is a meromorphic function on C with double zero at P and double pole at e. We claim
that the meromorphic function f = 1

y−1+
√
vx

+ 1
2 on C does the job.
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By the same argument as for Weierstrass curves dx
2y is a nowhere vanishing differential

on C. On C ′, the differential takes the form −dx
2y and is thus also nowhere vanishing.

All in all, we obtain a map Z[ 12 ][b2, b4][∆
−1] → Z[ 12 ][u, v][(u

2 − v)−1v−1]. One can
compute that the quantity ∆ equals b24(b

2
2 − 4b4) up to unit multiple. Thus, the two

rings are isomorphic (i.e. with b2 7→ u and b4 7→ 1
2v); it is only to check whether the

map we have is an isomorphism. Computing where the generators go can be done over
an algebraically closed field, e.g. C (as Z[ 12 ][u, v][(u

2 − v)−1v−1] embeds into C). We
will come back to this point later (perhaps).

3.9 The Ochanine elliptic genus
Consider a Jacobi quartic C : y2 = 1 − 2ux2 + vx4 over a Z[ 12 ]-algebra R (or rather
its compactification C). We formally complete this elliptic curve at its neutral element
(0, 1) to obtain a formal group.

We can express y as a power series in x:

y =
√
1− 2ux2 + vx4 = 1−

∞∑
n=1

(
2n

n

)
(2ux2 − vx4)n

(2n− 1)4n
=: f(x)

Note that the only denominators are powers of 2. As before, there is a resulting mor-
phism Â1

R → C; on every R-algebra T , this sends a nilpotent element x to [x : 1 : f(x)].
One sees that this induces an isomorphism Â1

R → Ĉ. This defines a formal group law
F over R. This formal group law is graded if |u| = 4 and |v| = 8.

The universal case is R = Z[ 12 ][u, v][(u
2 − v)−1v−1] with |u| = 4 and |v| = 8. As

the grading is divisible by 4, we see that the associated genus MU∗ → R factors over
MSO∗.

Definition 3.35. The genus MSO∗ → Z[ 12 ][u, v][(u
2 − v)−1v−1] just defined is called

the Ochanine genus.

This is the most important elliptic genus. When we compute its logarithm (us-
ing analytic methods), we will actually see that it takes values in Z[ 12 ][u, v]. Genera
MSO∗ → R that factor over the Ochanine genus are often just called elliptic genera.

As a teaser, we already mention a remarkable theorem of Euler:

Theorem 3.36 (Euler, 1761). Let R(x) = 1− 2ux2 + vx4. Then

F (x, y) =
x
√

R(y) + y
√
R(x)

1− vx2y2
.

This is one of the few formal group laws with nice closed form. But why was Euler
interested in formal groups, almost 200 years before their definition by Bochner in 1945?
The answer is: elliptic integrals.

3.10 Elliptic integrals and logarithms
The goal of this section is to compute the logarithms of the formal group laws attached
to elliptic curves we have defined and, at the same time, to give a short overview of
elliptic functions and elliptic integrals.

Recall that the logarithm is an isomorphism between the given formal group law
and the additive formal group law (over a Q-algebra). The ideal situation is when your
formal group law comes from a group scheme G and you give an isomorphism of G to
some other group scheme that defines manifestly the additive formal group law. This
works very well for elliptic curves over the complex numbers.
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We already sketched in Section 3.3 a proof that every elliptic curve (C, e) over the
complex numbers is isomorphic to C/L for a lattice L in C. This went as follows:
Choose an invariant differential η on C. Then we obtain a map

Φ: C → C/L, P 7→
∫ P

e

η.

We have to understand this isomorphism explicitly near e. More precisely: Choose a
(formal) coordinate x on C near e. Then the logarithm of the formal group law of C
with respect to x is the (Taylor) power series that expresses Φ near e in terms of x.

Example 3.37. Let C be given by Y 2Z = X3+ c4XZ2+ c6Z
3 in P2

C (with c4, c6 ∈ C).
As we are interested in a neighborhood around e = [0 : 1 : 0] set y = 1 and we obtain
z = x3 + c4xz

2 + c6z
3. This has an invariant differential η = dx

1−2c4z2−3c6z2 . Then the
logarithm of the formal group law of C (with respect to x) is

∫ t

0
dx

1−2c4z(x)2−3c6z(x)2
,

where z(x) is the power series describing z in terms of x that we computed in Section
3.6. Sadly, this is not very explicit.

Example 3.38. The situation is a bit better for the Jacobi quartic. Let C be a Jacobi
quartic with affine part y2 = 1− 2ux2 + vx4 and neutral element e = (0, 1). Consider
the invariant differential η = dx

y . Away from the zeros of y (e.g. near e), we can write
y =

√
R(x) with R(x) = 1 − 2ux2 + vx4 as we did before. Thus, we obtain that the

logarithm of the formal group F of C is
∫ t

0
dx√
R(x)

.

We obtain F (x, y) = expF (
∫ x

0
dt√
R(t)

+
∫ y

0
dt√
R(t)

). We cannot quite recover Euler’s

theorem from last section before we know more explicitly what expF does.

Remark 3.39. Recall from calculus that one can calculate integrals of rational functions
of x (using arctan and stuff like this) and also integrals of the form

∫
dx√
1−x2

by substi-
tuting x = sin(t). In contrast, integrals involving squareroots of polynomials of degree
bigger than 2 cannot be integrated using only elementary function (including sin, arctan
etc.). Integrals over rational functions of x and

√
R(x) with R(x) a polynomial of de-

gree 3 or 4 are called elliptic integrals. An example is T (k) =
∫ 1

0
1−k2x2√

(1−x2)(1−k2x2)
dx. It

turns out that the arc length of an ellipse x2/a+y2/b = 1 is given by 4aT (
√

1− (b/a)2).
Thus, the name.

Another popular example is the integral
∫

dx√
1−x4

calculating the arc length of the so-
called lemniscate. This was studied by Fagnano. Euler studied more generally integrals
of the form

∫
dx√
R(x)

with R(x) = 1−2ux2+vx4, thus exactly the form we are interested

in!
Let ϕ be the Ochanine genus and F be the associated formal group law. Recall that

Mischenko’s theorem states that log′F (x) =
∑

n[CP
n]xn and we just computed that

log′F (x) =
1√

1−2ux2+vx4
. This is quite explicit, we can just Taylor expand (1 − t)−1/2

and plug t = 2ux2 − vx4 in; we could also use Mathematica to do this for us. Anyhow,
the first few values are:

ϕ(CP2) = u

ϕ(CP4) =
1

2
(3u2 − v)

ϕ(CP6) =
1

2
(5u3 − 3uv)

ϕ(CP8) =
1

8
(35u4 − 30u2v + 3v2).
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Note two things: First, ϕ(CP2i+1) vanishes for grading reasons as we have already
seen above. Second, ϕ(CP2i) is always in Z[ 12 ][u, v] (as we see from the Taylor expansion)
and thus the Ochanine genus actually takes values in Z[ 12 ][u, v].

Example 3.40. If we set u = v = 1, we obtain the signature as then log′F = 1
1−x2 and

thus ϕ(CP2i) = 1 (this determines the genus uniquely).

Example 3.41. If we set v = 0 and u = − 1
8 , we obtain the Â-genus, which is geo-

metrically extremely important. For example, it vanishes on a spin manifold if it has a
non-trivial S1-action or a metric of positive scalar curvature.

3.11 Elliptic functions and exponentials
To compute the exponential of Weierstrass and Jacobi formal group laws, we have to
give an isomorphism from C/L to Weierstrass or Jacobi curve. This is done using the
theory of elliptic functions, i.e. meromorphic functions on elliptic curves. So fix a lattice
L in C.

Given a meromorphic function f on C, the section df of the sheaf Ω1 on C is f ′dz
with f ′ the classical meaning. The differential dz descends to a nowhere vanishing
differential dz on C/L. A meromorphic function f on C/L corresponds to a doubly-
periodic function f̃ . The differential df equals f ′dz, where f ′ corresponds to f̃ ′.

Proposition 3.42. There is a meromorphic function ℘ on C/L satisfying

(℘′)2 = ℘3 + c4℘+ c6

for c4, c6 ∈ C depending on L. If C is the curve in P2
C cut out by the equation y2 =

x3 + c4x+ c6, we obtain an isomorphism C/L → C given by

z 7→ [℘(z), ℘′(z), 1] = [
℘(z)

℘′(z)
: 1 :

1

℘′(z)
].

Proof. We follow the program laid out in Section 3.3 to find coordinates for elliptic
curves. Choose Weierstrass coordinates x, y for C/L satisfying a Weierstrass equation

y2 + a1xy + a3 = x3 + a2x
2 + a4x+ a6.

Consider the meromorphic section dx of Ω1
(C/L)/C. The differential dz equals udx

y+ 1
2a1x+

1
2a3

for some u ∈ C× as the space of invariant differentials is 1-dimensional. Thus, dx =
u−1(y+ 1

2a1x+
1
2a3)dz, i.e. x′ = u−1(y+ 1

2a1x+
1
2a3). By a coordinate change, we can

assume that u = 1. Then

(x′)2 = y2 + a1x+ a3y + polynomial in x = x3 + b2x
2 + b4x+ b6.

Setting ℘ = x+ t for suitable t, produces then an equation of the form

(℘′)2 = ℘3 + c4℘+ c6.

The rest is as in Section 3.3.

Remark 3.43. The function ℘ is called Weierstrass’ p-function and can be explicitly
described by

℘(z) = 4 ·

 1

z2
+

∑
λ∈L\{0}

(
1

(z − λ)2
− 1

λ2

) .
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This implies that the logarithm of the Weierstrass curve associated with C/L can
be computed as the Taylor expansion of ℘(z)

℘′(z) at z = 0.

Remark 3.44. We should really write c4 and c6 as c4(L) and c6(L). Thus, c4 is a
function from the set of all lattices in C to C. It turns out that c4(uL) = u−4c4(L).
Furthermore, it has a holomorphicity property: Restricting to lattices generated by 1
and τ ∈ H (where H is the upper half plane), we obtain a function c4 : H → C. This
turns out to be holomorphic and bounded towards ∞ = ∞ · i. These are exactly the
defining properties of modular forms.

More precisely, a modular form of weight k is a function f from the set of all lattices
in C to C such that

1. f(uL) = u−kf(L) for u ∈ C×

2. f : H → C, τ 7→ f([1, τ ]) is holomorphic
3. f is bounded.

Actually, for every lattice L ⊂ C, there is a u ∈ C× such that uL = [1, τ ] for some
τ ∈ H. The first transformation property becomes then: f(aτ+b

cτ+d ) = (cz + d)kf(z) for

all
(
a b
c d

)
∈ SL2(Z) and all z in the upper half plane.

We have seen before that for an elliptic curve y2 = x3 + c4x+ c6 the points of exact
order 2 are exactly those with y = 0. In terms of elliptic function, we see that ℘′(z) = 0
iff z ∈ 1

2L, but not in L. If we fix a basis ω1 and ω2 of L, set e1 = ω1/2, e2 = ω2/2 and
e3 = (ω1 + ω2)/2. We obtain

℘′(z)2 = (℘(z)− e1)(℘(z)− e2)(℘(z)− e3).

For the theory of Jacobi quartics there is equally both an analytic and an algebraic
approach. For the analytic approach see [HBJ92, Section 2.2]. We will do an algebraic
approach.

Proposition 3.45. Let C/k be an elliptic curve over an algebraically closed field k of
characteristic not 2 with a chosen point P of exact order 2. Then there is a meromorphic
function f on C satisfying

(f ′)2 = v − 2uf2 + f4

for some u, v ∈ k.

Proof. Let D = e + P . We have two involutions on H0(C;O(nD)). The involution S
precomposes with x 7→ −x and the involution T precomposes with x 7→ x + P . These
involutions commute and so H0(C;O(nD)) decomposes into the eigenspaces ++, +−,
−+ and −−. In particular, we can pick bases of eigenvectors. If we do this for n = 1, we
obtain the constant function 1 (++) and further function f . As it has a simple pole at
e, we see that it is odd. Assume that Tf = f . Then f factors as C → C/P → P1. The
first map has degree 2 and f has also degree 2; but there is no degree 1-map C/P → P1.
Thus, f is −−.

The space H0(C;O(3D)) is 6-dimensional and is spanned by f, f ′, f2, f ′f and f3;
indeed, there can be no linear dependence because of the eigenspaces (as f2 is non-
constant). We have f4, (f ′)2 ∈ H0(C;O(4D)) and they are both of type ++. But T
cannot act as identity on H0(C;O(4D))/H0(C;O(3D)) since there is a function g with
only pole at P and of order 4 and Tg has a pole of order 4 at e; their difference is
clearly not in H0(C;O(3D)). Thus, there is a linear dependence between 1, f2, f4 and
(f ′)2. By scaling f , we can assume that it is of the form

(f ′)2 = v − 2uf2 + f4.
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This gives a map Φ: C → C2, where C2 ⊂ P2
k is cut out by the projectivization of

y2 = v−2ux2+x4. The map is given away from ∞ as [f, f ′, 1]. If there are points Q,R
with f(Q) = f(R) and f ′(Q) = f ′(R), we see that O(2D−R) and O(2D−R−Q) have
the same global section, which cannot be. Thus, the map is injective away from the
points e and P , where f has poles. Actually, one can check that it is a closed immersion
away from e and P . By the universal property of normalization, the map Φ factors
over the normalization of C2, which corresponds to our construction C. This way, we
see that (at least over an algebraically closed field of characteristic not 2) every elliptic
curve with a chosen point of order 2 can be written as a Jacobi quartic. We also can
use f to compute the exponential of the formal group of a Jacobi quartic.

Note the f2 factors over E/P and has there a pole of order 2 at the origin. Thus,
it must be equal to a+ b℘. (Exercise: Determine a and b.)

Note also that f is essentially the same as the Jacobi sine function as it satisfies
(essentially) the same differential equation. The Jacobi sine function is used to describe
the motion of a frictionless pendulum.

end of lecture 12

3.12 Properties of the elliptic genus
Theorem 3.46. A genus ϕ : MSO∗ → R (with R torsionfree) is elliptic if and only if
we have ϕ(HP2i+1) = 0 and ϕ(HP2i) = vi for some v ∈ R.

We will not prove this, but see [HBJ92, Section 1.7].
Next, we will talk about multiplicativity statements. Let M → B be a fiber bun-

dle of closed smooth manifolds with fiber F closed smooth again. Assume that the
fundamental group of B acts trivially on H∗(F ;Q). Let ϕ : MSO∗ → R (with R
torsionfree) be a genus. Chern–Hirzebruch–Serre showed (by an application of the
Serre spectral sequence) that the signature is multiplicative in such fiber bundles:
sgn(M) = sgn(F ) sgn(B). Borel and Hirzebruch showed that every ϕ : MSO∗ → R
(with R torsionfree) that satisfies ϕ(M) = ϕ(F )ϕ(B) and ϕ(CP2) = 1 agrees with
the signature; if we drop the last condition, we have ϕ(M) = ϕ(CP2)dim(M)/4 sgn(M),
where the power is interpreted to be zero if the exponent is non-integral.

What if we ask multiplicativity only for certain classes of bundles, e.g. projectiviza-
tions of complex vector bundles with fiber CP2i−1? Recall that CP2i−1 is zero in MSO∗,
so this would imply that the genus just vanishes on these bundles.

Theorem 3.47 (Ochanine). A genus ϕ : MSO∗ → R (with R torsionfree) is elliptic if
and only if the genus ϕ vanishes on all projectivizations of even dimensional complex
vector bundles.

See [Och87] or again [HBJ92] for proofs.
There are more results of this form. A complex projective space CPn has a spin

structure iff n is odd. Indeed, they are always oriented so that CPn has a spin structure
iff w2(CPn) = 0 (for w2 the second Stiefel–Whitney class). The class w2(CPn) is the
mod 2 reduction of the first Chern class c1(CPn). As already used earlier, the total
Chern class of CPn is (1+ x)n+1 and thus the first Chern class is

(
n+1
n

)
= n+1. Thus,

one can ask whether the elliptic genus is actually multiplicative for bundles with spin
fiber.

Theorem 3.48 (Bott-Taubes). Let ϕ be an elliptic genus. For every fiber bundle
M → B with a compact, oriented spin manifold F as fiber and compact, connected Lie
group as structure group, we have ϕ(M) = ϕ(F )ϕ(B).

We will prove only a small part of these theorems. Namely, we will prove that if a
genus is generally multiplicative it must be (essentially) the signature and if it vanishes
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on all projectivizations of even dimensional complex vector bundles it must be elliptic.
The crucial tool are Milnor hypersurfaces, which are certain generators of the complex
bordism ring. (Recall that the complex projective spaces were only rational generators.)
This we will deal with in the next section.

3.13 Geometric cobordism, Milnor manifolds and multiplicativ-
ity
Recall that the (universal) formal group law for MU was the pullback of the complex
orientation x ∈ MU2(CP∞) → MU2(CP∞ × CP∞). We want to express this more
geometrically.

Theorem 3.49. For a closed smooth manifold X of dimension n, there is a natu-
ral isomorphism MOk(X) with bordism classes of maps g : M → X of closed smooth
manifolds M of dimension n − k. The functoriality on the right hand side is given as
follows: Let f : Y → X be a map; by a homotopy, we can assume that f is smooth
and transverse to g. Then we can consider the pullback f∗M and the associated map
f∗M → Y .

We will just give a natural transformation. The proof that this is an isomorphism
is similar to the Pontryagin–Thom theorem.

Choose an embedding i : M ↪→ Rm and let ν be the normal bundle of (g, i) : M ↪→
X × Rm. By a Pontryagin–Thom collapse, we obtain a map

ΣmX+
∼= (X × Rm)+ → Th(ν) → Th(ξunivm+k) = MOm+k.

This gives the desired class in MOk(X).
To put a complex structure into the picture, we do the following: A BU -structure on

g : M → X is an equivalence class factorizations M i−→ X×Rm pr2−−→ X of g, where i is an
embedding with a chosen complex structure on its normal bundle. Two factorizations
are equivalent if we can obtain them from each other by isotopy or enlargening m.

Theorem 3.50. For a closed smooth manifold X of dimension n, there is a natural
isomorphism MUk(X) with bordism classes of complex-oriented maps g : M → X of
closed smooth manifolds M of dimension n− k.

Again by a Pontryagin–Thom collapse, we obtain a map

ΣmX ∼= (X × Rm)+ → Th(νi) → Th(ξC,univm+k
2

) = MUm+k.

Example 3.51. The fundamental class in MUn(Sn) ∼= Z is given by the embedding of
a point. More generally let E → X be an n-dimensional complex vector bundle over a
closed manifold X. We claim that the Thom class in MU2n(Th(E)) ∼= MU2n(E,E−X)
is given by the embedding X → MU2n(Th(E)). (The point that Th(E) might not be
a manifold is not a problem because it is a manifold in a neighborhood of the image of
X.) Indeed, restricting to each “fiber” S2n gives the embedding of a point.

Question 3.52. The multiplication CP∞×CP∞ → CP∞ restricts to maps CPi×CPj →
CPN . Can we describe the image of x ∈ MU2(CPN ) in MU2(CPi×CPj) geometrically?

The canonical class x ∈ MU2(CPN ) corresponds to the embedding of CPN−1 into
CPN . Indeed, x is the restriction of the Thom class t ∈ MU2(Th(ξ)) ∼= MU2(CPN+1)
of the canonical bundle ξ on CPN . The tranverse intersection of two CPN in CPN+1 is
a CPN−1.
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Lemma 3.53. The H-space structure on CP∞ is unique. We can construct it as the
colimit of the Segre embeddings

CPi × CPj s−→ CP(i+1)(j+1)−1

((z0 : · · · : zi), (w0 : · · · : wj)) 7→ (zrws)r,s

Proof. Homotopy classes of maps CP∞×CP∞ → CP∞ are in one-to-one correspondence
with H2(CP∞ ×CP∞;Z) ∼= Z⊕ Z. Unitality implies that it must correspond to (1, 1).

That the colimit of the Segre embeddings defines an H-space structure follows be-
cause all injective linear maps C∞ → C∞ are homotopic.

end of lecture 13

Definition 3.54. For 1 ≤ i ≤ j, the Milnor manifold Hij ⊂ CPi × CPj is the hyper-
surface cut out by the equation x0y0 + · · ·xiyi. Set Hji = Hij .

Thus, Hij is the preimage under the Segre embedding of the hyperplane H ⊂
CP(i+1)(j+1)−1 given by x1,1 + · · ·+ xi,i = 0. One can see that the Segre embedding is
transverse to H. As all hypersurfaces in CPN define the same class in MU2(CPN ), we
see that

[Hij ↪→ CPi × CPj ] = s∗x = F (x1, x2) =
∑

r≤i, s≤j

arsx
r
1x

s
2 ∈ MU2(CPi × CPj)

for x1, x2 the generators of MU2(CPi ×CPj). Note that the cup product in geometric
MU∗(X) is given by transverse intersection. Thus, xr

1x
s
2 corresponds to the embedding

CPi−r×CPj−s ↪→ CPi×CPj . Note that we can also forget the embedding into CPi×CPj

and get the following equality in MU∗:

[Hij ] =
∑

r≤i, s≤j

ars[CPi−r][CPj−s].

Proposition 3.55. The Hij generate MU∗.

Proof. From the above, we see that Hij ≡ aij modulo decomposables. Thus, we only
have to see that the aij generate MU∗. Call the subring generated by them i : R ⊂ MU∗.
Then Funiv = i∗F for F the FGL F (x, y) =

∑
aijx

iyj over R. But F = j∗F
univ for

some j : MU∗ → R. Furthermore, (ij)∗F
univ = Funiv and thus ij = id. Thus, i is

surjective and hence R = MU∗.

Corollary 3.56. The Hij generate MSO∗/tors (and certainly MSO∗ ⊗Q).

Proposition 3.57. Set H(x1, x2) =
∑

i,j≥0[Hij ]x
i
1x

j
2. Let F be the universal FGL

over MU∗. Then:
H(x1, x2) = F (x1, x2) log

′
F (x1) log

′
F (x2).

Proof. We have

H(x1, x2) =
∑
i,j

[Hij ]x
i
1x

j
2

=
∑
i,j≥0

(
i∑

r=0

j∑
s=0

ars[CPi−r][CPi−j ]

)
xi
1x

j
2

=
∑
r,s≥0

arsx
r
1x

s
2

∑
i≥r

[CPi−r]xi−r
1

∑
j≥s

[CPj−s]xj−s
2


= F (x1, x2) log

′
F (x1) log

′
F (x2).
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Proposition 3.58. We have [Hij ] = −
(
i+j
i

)
mi+j−1 with mn = [CPn]

n+1 modulo decom-
posables in MU∗ and hence also in MSO∗.

Proof. Let F be the universal formal group law. Recall that logF =
∑

i≥0 mix
i+1 and

set expF =
∑

i≥0 bix
i+1 to be its inverse, i.e. expF (logF (x)) = x. Note that the inverse

is unique for power series of the form x+· · · over any commutative ring R, in particular
for R = MU∗/decomposables. Over R, the power series x −m1x

2 −m2x
3 − · · · is an

inverse for logF . Thus, bi ≡ −mi modulo decomposables.
Thus, modulo decomposables, we have:

F (x, y) = expF (logF (x) + logF (y))

=
∑
i≥0

mix
i+1 +

∑
j≥0

mjy
j+1 −

∑
n≥1

mn(
∑
i≥0

mix
i+1 +

∑
j≥0

mjy
j+1)n+1

=
∑
i≥0

mix
i+1 +

∑
j≥0

mjy
j+1 −

∑
n≥1

mn

(
n+ 1

i+ 1

)
xi+1y2n+1−(i+1).

As [Hij ] is modulo decomposable exactly the coefficient in front of xiyj in F , the result
follows.

Corollary 3.59. Rationally, CP2 together with the H2,(2j+1) with j ≥ 1 generate
MSO∗.

Another set of rational generators is [CP2], [H2,3] and [H3,2j ] for j ≥ 2.

The crucial point for multiplicativity is the following: The map Hij → CPi ×
CPj pr1−−→ CPi is a fiber bundle whose fibers are hyperplanes in CPj and hence isomorphic
to CPj−1.

Theorem 3.60. Let ϕ : MSO∗ → R (with R torsionfree) be a multiplicative genus (for
fiber bundles with fiber a complex projective space) with ϕ(CP2) = 1. Then ϕ is the
signature.

Proof. We prove it by induction on the dimension. The base case is dimension ≤ 4,
where ϕ visibly agrees with the signature as 1 and [CP2] generate MSO∗ in these
degrees. Assume that ϕ(M) = sgn(M) has been proven for all manifold of dimension
≤ 4j. We know that

ϕ(H2,(2j+1)) = ϕ(CP2)ϕ(CP2j) = ϕ(CP2j) = sgn(CP2j) = sgn(H2,(2j+1)).

As the H2,(2j+1) together with CP2 generate MSO∗ rationally, the result follows.

Now we come to the elliptic genus. Let ϕ be a genus that vanishes on projectiviza-
tions of even dimensional complex vector bundles, e.g. on the H3,2j . Then rationally,
it has to factor over MSO∗/(H3,2j) ⊗ Q ∼= Q[[CP2], [H2,3]] = R. Ochanine shows in
[Och87] that the quotient map MSO∗ ⊗Q → R agrees with the Ochanine genus (with
[CP2] corresponding to u and [H2,3] corresponding to v). That provides one direction
of Theorem 3.47. Let’s sketch a proof.

Set hij to be the image of [Hij ] in R and h(x, y), f(x, y) and g(x) the images of
H, F and logF in R. (At the beginning of the proof, it could be actually under any
genus ϕ : MSO∗ → R.) We are interested in the coefficients h3,2j = h2j,3 and will thus
consider everything mod y4.
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Recall from [Rav86, Appendix] that we have the formula g′(x)∂f(x,0)∂y = 1. Thus, it
seems reasonable to write f as a Taylor series like follows:

f(x, y) = x+
∂f(x, 0)

∂y
· y + 1

2

∂2f(x, 0)

∂y2
· y2 + 1

6

∂3f(x, 0)

∂y3
· y3 mod y4

From Proposition 3.57, we obtain

h(x, y) = g′(y)

(
g′(x)x+ y +

1

2
g′(x)

∂2f(x, 0)

∂y2
y2
)
+

1

6
g′(x)

∂3f(x, 0)

∂y3
y3 mod y4.

We are interested in the coefficients of x2iy3. Set r(x) =
∑∞

i=1 h3,2ix
2i = h3,2x

2. Then
we have r(x) = 1

6g
′(x)∂

3f(x,0)
∂y3 . Indeed: g′(y) has only even powers of y.

Set b(x) = 1
g′(x) = ∂f(x,0)

∂y . A computation shows that ∂3f(x,y)
∂y3 = b(x)(b′′(x)b(x) +

b′(x)2 − b′′(0)). Thus,

6r(x) = b′′(x)b(x) + b′(x)2 − b′′(0) =
1

2
(b(x)2)′′ − b′′(0).

As r(x) is a polynomial of degree 2, we see that b(x)2 is a polynomial of degree ≤ 4.
As does g′(x), the power series b(x) can only have even powers of x. Set b(x)2 =
1−2ux2+vx4. Then g′(x) = 1√

1−2ux2+vx4
. We have already seen above that the image

of [CP2] is u. Furthermore, we have

r(x) =
1

12
(b(x)2)′′ − 1

6
b′′(0) =

1

12
(12vx2 − 4u)− 1

6
b′′(0)

and hence h2,3 = v.
end of lecture 14

3.14 Exercises
Exercise 3.61. Show that X = SpecR[x, y]/(x2 + y2 − 1) has the structure of a group
scheme that is not isomorphic to Gm,R. (Also describe the functor that X represents on
R-algebras.) Show that in contrast the base change XC = X×SpecRSpecC is isomorphic
to Gm,C as group schemes.
Exercise 3.62. Formal group laws over R are in one-to-one correspondence with lifts of
Â1

R to the category of abelian groups. Moreover, homomorphisms between formal group
laws are in one-to-one correspondence with natural transformations of the associated
functors AlgR → AbGroups.
Exercise 3.63. Consider the ring Z with ideal (p) and the p-adics equipped also with
ideal (p). Show that Spf Z ∼= Spf Zp and describe this functor. Show that this is not
(representable by) a scheme.

Also show that Spf R[x] ∼= Spf RJxK, where both R[x] and RJxK are equipped with
the ideal (x). Show that this is likewise not (representable by) a scheme.
Exercise 3.64. Let R be a ring equipped with an ideal I. Show that Spf R is a Zariski
sheaf on Alg.
Exercise 3.65. Consider curves defined by the following three equations.

1. y2 = x3 + 1

2. y2 = x3 + 2

3. y2 + y = x3 + 3
4
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Over which subrings of Q are these elliptic curves? Over which rings are they isomor-
phic?
Exercise 3.66. Fill in the details in Proposition 3.24 (about gradings and Gm-actions).
Which gradings on the rings in Proposition 3.23 do the natural Gm-actions induce?
Exercise 3.67. Let C/R be an elliptic curve embedded into P2

R in Weierstrass form.
Assume that 1

3 ∈ R. (You are allowed to assume that R is an algebraically closed field
for the proofs in doubt.)

(a) Show that a point P on C is a point of exact order 3 iff the tangent line at P has
a triple intersection point with C at P .

(b) Let P be a point of exact order 3 on C (i.e. a Γ1(3)-structure). Show that there
is a unique coordinate change of the form x′ = x+ r and y′ = y + sx+ t sending
P to (0, 0) and its tangent line to the x-axis.

(c) Show that the functor from Z[ 13 ]-algebras to sets, sending an Z[ 13 ]-algebra R to
the set of isomorphism classes of elliptic curves over R with a chosen Γ1(3)-
structure and a chosen invariant differential is representable by Z[ 13 ][a1, a3][∆

−1]
with ∆ = a33(a

3
1 − 27a3).

Exercise 3.68. Add some details to the discussion of Jacobi quartics, e.g. check that it
is indeed smooth iff u2 − v is invertible.

4 Stacks and elliptic cohomology

4.1 Landweber’s exact functor theorem
We have seen that complex orientations (i.e. maps f : MU → E of ring spectra) give
rise to graded formal group laws. The map f∗ : MU∗ → E∗ classifies this graded formal
group law.

But what if we have an arbitrary graded formal group law F over a graded ring E∗
(corresponding to MU∗ → E∗)? Is there a spectrum E with π∗E = E∗ with a complex
orientation MU → E that gives rise to exactly this formal group? Consider the functor

hF : X 7→ MU∗(X)⊗MU∗ E∗

from spectra to graded abelian groups. If this is a homology theory, we can represent
it by a spectrum E by homological Brown representability:

Theorem 4.1 (Brown representability). The functor from the stable homotopy category
to homology theories (on spaces or, equivalently, on spectra) is essentially surjective and
full.

By this theorem, the natural transformation MU∗(−) → hF is realized by a map
of spectra MU → E. It is a priori not clear though that hF is represented by a ring
spectrum (the non-faithfulness of the functor above doesn’t guarantee the unitality and
associativity diagrams to commute) nor that the transformation MU → E is a map
of ring spectra if E is a ring spectrum. Maps in the stable homotopy category that
induce the zero map on homology theories are called (strong) phantoms; under rather
mild conditions one can actually exclude the existence of these phantoms and live a
happy phantom-free life. If this works, then we have realized our formal group law by
a complex oriented ring spectrum.

Question 4.2. When is hF a homology theory?
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Equivalently, we can ask when does hF send cofiber sequences to long exact se-
quences (as it is automatically homotopy invariant and additive). One obvious sufficient
condition is that E∗ is flat as a MU∗-module. But this is very restrictive, for example
E∗ cannot be finitely generated over Z! The crucial insight by Landweber was that a
much weaker condition suffices. This needs a bit of preparation, so we will state it a
little later. This will apply to certain formal group laws coming from elliptic curves.
Later we will reinterpret Landweber’s theorem in stack language, where it will become
more transparent.

As a sequence is exact iff it is so at every prime p, we will work p-locally now for a
fixed prime p. So let R be a Z(p)-algebra and F be a FGL over R. Recall the definition
of [p]F from Definition 2.49. We define vi ∈ R to be the coefficient in front of xpi

in
[p]F .
Remark 4.3. For the experts: This is neither quite the same as Araki’s nor as Hazewinkel’s
definition of the vi. But they all agree mod (p, v1, . . . , vi−1). Indeed: Let vAi be the
Araki generators. Then [p]F (x) =

∑F
j≥0 v

A
j x

pj

(see [Rav86, A2.2.4]). You see that mod
(p, v1, . . . , vi−1) this equals

∑F
j≥i v

A
j x

pj

, whose first term is just vAj xpj

. This shows that
vAi ≡ vi mod (p, v1, . . . , vi−1). And the Hazewinkel generators agree with the Araki
generators mod p anyhow.

Theorem 4.4 (Landweber exact functor theorem). Let F be a graded formal group
law over a graded ring E∗ and let hF be as above. Then hF is a homology theory if for
every p the sequence p, v1, v2, . . . is regular on E∗, i.e. that vi· : E∗/(p, v1, . . . , vi−1) →
E∗/(p, v1, . . . , vi−1) is injective.

We will call (graded) formal group laws satisfying the assumptions of the theorem
Landweber exact. If E is a complex oriented ring spectrum whose formal group law
is Landweber exact, we call E Landweber exact as well. We will later see that these
notions just depend on the underlying formal group.

Corollary 4.5. Let E be a Landweber exact complex oriented ring spectrum. The map
MU∗(−) → E∗(−) induces an isomorphism

MU∗(X)⊗MU∗ E∗ → E∗(X)

for all spectra X.

Proof. Both sides are homology theories (by Landweber’s exact functor theorem).
Thus, the transformation is an isomorphism iff it is one for X the sphere spectrum
(or the point if our source would be spaces). In this case, it is clear.

Example 4.6. We claim that complex K-theory is Landweber exact. Recall that its
formal group law is x+ y + uxy for π∗KU = Z[u±1]. Recall further that

[p]F (x) =
(1 + ux)p − 1

u
.

Thus, v0 = p, v1 = up−1 and vi = 0 for i ≥ 2. Thus, KU is Landweber exact. We
recover the classic Conner–Floyd theorem:

KU∗(X) ∼= MU∗(X)⊗MU∗ KU∗.
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4.2 Heights of formal groups
Definition 4.7. Let R be an Fp-algebra. We say that a formal group law over R
has height ≥ n if v1 = · · · = vn−1 = 0 and we say that it has (exactly) height n if
additionally vn is invertible.

Example 4.8. Every formal group law over an Fp-algebra has height ≥ 1 as the
coefficient of x in [n]F (x) is n. We have seen above that the multiplicative formal
group law has height 1. The additive formal group law has height ∞ as [p]F = 0.

Remark 4.9. One can show that [p]F is of the form vnx
pn

+ higher terms if F is of
height n.

The height of a formal group law is unchanged under isomorphism. Indeed, the
observation above implies that kJxK/[p]F (x) has rank pn over if F is a formal group law
over a field k. It is easy to see that this quantity is unchanged under isomorphisms.

We want to show that the height of the formal group law of an elliptic curve is
either 1 or 2. We need some preparation though. Recall that the degree of a finite
map f : X → Y over a k-valued point y : Spec k → Y (for k a field) is the rank of A,
where SpecA = X ×Y Spec k; this rank is finite as f is finite. If Y is connected and
noetherian and f is flat, then the degree does not depend on the choice of y.

In general, it is easier to check that a map has finite fibers (i.e. the fiber over
y : Spec k → Y has only finitely many points for every y with k algebraically closed)
than that it is finite. But if X and Y are both proper over a scheme S and f is
over S, then f is automatically proper as well and every proper map with finite fibers
(with locally noetherian target) is finite [Sta17, Tag 02OG]. [In general, quasi-finite
morphisms do not need to be finite, even if they are surjective and flat. For example,
Spec k[t±1]

∐
Spec k[t, (t− 1)−1] → Spec k[t] is quasi-finite, but not finite.]

Lemma 4.10. Let k a field. For a k-variety X, denote the cotangent space H0(X; Ω1
X/k)

by Ω1(X). If C is an elliptic curve over k, then the multiplication by n-map [n] induces
multiplication by n on Ω1(C).

Proof. We have natural isomorphisms Ω1(X×k Y ) ∼= Ω1(X)×Ω1(Y ). Thus, the group
structure of C induces a group structure +̃ via linear maps on Ω1(C) with 0 as neutral
element (as Ω1(Spec k) = 0). Two commuting monoid operations with the same neutral
element agree:

x+ y = (x+̃0) + (0+̃y) = (x+ 0)+̃(0 + y) = x+̃y.

As idC induces the identity on Ω1(C), it follows that [n] induces multiplication by
n.

Proposition 4.11. Let C be an elliptic curve over a base scheme S. Then the multi-
plication by n-map [n] is finite and flat of degree n2.

Proof. We first do the case S = SpecC. By writing C = C/L, we see directly that every
point has exactly n2 preimages under [n]. Furthermore, [n] is étale (i.e. topologically a
covering map), thus there is no ramification. Thus, the degree of [n] is n2 in this case.

Let S be general. The statement is local on S, so we can assume that C has a
Weierstrass form. Thus, we can reduce to the universal case for Weierstrass curves

S = SpecZ[a1, . . . , a6,∆−1].

The scheme C is regular as it is smooth over the regular scheme S. Thus, [n] is
automatically flat if it is finite (see e.g. [Gro65, Prop 6.1.5]; this is related to Hironaka’s
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miracle flatness). As discussed above, thus we only need to show that [n] has finite
fibers and then it is automatically finite flat. Thus, we can reduce to the case that
S = Spec k for k algebraically closed.

In this case, every non-constant self map of C is automatically finite. Thus, we
need to show that [n] is non-constant. The map [n] induces multiplication by n on
(the global sections of) Ω1(C) by the last lemma. Thus, it is non-constant if char k
is prime to n. Actually, it is even étale as it induces an isomorphism on Ω1 and is
flat and thus it is a disjoint union of Spec k. Thus, we already see that [n] is flat if
S = SpecZ[ 1n ][a1, . . . , a6,∆

−1] and it is automatically of degree n2 as it has so over
every C-valued point.

If char k divides n, we choose an m ≥ 2 prime to n and char k. Choose l such that
ln ≡ 1 mod m. Then [n]l acts as the identity on the kernel of C[m] of [m]; the scheme
C[m] has m2 points (by what we have seen in the last paragraph) and clearly a constant
map cannot act as the identity on two distinct points. Thus, [n] is also non-constant
here and we deduce that [n] is finite and flat in general (and hence automatically of
degree n2).

This nice proof is taken from [KM85]; note that we used the characteristic zero
result over C to deduce the degree of the map [n] also in characteristic p by using non-
field bases. Note also that this result directly implies that there are at most n2 points
of order n in any elliptic curve C over any (algebraically closed) field k. If n = p and
char k = p, then there are less that p2-points as we will see below.

Proposition 4.12. Let k be a field of characteristic p and C an elliptic curve over it.
Then the height of the formal group Ĉ associated with C is 1 or 2.

Proof. We claim that the formal completion Ĉ[p] agrees with the p-torsion in Ĉ. Indeed
both represent the functor

T 7→ {f ∈ C(T ) : p · f = e, f∗I nilpotent}

on k-schemes, where I is the ideal sheaf on C cutting out the neutral element e.
By the last proposition, we know that C[p] = SpecR for a finite k-algebra R of

rank p2. The (formal) group scheme Ĉ[p] is represented by limR/Ij . As R is Artinian,
we have In = In+1 = · · · for some n > 0 and thus limR/Ij ∼= R/In. Note that
SpecR/In = Spf R/In as I is already nilpotent.

If one chooses a coordinate on Ĉ, one obtains a formal group law F over k. As
kJxK/[p]F (x) represents the p-torsion Ĉ[p], we obtain kJxK/[p]F (x) ∼= R/In. Thus,

pheight(F ) = dimk kJxK/[p]F (x) = dimk R/In ≤ dimk R = p2.

end of lecture 15
Use the notation of the last proof: As C[p](k) is a p-torsion, it must have pm elements

for some m and m ≤ 2 (by Proposition 4.11). The case m = 2 cannot occur. Indeed,
if C[p](k) has p2 elements, these elements define a map R →

∏
p2 k. This must be

surjective (for example, we can decompose the Artin ring R is a product
∏

i Ri of local
Artin algebras; i runs over the set of points which are p2 many and the map R →

∏
p2 k

is just the product of the projections onto the residue fields) and thus an isomorphism.
This would imply that R/In = k, but dimk R/In ≥ p as we saw in the last proof.

If the height of Ĉ = 2, then dimk R/In = dimk R; as the scheme SpecR/In has
only one point (its underlying reduced scheme is SpecR/I = Spec k), we see that
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C[p] = SpecR ∼= SpecR/In has only one point as well. Conversely, if C[p](k) has
only one point, then R has only one maximal ideal and this must coincide with I as
R/I ∼= k; furthermore, I must also be the only prime ideal (as every commutative
finite-dimensional integral domain over k is a field). Every element in the intersection
of all prime ideals is nilpotent and thus I is nilpotent; we see that R = R/In. Thus
C[p](k) has only one point iff Ĉ has height 2 and in this case, C is called supersingular.
It follows that C[p](k) has exactly p points iff Ĉ has height 1 and in this case, C is
called ordinary.

Note that a supersingular elliptic curve is not a singular curve! The wording should
rather indicate that supersingular elliptic curve are rarer than ordinary ones.

There is a useful criterion to determine whether an elliptic curve is ordinary:

Proposition 4.13. Let C/k be an elliptic curve over a field of characteristic p > 2,
given by a Weierstrass equation y2 = f(x). Then C is supersingular iff the coefficient
of xp−1 in f(x)(p−1)/2 is zero.

For a proof see [Sil09, Theorem 4.1] and also [Har77, Proposition 4.21] for a gener-
alization.

Example 4.14. Consider the elliptic curve C : y2 = x3 + 1 over any field k of charac-
teristic bigger than 3 (else it is not an elliptic curve). The coefficient in front of xp−1 in
(x3 + 1)(p−1)/2 is 0 if p− 1 is not divisible by 3 and

(
(p−1)/2
(p−1)/3

)
else; the latter is clearly

non-zero in k. Thus C is supersingular iff p ≡ 1 mod 3.

Given equation of the form y2 = f(x) with non-zero discriminant, the p for which
this defines a supersingular elliptic curve over Fp are for most equation much rarer than
the ones where it defines ordinary elliptic curves; note though that there are by a result
of Elkies infinitely many primes where it is supersingular.

Proposition 4.15. For every prime p, there is an ordinary elliptic curve over Fp.

Proof. By [Sil09, Theorem 4.1] there are only finitely many supersingular elliptic curves
over Fp (less than p

12 + 2). But there are infinitely many elliptic curves over the same
field. (This can be seen e.g. by the j-invariant; this defines a bijection between iso-
morphism classes of elliptic curves over an algebraically closed field k and the ele-
ments of k. Another argument (at least for p ≥ 5) looks at elliptic curves of the form
y2 = x3 + c4x+ c6.)

Theorem 4.16. Let C be an elliptic curve over a ring R. Then the corresponding
formal group is Landweber exact iff

1. R is torsionfree

2. v1 is a non-zero divisor on R/p for every p.

If R/p is an integral domain, then it is sufficient there being a morphism f : R → k for
k a field of characteristic p such that the base change f∗C is an ordinary elliptic curve
over k.

Proof. We can assume that R is p-local. The first part of the theorem says that
p, v1, v2, . . . is a regular sequence on R iff p, v1 is. One direction is clear. We claim
that v2 is invertible on R/(p, v1) so that R/(p, v1, v2) = 0. Indeed, suppose otherwise.
Then there is a morphism f : R/(p, v1) → k to a field such that f(v2) is zero. Thus,
the height of the formal group law of f∗C on k is bigger than 2 in contradiction to the
last proposition.

For the second part: If R/p is an integral domain, then we just have to show that
v1 is nonzero, which is certainly the case if it is nonzero after mapping to a field.
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Definition 4.17. Let C be an elliptic curve over a ring R. Let R be graded such that
the resulting formal group law of C is graded as well and assume that this group law is
Landweber exact. The resulting homology theory is called an elliptic homology theory.

The next example is the original example of an elliptic homology theory. We will
see more later.

Example 4.18. Consider R = Z[ 12 ][b2, b4,∆
−1] and the elliptic curve y2 = x3+ b2x

2+
b4x. We want to check that the resulting formal group law is Landweber exact. Clearly,
R and R/p are integral domains. We need to check that for every p, there is a morphism
f : R → k such that y2 = x3 + f(b2)x

2 + f(b4)x is ordinary. If C is an elliptic curve
over an algebraically closed field k of characteristic not 2, then C has a 2-torsion point
and hence is pushed forward from R (as we identified R as carrying the universal
elliptic curve with a two-torsion point and an invariant differential over Z[ 12 ]-algebras;
see Proposition 3.25). Thus, we can use Proposition 4.15 to conclude.

There is an alternative proof, which does not use the Proposition 4.15. Consider the
elliptic genus MU∗ → Z[ 12 ][u, v]. We claim that v1 is non-zero for the corresponding
formal group law. This can be shown after postcomposing with Z[ 12 ][u, v] → Z[ 12 ]
sending u and v to 1. Then the logarithm of the pushed forward formal group law
becomes log =

∫
dx

(1−x2) . We claim that v1 = 1 for this formal group law at any
odd prime p. Indeed: The first denominator in log divisible by p is in front of xp.
Considering its inverse exp, a simple calculation shows that the coefficients in front of
x, . . . , xp−1 do not have a denominator divisible by p and the one in front of xp is of
the form − 1

p plus an element of Z(p). Thus, the p-series exp(p log(x)) is congruent to
exp(px+xp) ≡ xp modulo p and higher terms than xp. Thus, v1 ≡ 1 mod p. (See also
[Fra92], Section 2, for another version of this proof.)

This argument does also show Proposition 4.15, at least for p ≥ 3. Indeed, as
v1 is nonzero in Fp[u, v,∆

−1] (for p ≥ 3), we see that there are points (u0, v0) in
Fp[u, v,∆

−1] ⊂ A2
Fp

, where v1 does not vanish. There corresponding Jacobi elliptic
curve defined by

y2 = 1− 2u0x
2 + v0x

4

is ordinary.

4.3 Stacks on topological spaces
This section is an introduction to stacks, a categorical concept similar to sheaves. To
motivate this concept, we will first look at the topological situation of vector bundles.

Given a space X, we can look at the presheaf that sends every open set U to

Vectn(U) = {isomorphism classes of n-dimensional vector bundles on U}.

The restriction maps are just restriction (aka pullback) of vector bundles. This is in
general not a sheaf. Indeed, take X = Sk and cover it by two contractible subset U1

and U2. If Vectn were a sheaf, then Vectn(S
k) would be the equalizer of the two maps

Vectn(U1)×Vectn(U2) to Vectn(U1 ∩ U2). But Vectn(U1)×Vectn(U2) consists just of
one element – in contrast, Vectn(Sk) can contain many elements.

The point is, of course, that we can glue vector bundles in non-trivial manners. That
is, we must not only remember isomorphism classes of vector bundles, but the groupoids
of all vector bundles and their isomorphisms. We define a presheaf of groupoids Vectn
on X by sending U to

Vectn(U) = {groupoid of n-dimensional vector bundles on U and isomorphism between them}.

This has two useful “sheafy” properties:
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1. Let E,F ∈ Vect(U) be objects. Then the presheaf Isom(E,F ) defined by

Isom(E,F )(V ) = {isomorphisms between E|V and F |V }

for V ⊂ U open is a sheaf.

2. Let {Ui ⊂ X} be an open cover, let Ei be vector bundles on Ui and

fij : (Ej)|Ui∩Uj
→ (Ei)|Ui∩Uj

be isomorphisms such that fijfjk = fik on Ui ∩ Uj ∩ Uk. Then there is a vector
bundle E on X with isomorphisms ϕi : E|Ui

→ Ei such that fijϕj = ϕi on Ui∩Uj .

Definition 4.19. Let X be a topological space. A stack on X is a presheaf F of
groupoids such that

1. for E,F ∈ F(U) the presheaf Isom(E,F ) on U is a sheaf, and

2. for any open cover {Ui ⊂ X}, objects Ei ∈ F(Ui) and isomorphisms

fij : (Ej)|Ui∩Uj
→ (Ei)|Ui∩Uj

such that fijfjk = fik on Ui ∩ Uj ∩ Uk, there is an E ∈ F(X) with isomorphisms
ϕi : E|Ui

→ Ei such that fijϕj = ϕi on Ui ∩ Uj .

end of lecture 16

For any scheme X, we define groupoids Mell(X) and MFG(X) as follows: An
object of Mell(X) is an elliptic curve over X and a morphism is an isomorphism of
elliptic curves over X. Similarly, an object of MFG(X) is a formal group over X and
a morphism is an isomorphism of formal groups over X.

Proposition 4.20. Let X be a scheme. Then Mell and MFG define stacks on the
Zariski topology of X.

Proof. We will do the proof only for Mell. We pick an open cover {Ui ⊂ X} and set
Uij = Ui ∩ Uj and Uijk = Uij ∩ Uk.

Suppose p : C → X and p′ : C ′ → X are elliptic curves over X. First suppose that
we have two isomorphisms f1, f2 : C → C ′ that are equal on all C|Ui , i.e. equal on all
p−1(Ui); as the p−1(Ui) form an open cover of C, the maps f1 and f2 are clearly equal.
Likewise, if we have isomorphisms fi : p−1(Ui) → (p′)−1(Ui) that agree over Uij , we can
glue these maps to a morphism C → C ′ that is automatically an isomorphism.

If we have elliptic curves Ci over Ui with isomorphisms fij : Cj |Uij → Ci|Uij satisfy-
ing the cocycle conditions, we obtain a scheme C with a map C → X. We also obtain
a section by gluing the sections over the Ui. The scheme C is smooth and proper over
X (as these properties can be tested locally) and if Spec k → X is a point, it factors
over some Ui, so the fiber is also an elliptic curve in the classical sense.

Remark 4.21. For Ell the functor that takes every scheme X to the sheaf of isomorphism
classes of elliptic curves on X, one sees that Ell is not a sheaf for the Zariski topology
on a scheme X in general. E.g. let C be an elliptic curve over C and X be the union of
four A1

C that build a quadrilateral. More precisely, you take the quotient of Z/4 × A1
C

by ([k], 1) ≃ ([k + 1], 0). Consider the two open subsets

U = {([k], x) ∈ X : [k] ̸= [0] and x ̸= 0 if [k] = [1] and x ̸= 1 if [k] = [−1]}
V = {([k], x) ∈ X : [k] ̸= [2] and x ̸= 0 if [k] = [−1] and x ̸= 1 if [k] = [1]}
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The intersection U ∩ V decomposes as (A1
C − {0, 1}) × {[−1], [1]}. We glue U × C

with V × C by using the identity on (A1
C − {0, 1})× {[1]} and the automorphism [−1]

on (A1
C − {0, 1}) × {[−1]}. The result C ′ is clearly an elliptic curve (e.g. by the last

proposition). We claim that it is not isomorphic to X×CC although both are isomorphic
over U and V . Indeed, the 3-torsion of X×CC is (Z/3)2 (as is the one of C). Let P be a
three-torsion section of C ′ → X. The 3-torsion of both C ′|U and of C ′|V is isomorphic
to C[3] = (Z/3)2; P must correspond in both to the same element p as we glued on
(A1

C − {0, 1}) × {[1]} via the identity. But this implies that p = −p by the glueing on
(A1

C − {0, 1})× {[−1]} and thus p = 0. Thus, C ′[3] has just the neutral element.
Recall from Section 3.1 that we can characterize (functors represented by) schemes

as functors F from commutative rings to sets such that F restricted to the affine opens
sets of each SpecA is a Zariski sheaf and such that F has an “open cover” by SpecAi.

If we want to define an analogue for stacks (an “algebraic stack”) we could try to
ask for contravariant functors F from schemes to groupoids such that F restricted to
every scheme is a Zariski stack and which have an “open cover” by SpecAi. There are
two problems with this, one merely technical the other one more serious.

First problem: If we want to define Mell for all schemes, we run into the problem
that if we have composable morphisms X

f−→ Y
g−→ Z and an elliptic curve C over Z,

then f∗g∗Z ∼= (gf)∗Z, but not f∗g∗Z = (gf)∗Z as would befit a usual functor. Thus,
we have to weaken the notion of a functor/presheaf. We will not work fully weakly by
using the convention that (id)∗C = C.

Definition 4.22. Let C be a category. A pseudo-presheaf F of groupoids on C consists
of the following data:

1. For each c ∈ C a groupoid F(c),
2. for each f : c → d a functor f∗ : F(d) → F(c),

3. for each composable arrows c
f−→ d

g−→ e a natural isomorphism ϕf,g : f
∗g∗

∼=−→
(gf)∗.

These satisfy some axioms:

1. (id)∗ = id

2. ϕe,g = id

3. for composable arrows b
f−→ c

g−→ d
h−→ e, we have an equality ϕf,hg(f

∗ϕg,h) =
ϕgf,h(ϕf,gh

∗).

We will usually just say presheaf when we mean pseudo-presheaf. (We will not have
the opportunity to just work with “strict” presheaves of groupoids.)

Note that every presheaf of sets on Sch /S defines a presheaf of groupoids and
in particular every scheme does. We will often identify a scheme with its associated
presheaf.

Definition 4.23. A Zariski stack over a scheme S is a (pseudo-)presheaf of groupoids
on (Sch /S) whose restriction to the opens of every scheme X over S is a stack in the
sense of Definition 4.19.

Before we discuss the second problem, we have to make sense of what an open cover
of a map of presheaves of groupoids is. For this, we have first to discuss fiber products.

Definition 4.24. Let
G
g

��
F

f // H
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be a diagram of presheaves of groupoids on Sch /S. We define the fiber product (or
2-pullback) (F ×H G)(T ) (for T ∈ (Sch /S)) as the category of triples (x ∈ F(T ), y ∈
G(T ), α : f(x) → g(y)), where a morphism consists of a pair of x → x′ in F(T ) and
y → y′ in G(T ) such that the obvious diagram commutes. I leave the definition of
functoriality and the natural isomorphisms for composition as an exercise. Note that
the diagram

F ×H G
pr1

��

pr2 // G

g

��
F

f // H

does not commute. Indeed if we have (x, y, α) ∈ (F ×H G)(T ), f(x) ̸= g(y) – but
the morphism α induces a natural isomorphism ϕF,G,H between f pr1 and g pr2. This
makes the diagram 2-commutative.

Definition 4.25. A morphism F → G of presheaves of groupoids of Sch /S is called
representable if for every morphism X → G with X a scheme, the pullback F ×G X is
equivalent to a scheme.6

Let P be a property of morphisms of schemes that is closed under pullback. We say
that a morphism F → G is P if it is representable and X ×G F → X satisfies P for
every morphism X → G with X a scheme.7

Now it is clear what an open cover should be. Define an open immersion of schemes
to be a morphism that is isomorphic to the inclusion of an open subscheme. A collection
of morphisms {Ui → F} is a Zariski open cover if each Ui → F is an open immersion
and the corresponding morphism

∐
i Ui → F is surjective (both in the sense above).

Now we can formulate the second problem:

Proposition 4.26. Let F be a stack on (Sch /S) with a Zariski open cover {Ui
ji−→ F}

where each Ui is a scheme. Then F is equivalent to a set-valued presheaf and more
precisely even to a scheme.

Proof. Let X be a scheme over S and x ∈ F(X) be an object with an automorphism f .
We have to show that it is trivial. Suppose the contrary. The object x corresponds by
Yoneda to a morphism X → F . Let Vi = Ui ×F X, which is (equivalent to) a scheme.
Then {Vi → X} is a Zariski open cover. Thus, there is an i such that f |Vi

is a non-trivial
automorphism of x|Vi

(by the sheaf property of Isom(x, x)). Construct a morphism
Vi → Vi, i.e. an element in (Ui ×F X)(Vi) as the triple (Vi → X,Vi → Ui, fϕX,Ui,F )
(without this triple, this morphism would be the identity). But there can be no non-
trivial automorphism of Vi over X as Vi → X is an open inclusion! Thus, f must be
trivial and F is equivalent to a set-valued presheaf.

Now note that the stack condition is preserved under equivalences of presheaves and
that a set-valued stack is automatically a set (exercise!). The open cover {Ui → F} is
exactly the atlas you need to show that F is a scheme.

This is a consequence we most certainly don’t want! The problem was that an open
immersion Ui → X could not have any automorphism over X. Thus, we should change
the meaning of open.

6Some people use a weaker definition, where it suffices that F ×G X is an algebraic space.
7This is not always the best definition, e.g. one also wants to consider certain morphisms as proper that

are not representable. See [LMB00, Definition 4.14].
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4.4 Stacks on sites
We want to change the notion of an open cover in a way that it still makes good sense
to talk about sheaves.

Definition 4.27. Let C be category and {Ui → U} be a collection T of families of
morphisms, called a cover. We demand that

1. If V → U is an isomorphism, then {V → U} is a cover.

2. If V → U is any arrow and {Ui → U} a cover, the pullbacks Ui ×U V exist and
{Ui ×U V → V } is still a cover.

3. If {Ui → U} is cover and {Uij → Ui} are covers, then {Uij → U} is also a cover.

Such a collection T is called a Grothendieck topology and the pair (C, T ) is called a site.

Definition 4.28. Let (C, T ) be a site and F be a presheaf (say, of sets) on C. Then
F is a sheaf if for every cover {Ui → U} the canonical morphism from F(U) to the
equalizer of the two morphisms from

∏
i F(Ui) to

∏
i,j F(Ui ×U Uj) is an isomorphism.

Likewise, we can define a stack on a site (C, T ) to be a (pseudo-)presheaf of groupoids
on C satisfying the stack conditions.

end of lecture 17
Which Grothendieck topologies T on Sch do we want to consider? We want at least

two important properties of them:

1. Every presheaf on Sch that is represented by a scheme should be a sheaf. In this
case T is called subcanonical.

2. Covers {Ui → X} can have automorphisms.

In topology, a thing satisfying the second (and actually both) conditions are covering
spaces. The corresponding notion in algebraic geometry is that of an étale morphism,
which we will define in two steps.

Definition 4.29. A morphism f : X → Y of schemes is called flat if for every x ∈ X
the induced map OY,f(x) → OX,x exhibits OX,x as a flat OY,f(x)-module.

Note that a morphism SpecA → SpecB is flat iff A is flat as a B-module. Geo-
metrically, you should have the intuition that it is a morphism, where the “fibers are
varying continuously”.

Definition 4.30. A morphism f : X → Y is étale if it is locally of finite presentation,
flat and satisfies Ω1

Y/X = 0.

The idea is: A flat morphism (locally of finite presentation) is smooth (something
like a smooth fiber bundle in topology or an open part thereof) iff Ω1

Y/X is locally free
(i.e. has no jumps in its rank). For example, if X is the affine curve y2 = x3 over Spec k,
we see that the rank of Ω1 is everywhere one but at the singularity, where it is two. If
Ω1

Y/X = 0, then we have a “fiber bundle with fibers of dimension 0” which is much like
covering space (or an open part of it).

Examples 4.31. • Every open immersion is étale.

• A morphism between smooth complex varieties is étale iff it is a local homeomor-
phism in the complex topology.

• The map SpecR[
√
t] → SpecR for t ∈ R is étale if 2 is invertible in R. Here, you

have an automorphism
√
t 7→ (−

√
t).

• Every Galois extension K → L defines an étale map SpecL → SpecK. Recall
that the Galois group are just the automorphism of L over K.
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Thus, étale maps unite covering space theory with Galois theory. There is a huge
theory of étale cohomology and étale fundamental group, which is very important in
arithmetic geometry (see e.g. the Weil conjectures), but about which we will say almost
nothing!

Definition 4.32. A family {Ui → X} is an étale cover if all Ui → X are étale and∐
i Ui → X is surjective.

Definition 4.33. A family {Ui → X} is an fpqc cover if all
∐

i Ui → X is flat, surjective
and every quasi-compact subset of X is the image of a quasi-compact subset of

∐
i Ui.

A morphism that is flat and surjective is also called faithfully flat because SpecA →
SpecB is faithfully flat iff A is a faithfully flat B-module (faithful means that ⊗BA
detects isomorphisms). In French, this is fidèlement plat, which explains the “fp” in
fpqc. The quasi-compactness condition is rather technical; note that it is automatically
satisfied if f is of finite presentation or f is affine.

Note that every étale cover is also an fpqc cover! But there are many other examples,
e.g. SpecA[x1, x2, . . . ] → SpecA.

Theorem 4.34 (Grothendieck). Both fpqc covers and étale covers define subcanonical
topologies.

That these are subcanonical is not a formality at all!8 That both are topologies are
easier though (e.g. it is easy to see that pullbacks of fpqc or étale covers are fpqc or
étale covers again).

Theorem 4.35. Both Mell and MFG are stacks for the fpqc (and hence for the étale)
topology.

While it is relatively easy to show that the first stack condition (that Isom is a sheaf)
is satisfied, the “glueing” condition is less formal. See [MO17] and [Nau07, Section 4]
for the respective details.
Remark 4.36. It is a little easier to show that the functor Ell from Remark 4.21 is
no étale sheaf than showing that it is no a Zariski sheaf, as we did earlier. Consider
the elliptic curves E1 : y2 = x3 − 1 and E2 : y2 = x3 + 1 over R. These are not
isomorphic. But after base change to C they are. Thus, there is an étale cover (namely
SpecC → SpecR) such that E1 and E2 are isomorphic on this cover, but not isomorphic
themselves.

References: [Vis05], [Góm01], [Ols16]

4.5 Algebraic stacks and Hopf algebroids
An algebraic stack should be a stack covered in a suitable sense by (affine) schemes.
We will choose the following definition.

Definition 4.37. An algebraic stack is a stack X for the fpqc topology on Sch such
that there is an affine fpqc map SpecA → X for some A. Here, affine means that
SpecB ×X SpecA is an affine scheme for every morphism SpecB → X .

Remark 4.38. This definition is equivalent to the one in [Nau07] and [Goe08]. Indeed,
they do not require the map SpecA → X to be affine, but the diagonal X → X ×X to
be affine. The latter is equivalent to every morphism SpecB → X being representable
and affine (analogously to, e.g., [Góm01, Proposition 2.19]). Thus, we have to show

8The fpqc topology is the biggest/finest subcanonical topology I have ever heard someone working with.
There are though some topologies used that are even finer, e.g. the arc-topology of Bhatt and Mathew
[BM21].
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that if there exists an affine fpqc map SpecA → X , every map SpecB → X is affine.
Affineness can be checked fqpc-locally (see [GW10, Proposition 14.51]) and clearly
SpecB ×X SpecA → SpecA is affine as the source is affine.

Algebraic geometers often use algebraic stack as a synonym for an Artin stack, which
is something slightly different. This is a stack X , where the diagonal is representable,
quasi-compact and separated and there exists a surjective smooth morphism X → X
with X a scheme. Unfortunately, MFG is not an Artin stack, which is why we will use
our definition of an algebraic stack.

Proposition 4.39. The stack Mell is algebraic.

Proof. Let A = Z[a1, a2, a3, a4, a6,∆−1]. The Weierstrass equation defines a morphism
f : SpecA → Mell (because by Yoneda such a morphism corresponds to an elliptic
curve over A). We need to show that f is fpqc and affine. This means that for every
morphism g : X → Mell from a scheme X, the fiber product F = X ×Mell

SpecA is
equivalent to a scheme and the projection to X is fpqc and affine.

Let C be the elliptic curve over X classified by g. Then F represents the functor,
sending a T = SpecR to a triple of a morphism h : T → X, a Weierstrass curve E on
T and an isomorphism h∗C → E. Assume now for a moment that X = SpecB and
C admits a Weierstrass form. By Section 3.4, an isomorphism from h∗E to another
Weierstrass curve is classified by r, s, t, u ∈ R such that u is invertible. Thus, F is
equivalent to SpecB[r, s, t, u±1] in this case (as the second Weierstrass curve is deter-
mined by the isomorphism). Note that in this case F → SpecB is an affine, flat and
surjective morphism (in particular, fpqc).

Back to the general case: The scheme X admits an open cover {Ui = SpecBi → X}
such that C|Ui

admit Weierstrass forms. Thus, F admits a Zariski open cover by the
affine scheme and thus is equivalent to a scheme itself by Proposition 4.26. Moreover,
the morphism F → X is locally on the target affine and fpqc; standard algebraic
geometry implies that it is affine and fpqc itself.

The proof for MFG is similar.

Proposition 4.40. The stack MFG is algebraic.

Proof. Let L = MU∗ be the universal ring for formal group laws, carrying the unviersal
formal group law Funiv. Analogously to the last proof, it follows that the obvious
morphism f : SpecL → MFG is affine and fpqc if the map Y = SpecB×MFG

SpecL →
SpecB is affine and fpqc for every SpecB → MFG coming from a formal group law
F (indeed: every formal group is Zariski locally on the base isomorphic to a formal
group coming from a formal group law). The fiber product F represents a triple of
a morphism h : SpecC → SpecB and an isomorphism h : h∗F → G, where G is any
formal group law on C. This isomorphism is just any power series a0t+a1t

2+a2t
3+ · · ·

such that a0 is invertible. Thus, Y ≃ SpecB[a±1
0 , a1, a2, . . . ].

Let p : X → X be any morphism and let Y = X ×X X. The pair (X,Y ) represents
a groupoid valued functor on the category of schemes. Indeed, for every scheme T ,
we obtain a groupoid with objects maps t : T → X and morphisms the isomorphisms
between (pt1) and (pt2) in X (T ); such isomorphisms are exactly classified by the fiber
product Y . Thus, (X,Y ) is a groupoid object in the category of schemes. Concretely
this means that we have maps

1. s, t : Y → X (called source and target, correspond to the two projections),

2. e : X → Y (the unit, corresponding to the diagonal)



52

3. Y ×X Y → Y (the composition, corresponding to the map Y ×X Y ≃ X×X X×X
X → X ×X X ≃ Y that is projection onto the first and third coordinate)

4. Y → Y (the inverse, corresponding to the switch map of X ×X X)

satisfying some axioms.
end of lecture 18

Assume now that X = SpecA and Y = Spec Γ are affine. Then (A,Γ) is a
“cogroupoid object” in commutative rings, which means concretely that we obtain dual
maps

1. ηL, ηR : A → Γ (called left and right unit),

2. ϵ : Γ → A (called the counit or augmentation)

3. Ψ: Γ → Γ⊗A Γ (called the diagonal)

4. c : Γ → Γ (called the conjugation)

satisfying some axioms. Such a structure is called a Hopf algebroid. This generalizes a
Hopf algebra, which is a cogroup object in A-algebras; this means simply that ηL = ηR
above.

Example 4.41. Consider SpecA → Mell as above. Then Γ = A[r, s, t, u±1]. The map
ηL is just the inclusion A → A[r, s, t, u±1]. The map ηR : A → A[r, s, t, u±1] classifies
the Weierstrass curve, we obtain from the universal Weierstrass curve after applying
the coordinate change x 7→ u2x+ r and y 7→ u3y+ sx+ t. All these maps can be looked
up in [Sil09, Table 1.2] or [Bau08, Section 3] (though check whether they have the same
convention or the opposite ones!).

Example 4.42. For SpecL → MFG, we obtain the Hopf algebroid

(L,L[a±1
0 , a1, a2, . . . ] = W ).

A crucial point is that Hopf algebroids can also arise from algebraic topology. Let
E be a (homotopy) commutative ring spectrum and assume that E∗E ∼= π∗E ∧E is flat
over π∗E. (As E∗E = [E,Σ∗E] are stable cohomology operations, one calls E∗E also
the homology cooperations. We will see more about cooperations next section.) Then
we have maps

1. π∗E → π∗(E ∧E)

2. π∗(E ∧E) → π∗E (induced by multiplication)

3. π∗(E ∧E) → π∗(E ∧E ∧E) (induced by unit in middle variable) and an isomor-
phism

π∗(E ∧E)⊗π∗E π∗(E ∧E) → π∗((E ∧E)∧E(E ∧E))
1∧µ∧ 1−−−−−→ π∗E ∧E ∧E.

Indeed, the corresponding morphism also makes sense, if we replace one copy
of E by an arbitrary spectrum X to get a map π∗(X ∧E) ⊗π∗E π∗E ∧E →
π∗X ∧E ∧E. This is an isomorphism for X the sphere spectrum. Moreover, the
class of spectra X where this is an isomorphism is closed under weak equivalences,
direct homotopy colimits and cofibers of maps (as π∗E ∧E is a flat π∗E-module).
Thus, it is an isomorphism for all spectra X, in particular for X = E.

4. π∗(E ∧E) → π∗(E ∧E) (induced by twist)

These satisfy the axioms of a (graded) Hopf algebroid.
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Example 4.43. We have seen a long time ago that E∗MU ∼= E∗[b1, b2, . . . ] for any
complex oriented theory E, in particular for E = MU itself, we obtain MU∗MU =
L[b1, b2, . . . ]. This is nearly the same as the W above! The difference is essentially one
of gradings.

There is a functor U from the category of evenly graded Hopf algebroids to that of
(ungraded) Hopf algebroids sending (A,Γ) to (A,Γ[u±1]). While ηL and c are essentially
given by the same formula and ϵ sends u to 1, the new maps ηR and Ψ take the gradings
into account. More precisely, we have

η
U(A,Γ)
R (a) = u|a|/2η

(A,Γ)
R (a)

for homogeneous elements a ∈ A and

ΨU(A,Γ)(x) = u|x|/2Ψ(A,Γ)(x)

for homogeneous elements x ∈ Γ. [Again, there are two possible conventions; we could
have chosen negative powers of u as well.]

The statement (essentially proven by Quillen) is now that U(MU∗,MU∗MU) ∼=
(L,W ). This makes the connection between MU and formal groups even tighter!

References: [Rav86, Appendix]

4.6 Comodules and quasi-coherent sheaves
The importance of Hopf algebroids is that they encode structure the E-homology of
any space has.

Definition 4.44. Let (A,Γ) be a Hopf algebroid. A (right) Γ-comodule is an A-module
M together with a map Φ: M → M ⊗A Γ satisfying a counitality and a coassociativity
axiom.

There is an obvious analogue for evenly graded Hopf algebroids. The category of
evenly graded comodules over (A,Γ) is equivalent to that of comodules over U(A,Γ).

Example 4.45. We can illustrate the last point by a simple example. Let R be an
evenly graded ring, which we can view as an evenly graded Hopf algebroid (R,R). The
associated ungraded Hopf algebroid is (R,R[u±1]). A comodule M consists of a map
M → M [u±1] satisfying certain properties; we have seen in Proposition 3.26 how this
corresponds to a grading on M .

If E is a homotopy commutative ring spectrum such that E∗E is flat over E∗ and
X is a space or spectrum, then E∗X has the structure of a graded E∗E-comodule:

E∗X ∼= π∗E ∧X → π∗E ∧E ∧X ∼= E∗E ⊗π∗E E∗X.

Here, we use the unit in the middle factor again. More precisely, one can say that E
defines a homology theory on spaces/spectra with values in graded E∗E-comodules.

In particular, MU∗X has always the structure of a graded (MU∗,MU∗MU)-comodule.
Every such comodule decomposes uniquely into an evenly graded and an oddly graded
part. As the evenly graded (MU∗,MU∗MU)-modules are equivalent to ungraded
(L,W )-comodules, we see that the category of graded (MU∗,MU∗MU)-comodules is
equivalent to Z/2-graded (L,W )-comodules. A 2-fold shift corresponds to tensoring
with L[2], which is the L-module L together with the map u · ηR : L → W .

end of lecture 19
Can we express this in terms of the stack MFG? Indeed, in terms of quasi-coherent

sheaves. First recall one possible definition in the scheme case.
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Definition 4.46. Let X be a scheme. An OX -module9 F is called quasi-coherent if
for every affine open U ⊂ X with U ∼= SpecA and every f ∈ A, the canonical mapping

F(U)⊗A A[
1

f
] → F(D(f))

is an isomorphism for D(f) = SpecA[ 1f ].

We will do a similar definition in general.

Definition 4.47. Let X be an algebraic stack. Consider the categories Aff /X and
Sch /X . Their objects are morphisms from (affine) schemes to X and morphisms are 2-
commutative diagrams. We equip them with the fpqc-topology, where a family {Ui →
X} is an fpqc cover if it is an fpqc-cover of schemes – this defines a Grothendieck
topology. We define a sheaf OX on this site by OX (X → X ) = H0(X;OX). [That this
is indeed an fpqc-sheaf follows from fpqc descent as H0(X;OX) is naturally isomorphic
to HomSch(X,A1).]

A presheaf10 of OX -modules F on Aff /X is called quasi-coherent if for every mor-
phism SpecA → SpecB in Aff /X , the canonical map

F(SpecB → X )⊗B A → F(SpecA → X )

is an isomorphism.
A sheaf of OX -modules F on Sch /X is called quasi-coherent if its restriction to

Aff /X is quasi-coherent.
It turns out that the categories of quasi-coherent OX -modules on Aff /X and Sch /X

are equivalent and we denote them by QCoh(X ).

Theorem 4.48 (Faithfully flat descent, Grothendieck). Let X be an algebraic stack
and p : SpecA → X be an affine fpqc morphism. Observe that SpecA ×X SpecA is
equivalent to an affine scheme Spec Γ and (A,Γ) is a Hopf algebroid.

The functor
p∗ : QCoh(X ) → QCoh(SpecA) ≃ A -mod

can be lifted to a functor
QCoh(X ) → (A,Γ) -comod

that is an equivalence of categories. This takes OX to the canonical comodule A.

The structure of an (A,Γ)-comodule on F(SpecA) arises as follows: By the defi-
nition of a quasi-coherent sheaf, the map F(SpecA) ⊗A Γ → F(Spec Γ) (arising from
η∗L : Spec Γ → SpecA) is an isomorphism. But we have also the map η∗R : F(SpecA) →
F(Spec Γ) ∼= Γ⊗A F(SpecA). This is the structure map of the comodule.

Upshot 4.49. The spectrum MU defines a homology theory with values in quasi-
coherent sheaves on MFG. More precisely, let Fi(X) be the quasi-coherent sheaf on
MFG corresponding to the even part of MU∗+i(X). Then F∗ is a homology theory
with values in QCoh(MFG). Likewise, we can define reduced homology sheaves F̃∗.

Remark 4.50. The sheaf F2(pt) is a line bundle (as evaluated on SpecL it is isomorphic
to L). We want to give a description of this sheaf in terms of formal groups. First,
we record though another general viewpoint on comodules over (L,W ). Let F be a
quasi-coherent sheaf on MFG, let F be a formal group law on a ring R (classified by a

9This means a module over OX in the category of (Zariski) sheaves on X.
10While the reader might expect the word sheaf here, the sheaf condition in the faithfully flat topology

is automatic from the quasi-coherence by faithfully flat descent.
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map L → R) and let f = b0t + b1t
2 + · · · ∈ RJtK be a power series with a0 invertible.

Note first that as SpecR×MFG
SpecR ≃ R[a±1

0 , a1, . . . ], we obtain maps

F(SpecR)
Ψ−→ F(SpecR)[a±1

0 , a1, . . . ]
F∗

−−→ F(SpecR)[a±1
0 , a1, . . . ]

f−→ F(SpecR),

where the last map sends the ai to the coefficients bi of f . (Note that we have written
here F(SpecR)⊗L W as F(SpecR)[a±1

0 ].) Denote this composite by ϕF,F,f . Another
interpretation of the map ϕF,F,f is as follows: We have a 2-commutative diagram

SpecR
id //

F

$$

SpecR,

fF (f−1(x),f−1(y))zz
MFG

(4.51)

where the isomorphism between the two formal groups is given by f . This induces a map
F(SpecR) → F(SpecR), which should be the same as above. [There is something amiss
here: One should not write F(SpecR) as the value of F can depend on the concrete
map chosen from SpecR → MFG. And then the map is F(SpecR

F−→ MFG) →

F(SpecR
fF (f−1(x),f−1(y))−−−−−−−−−−−−→ MFG) – this should be sorted out...] Clearly, ϕOMFG

,F,f =

id. We claim that ϕF2i,F,f = a−i
0 ϕOMFG

,F,f = a−i
0 as can be seen by chasing through

the gradings. Furthermore, note that the morphisms ϕF,F,f determine the comodule
associated with F by taking F = Funiv on L and thus also the quasi-coherent sheaf F
itself.

We want now to show that F2(pt) is isomorphic to a line bundle ω whose inverse
we define as follows: Let SpecR → MFG be a morphism corresponding to a formal
group G. Then we define ω−1(SpecR → MFG) to be the kernel of G(R[t]/t2) → G(R).
Let’s see how this looks like if G comes actually from a formal group law F : G =
Spf RJxK. Recall that G represents the set-valued functor sending every R-algebra to
its nilpotent elements. Thus, the map G(R[t]/t2) → G(R) is Rnil ⊕ tR[t]/t2 → Rnil

and ω−1(SpecR → MFG) is isomorphic to tR[t]/t2, which we can identify via the
isomorphism τ : R

∼=−→ tR[t]/t2 with R. This shows that the ω−1 we defined is actually
a line bundle (aka invertible sheaf).

Given a diagram like (4.51), the induced map ω−1(SpecR) → ω−1(SpecR) is given
by

f∗ : tR[t]/t2 → tR[t]/t2, t 7→ f(t) = a0t.

We have f∗τ = a0τ . Thus, identifying ω−1(SpecR) with R via τ , we obtain ϕω−1,F,f =
a0. Thus, ω−1 ∼= F−2(pt) and ω ∼= F2.
Remark 4.52. Let F be a quasi-coherent sheaf on an algebraic stack X . We define its
sheaf cohomology Hi(X ;F) as ExtiQCoh(X )(OX ,F).

In algebraic topology, one considers also often Ext of comodules. Indeed, the
Adams–Novikov spectral sequence is a spectral sequence of the form

ExtpMU∗MU -comod(MU∗,MU∗+q) ⇒ πq−pS.

These Ext-groups are zero if q is odd, so we can equally well just consider Ext-
groups in the category of evenly graded MU∗MU -comodules, which is equivalent to
the QCoh(MFG). Thus, the E2

pq-term is isomorphic to Hp(X ;ω⊗q/2) for q even as zero
else.



56

4.7 Landweber’s exact functor theorem revisited
Recall from the exercises that for a scheme X with a Gm-action the stack [X/Gm]
classifies étale Gm-torsors T → S with a Gm-equivariant map T → X. Note that an
étale Gm-torsor is an equivalent datum to an OS-module that is étale locally isomorphic
to OS ; this is indeed equivalent to being Zariski locally trivial (i.e. to being a line
bundle). Thus every étale Gm-torsor is already Zariski locally trivial.

We claim that the canonical morphism SpecL → MFG factors over [SpecL/Gm].
Let p : T → S be a Gm-torsor with a Gm-equivariant map T → SpecL. We can cover S
by affine opens Ui = SpecA, where the Gm-torsor is trivial, i.e. p−1(Ui) ∼= SpecA[u±1].
A Gm-equivariant map SpecA[u±1] → SpecL is the same as a graded map L → A[u±1],
where |u| = 2. This is equivalent to an ungraded map L → A, producing a formal group
law over A. It is easy to see that these formal group laws glue to a formal group on S,
producing a morphism q : [SpecL/Gm] → MFG.

There is also a different way to express this construction. Let R be an evenly
graded ring and F =

∑
i,j aijx

iyj a graded formal group law on R (i.e. |aij | =
2i+ 2j − 2). The canonical map SpecR → [SpecR/Gm] is an fpqc cover and the pull-
back SpecR ×[SpecR/Gm] SpecR is equivalent to R[u±1] with the two structure maps
ηL, ηR : R → R[u±1] induced by the projection being the obvious inclusion and a 7→ uia
if |a| = 2i. Because MFG is an fpqc-stack, giving a morphism [SpecR/Gm] → MFG is
equivalent to giving a formal group over SpecR and an isomorphism between the two
pullbacks to SpecR[u±1]. From F , we obtain a formal group on SpecR and the power
series ux defines an isomorphism between (ηL)∗F =

∑
i,j aijx

iyj and

(ηR)∗F =
∑
i,j

ηR(aij)x
iyj =

∑
i,j

ui+j−1aijx
iyj = u−1

∑
i,j

aij(ux)
i(uy)j .

As the universal formal group law on SpecL is graded (where L is graded compatibly
with the isomorphism L ∼= MU∗), we obtain a map q : [SpecL/Gm] → MFG.

By the exercises QCoh([SpecL/Gm]) is equivalent to graded L-modules. After for-
getting the comodule-structure, q∗ agrees with the equivalence from QCoh(MFG) to
evenly graded (MU∗,MU∗MU)-comodules. In particular, the degree 0-part of q∗Fi(X)
is exactly MUiX (with Fi as in the last section). Let R be an evenly graded ring and
F : L → R be a graded ring homomorphism (corresponding to a graded formal group
law F on R), which induces a map f : [SpecR/Gm] → [SpecL/Gm]. Then the degree
0-part of (qf)∗(Fi(X)) ∼= f∗q∗(Fi(X)) is the degree i-part of MU∗(X) ⊗MU∗ R. We
could write this as

deg0(qf)
∗(F∗(X)) ∼= MU∗(X)⊗MU∗ R.

The crucial observation is the following: Because F∗ is a homology theories for spaces
valued in QCoh(X ) and deg0 is exact, the pullback (qf)∗F∗(X) is a homology theory
if qf is flat. Thus, the Landweber exact functor theorem follows from the following
purely algebraic theorem. (Note that [SpecR/Gm] → MFG is flat iff SpecR → MFG

is flat.)

Theorem 4.53 (Algebraic Landweber exact functor theorem). Let M be a module
over L. Then M is flat over MFG if and only if for every prime p, the sequence
p, v1, v2, . . . on M is regular. Here, M is called flat over MFG if for every morphism
SpecR → MFG the pullback of M to SpecR×MFG

SpecL ≃ SpecS is a flat S-module.

This is not exactly an easy theorem and the best exposition I know is in Lurie’s
notes on chromatic homotopy theory [Lur10], lectures up to 16. We will provide a rough
sketch of his proof. First note that it is enough to prove the theorem p-locally for every
prime p; thus, we fix a prime p in the following.
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We sketch first the theory of p-typical formal group laws. A FGL F over a torsionfree
ring is called p-typical if its logarithm is of the form

∑
i lix

pi

with l0 = 0. Facts:

1. The universal ring for p-typical formal group laws is V = Z(p)[v1, v2, . . . ], where
these vi agree with the previous vi modulo (p, v1, . . . , vi−1) = Ii−1.

2. Every FGL over a p-local ring is canonically isomorphic to a p-typical one, its
p-typification.

3. We obtain morphisms L(p) → V (classifying Funiv,p) and V → L (classifying
the p-typification of Funiv). As Funiv,p is already p-typical, the composition
V → L(p) → V is the identity; thus V is a retract of L(p) and in particular flat as
an L(p)-module.

4. The morphism SpecV → MFG,(p) is fpqc. Indeed, it is flat as V is flat as an
L-module and surjectivity follows from part (2).

Consider the pullback diagram

SpecB //

��

SpecL(p)

��
SpecV //MFG,(p)

As SpecV → MFG,(p) is fpqc, M(p) is flat over MFG,(p) iff MB = M(p) ⊗L(p)
B over

V . One can show that it is enough to show that MB is flat over every Z(p)[v1, . . . , vn].
We will show indeed by downward induction that M/Im is flat over Z(p)[v1, . . . , vn]/Im,
which is clear for m = n+ 1 as Z(p)[v1, . . . , vn]/In+1 = Fp.

We will use the following theorem from commutative algebra.

Proposition 4.54. Let N be a module over a commutative ring A and x ∈ A a non-
zero divisor. Then N is flat over A if and only if the following three conditions are
fulfilled:

1. The element x is a non-zero divisor on N ,
2. N/x is flat over A/x, and
3. N [x−1] is flat over A[x−1]

Assume that we already know that MB/Im+1 is flat over Z(p)[v1, . . . , vn]/Im+1. Con-
sider the non-zero divisor vm ∈ Z(p)[v1, . . . , vn]/Im. Then vm is a non-zero divisor on
MB/Im (by the assumption of the Landweber theorem) and (MB/Im)/vm ∼= M/Im+1

is flat over Z(p)[v1, . . . , vn]/(Im, vm) ∼= Z(p)[v1, . . . , vn]/Im+1. The only thing still to
show is that MB/Im[v−1

m ] is flat over Z(p)[v1, . . . , vn]/Im[v−1
m ].

Let Mm
FG,(p) be the moduli stack of formal groups of exact height m. This agrees

with the fiber product SpecV/Im[v−1
m ]×SpecV MFG,(p) as strict height m is exactly de-

termined by the vanishing of p, v1, . . . , vm−1 and vm being invertible. In particular, we
see that SpecB/Im[v−1

m ] is the fiber product SpecL/Im[v−1
m ]×Mm

FG,(p) SpecV/Im[v−1
m ].

Thus, MB/Im[v−1
m ] is flat as an V/Im[v−1

m ]-module if and only if M(p)/Im[v−1
m ] ∈

L/Im[v−1
m ] -mod is flat over Mm

FG,(p).

Proposition 4.55. Every quasi-coherent sheaf on Mm
FG,(p) is flat.

Proof. We only give a very basic idea of it. The crucial fact is that there is an fpqc map
SpecFp → Mm

FG,(p) (at least for m ≥ 1). The surjectivity means that after suitable flat
extension all formal group laws of height exactly m in characteristic p are isomorphic.
(The statement is even slightly stronger, e.g. there is up to isomorphism a unique formal
group law of height exactly m over Fp.)
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Remark 4.56. From this viewpoint, one sees that the Landweber exact homology theory
associated to a formal group law only relies on the underlying formal group and not on
the choice of coordinate.

end of lecture 20

4.8 Applications to elliptic cohomology and TMF[1
6
]

Sending an elliptic curve to its associated formal group defines a morphism Φ: Mell →
MFG of stacks.

Theorem 4.57. The morphism Φ: Mell → MFG is flat.

Proof. Flatness can be tested fpqc-locally on the base. Thus, it suffices to show that
the composite SpecA → Mell → MFG is flat. As the formal group of the universal
Weierstrass curve carries a coordinate, this factors over SpecL, corresponding to a
formal group law F . By Theorem 4.53, the morphism SpecA → SpecL → MFG is flat
if and only if F is Landweber exact. By Theorem 4.16, it suffices to show that there are
ordinary elliptic curves over every Fp (as they have automatically Weierstrass forms).
This is Proposition 4.15, which we have shown in Example 4.18 at least for p > 2.

Let f : [SpecR/Gm] → Mell be a flat morphism. Then the functor

f∗Φ∗ = (Φf)∗ : QCoh(MFG) → QCoh([SpecR/Gm]) ≃ (evenly graded R-modules)

is exact (as Φ is also flat). Thus, X 7→ H0([SpecR/Gm], (Φf)∗Fi) defines a homology
theory represented by an even spectrum E such that π2∗E = R.

The upshot is the following: We obtain a presheaf Ohom of homology theories on
the category of flat morphisms [SpecR/Gm] → Mell.

We want to do some examples. Let M1(n) be the (pseudo-)presheaf of groupoids
that associates with each scheme S over SpecZ[ 1n ] the groupoid of elliptic curves C
over S with a section S → C of exact order n; more precisely we demand that for every
morphism Spec k → S with k algebraically closed the pulled back section Spec k →
C ×S Spec k has exactly order n in C(k). Isomorphisms have to respect this point. It
is not too hard to check that M1(n) is an fpqc-stack as well.

Proposition 4.58. The map M1(n) → Mell,Z[ 1n ] is étale and surjective.

Proof. Let S → Mell,Z[ 1n ] be a morphism classifying an elliptic curve C and Cn be the
fiber product S×M

ell,Z[ 1
n

]
M1(n). We have to show that Cn → S is étale and surjective.

The map [n] : C → C is étale by Proposition 4.11 as n is invertible on S. Thus,
C[n] is étale over S as the map C[n] → S is by definition the pullback of [n] along the
unit section S → C. For every m idn, the map C[m] → C[n] is a closed immersion
as C[m] → C is one (as it is the base change of the closed immersion S → C). We
claim that Cn is isomorphic to the complement C̃n of the images of the C[m] for m | n
with m ̸= n in C[n]. Indeed: The scheme C[n] represents the functor of morphisms
f : T → S together with a choice of a point of order n in C(T ). Both Cn and C̃n can be
identified with the subfunctor where the chosen point has exactly order n in the sense
above. As C[n] is étale over S and Cn is an open subscheme of C[n], the morphism
Cn → S is étale as well.

For surjectivity it is enough to show that for every C : Spec k → Mell,Z[ 1n ] with k

algebraically closed, we can find a lift to M1(n). But we have seen before (in the proof
of Proposition 4.11) that the n-torsion of C(k) is isomorphic to (Z/n)2; in particular,
there is a point of exact order n.
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Let M1
ell(S) be the groupoid of elliptic curves with chosen invariant differential and

let M1
1(n) = M1(n) ×Mell

M1
ell. We know (from Proposition 3.25 and the exercises)

that

• M1
ell,Z[ 16 ]

≃ SpecZ[ 16 ][c4, c6,∆
−1]

• M1
1(2) ≃ SpecZ[ 12 ][b2, b4,∆

−1]

• M1
1(3) ≃ SpecZ[ 13 ][a1, a3,∆

−1]

Clearly, M1
1(n) is an étale Gm-torsor over M1(n), so we see by the exercises that

[M1
1(n)/Gm] ≃ M1(n). [Strictly speaking, this identification was only shown in the

scheme case, but follows also in general.] Thus, we can obtain homology theories from
the examples above:

• TMF[ 16 ] := Ohom(Mell,Z[ 16 ]
)

• TMF1(2) := Ohom(M1(2)) (the same elliptic homology as considered before)

• TMF1(3) := Ohom(M1(3))

One can indeed show that the M1
1(n) (and indeed the M1(n)) are also affine schemes

for n ≥ 4, resulting in homology theories TMF1(n).
Here, TMF stands for topological modular forms. We will explain how to construct

TMF without 6 inverted in the next sections. What we want to comment on now is
what this has to do with modular forms.

We will explain first what a modular function is.

Definition 4.59. An (algebraic) modular function with coefficients in a ring R is an
element of MF0,R = H0(Mell,R,OMell,R

).

If you have seen the notion of a modular function before in the complex-analytic
setting, this might not appear very similar. Let us sketch what happens if R = C.
Every elliptic curve over C is of the form C/L for some lattice L. Thus, a function on
Mell,C might be seen as a function that sends every lattice L to a complex number. This
function must be invariant under isomorphism of elliptic curves. Two elliptic curves
C/L and C/L′ are isomorphic iff L′ = zL for some z ∈ C×. Thus, we can normalize
the lattice to have one generating vector equal to 1 and one generating vector τ with
Im(τ) > 0. The elliptic curves C/⟨1, τ⟩ and C/⟨1, τ ′⟩ are isomorphic iff τ ′ = aτ+b

cτ+d for(
a b
c d

)
∈ SL2(Z).

Definition 4.60. A (complex-analytic) modular function is a holomorphic function f
on H = {τ ∈ C : Im(τ) > 0} such that f(aτ+b

cτ+d ) = f(τ) and such that f has at most a
pole at τ = i∞ (in a suitable sense).

One can show that these definitions agree (with R = C). One can show that
MF0,R

∼= R[j] (where j is the so-called j-invariant). This is easy if 6 is invertible in R,
but not so easy in general.

We go on to discuss modular forms. First recall that for every elliptic curve p : C →
S with section e : S → C, we obtain a line bundle ωC/S = e∗Ω1

C/S
∼= p∗Ω

1
C/S on S. This

defines a line bundle ω on Mell. Indeed: it suffices to show that for a morphism f : T →
S we have a natural isomorphism f∗e∗Ω1

C/S
∼= ef∗CΩ

1
f∗C/T , where f∗C = C×S T . But

it is a general fact that Ω1
f∗C/T is naturally isomorphic to f̃∗Ω1

C/S for f̃ : f∗C → C.

Definition 4.61. An (algebraic, meromorphic) modular form of weight k with coeffi-
cients in R is an element of MFk,R = H0(Mell,R, ω

⊗k).
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In the complex-analytic condition, we have to replace f(aτ+b
cτ+d ) = f(τ) by f(aτ+b

cτ+d ) =

(cz + d)kf(τ).
We want to claim that TMF[1/6]∗(pt) is concentrated in even degrees and π2k TMF[ 16 ]

∼=
MFk,Z[ 16 ]

. By definition,

πi TMF[ 16 ] = TMF[ 16 ]i(pt) = Fi(pt)(Mell,Z[ 16 ]
) ∼= H0(Mell,Z[ 16 ]

; Φ∗Fi(pt))

for Φ: Mell,Z[ 16 ]
→ MFG as above. Thus, we need to show the following:

Proposition 4.62. We have Φ∗F2i+1(pt) = 0 and Φ∗F2i(pt) ∼= ω⊗i.

Before we prove this, we have to recall a property about differentials.

Lemma 4.63. Denote by AlgaugR the category of augmented R-algebras, i.e. of com-
mutative R-algebras A with a map p : A → R of R-algebras. Let A be such an aug-
mented R-algebra and M an R-module. Denote by R ⊕ M the augmented R-algebra
with (r,m) · (r′,m′) = (rr′, rm′ +mr′) (i.e. a square-zero extension). Then there is a
natural isomorphism

HomA -mod(Ω
1
A/R,M) ∼= HomAlgaug

R
(A,R⊕M),

where A acts on M via p In particular, we get for M = R:

HomA -mod(Ω
1
A/R, R) ∼= HomAlgaug

R
(A,R[t]/t2).

Proof. By definition HomR -mod(Ω
1
A/R,M) is in natural one-to-one correspondence with

R-derivations d : A → M , i.e. R-linear maps satisfying d(ab) = d(a)b+ ad(b), where A
acts on M via p. Such a derivation defines a morphism

A → R⊕M, a 7→ (p(a), d(a))

of augmented R-algebra. If f : A → R ⊕ M is a morphism of augmented R-algebras,
pr2 f is a derivation

Proof of proposition: First note that F2i+1 is obviously zero. Now denote the ω defined
in Remark 4.50 by ωFG. We have seen that F2

∼= ωFG and it is easy to see that F2i
∼=

F⊗i
2 . Thus, it suffices to show that Φ∗ωFG

∼= ω. As we know that the category of quasi-
coherent sheaves on the site of affine schemes over Mell is equivalent to them on the site
of all schemes, it suffices to give a natural isomorphism Φ∗ωFG(SpecR) ∼= ω(SpecR)
for all morphisms SpecR → Mell (classifying an elliptic curve C).

Denote by Ĉ the formal group of C (i.e. the formal completion at the unity section).
Recall that

Φ∗ω−1
FG(SpecR) = ω−1

FG(SpecR) = ker(Ĉ(SpecR[t]/t2) → Ĉ(SpecR)).

More concretly, this consists of all morphisms f : SpecR[t]/t2 → C such that the
composition SpecR → SpecR[t]/t2 → C is the unit section s and the pullback f∗I
is nilpotent, where I is the ideal sheaf cutting out the image of the unit section. But
the latter condition is implied by the former as s∗I = 0 by definition. Note also that
the set-theoretic image of f is automatically exactly the set-theoretic image of the unit
section; thus one can replace C by an affine neighborhood U = SpecA of the image of
s (after possibly shrinking SpecR first).
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We see that Φ∗ω−1
FG(SpecR) consists of augmented R-algebra homomorphisms A →

R[t]/t2. By the last lemma, we see that

Φ∗ω−1
FG(SpecR) ∼= HomA -mod(Ω

1
A/R, R)

∼= HomR -mod(Ω
1
A/R ⊗A R,R)

∼= HomR -mod((s
∗Ω1

SpecA/R)(SpecR), R)

∼= HomR -mod((s
∗Ω1

C/R)(SpecR), R)

∼= HomR -mod(ω(SpecR), R)

This is exactly what we wanted to show.

end of lecture 21

4.9 Exercises
Exercise 4.64. Consider the elliptic curves y2 = x3 ± x over Z[ 12 ]. Show that these
become isomorphic after base change to an étale extension of Z[ 12 ].
Exercise 4.65. Let F be a stack on a site (C, T ) that takes values in discrete groupoids
(aka sets). Show that the stack axioms reduce to the sheaf axioms for presheaves of
sets.
Exercise 4.66. Let G be an affine group scheme. The analogue of a G-principal bundle
in algebraic geometry is that of an étale G-torsor: An étale G-torsor consists of a
scheme T with a (left) G-action and a G-equivariant morphism T → S, where S is
equipped with the trivial action, such that there exists an étale cover S′ → S so that
there is a G-equivariant isomorphism of T ×S S′ with G × S′ over S′. Let BG be the
pseudo-presheaf of groupoids that associates with each scheme S the groupoid of étale
G-torsors over S.

(a) Show that BG is an fpqc stack. (Use Corollary A.17 of https://www.math.uzh.
ch/index.php?file&key1=5171)

(b) Show that BG is an algebraic stack if G is flat over SpecZ.

Exercise 4.67. Let G be again a flat affine group scheme. Let X be a scheme with a
(left) G-action. Define [X/G] to be the pseudo-presheaf of groupoids that associates
with each S the groupoid of étale G-torsors T → S with G-equivariant maps T → X.
([X/G] is called the stack quotient of X by G.)

(a) Show that [X/G] is an fpqc-stack.

(b) Let X = SpecA. Show that [X/G] is an algebraic stack.

(c) Specialize to G = Gm = SpecZ[u±1]. Show that the Hopf algebroid associated
with the cover X → [X/Gm] is (A,A[u±1]).

(d) Recall that a Gm-action on SpecA corresponds to a grading on A; we choose here
the convention that this grading is automatically even (corresponding to the choice
|u| = 2). Deduce that the category of quasi-coherent sheaves on [SpecA/Gm] is
equivalent to evenly graded modules over A. Taking global sections coresponds
to taking the degree 0-part of the module.

Exercise 4.68. Let T → S be an étale G-torsor. Then [T/G] ≃ S. Bonus: As the
notion of an étale G-torsor is closed under pullback, it makes also sense if T and S are
stacks. Is the last assertion still true if S, T are stacks?

https://www.math.uzh.ch/index.php?file&key1=5171
https://www.math.uzh.ch/index.php?file&key1=5171
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5 Topological modular forms
The goal of this section is to construct the spectrum TMF and discuss its basic prop-
erties.

5.1 The construction of TMF and the sheaf Otop

We defined a (meromorphic) modular form of weight k to be a global section of ω⊗k on
Mell. Note that ω was a priori only defined on the site Sch /Mell and in particular not
on Mell itself. But if we choose an fpqc (or even étale) cover X → Mell, we can define
H0(Mell, ω

⊗k) simply as the equalizer of the two natural maps ω⊗k(X) → ω⊗k(X×Mell

X). A more functorial definition is to define it as lim(X,f)∈Sch /Mell
ω⊗k(X, f). These

definitions are easily seen to coincide if we use that ω is an fpqc-sheaf on Sch /Mell

(which is automatic from the quasi-coherence on affine schemes and the Zariski sheaf
condition).

Let Ohom be as in the last section. We would like to define TMF to be the global
sections of Ohom. The problem: Ohom is only defined on affine schemes (or more
generally on stacks of the form [SpecA/Gm]). To define its global sections, we have to
form a kind of limit. But the category of homology theories does not have all limits!
So we should lift it to a setting where limits exist. For this purpose, let Aff ét /Mell be
the full subcategory of Aff /Mell of étale morphisms SpecA → Mell.

Theorem 5.1 (Goerss–Hopkins–Miller). There is a presheaf of spectra11 Otop on
Aff ét /Mell whose underlying presheaf of homology theories is isomorphic to Ohom.
Actually, Otop can be chosen to be even a presheaf of E∞-ring spectra.

Here, E∞-ring spectra can mean different things and the theorem is true for every
interpretation. It is a refinement of the notion of a commutative monoid in Ho(Sp) to
something stricter/more structured. One possible model: Commutative monoids in the
category SpO of orthogonal spectra. [One can also treat it via ∞-categories.]

To define global sections, it makes more sense in this homotopical setting to use a
homotopy limit than a usual limit. (We will talk later about how to construct/define
homotopy limits.)

Definition 5.2. Define TMF as the “global sections” of Otop; more precisely, we define

TMF := holim
(SpecA

f−→Mell)∈Aff ét /Mell

Otop(SpecA
f−→ Mell).

12

More generally, if X → Mell is an étale map from an algebraic stack, we define

Otop(X ) = holim
(SpecA

f−→X )∈Aff ét /X
Otop(SpecA

f−→ X → Mell).

To access the homotopy groups of these spectra, we will use the descent spectral
sequence. This requires some preparation to state.

Definition 5.3. Let X be an algebraic stack. We denote by Hq the q-th derived functor
of the global sections functor QCoh(X ) → AbGrps.

11It is of importance here that this is really a presheaf in the category of spectra and not in the homotopy
category of spectra.

12Note that the diagram category for the homotopy limit is large (i.e. does have more a set of objects)
and thus the homotopy limit a priori does not need to exist. As we will later exploit one gets the same
result though by choosing an étale cover X → Mell by an affine and computing the homotopy limit over the
cosimplicial diagram n 7→ Otop(X×Mell

(n+1)), which certainly exists in E∞-ring spectra. One can actually
argue from there that the homotopy limit over the large diagram mentioned above has also to exist.
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Remark 5.4. More commonly, sheaf cohomology is defined not as the derived functor
of global sections from quasi-coherent sheaves on some site, but rather as the derived
functor of global sections from sheaves of abelian groups on some suitable site. One
can show that these notions agree if we use the fqpc topology for algebraic stacks. This
is Proposition B.8 in [TT90] in the case of a quasi-compact and semi-separated scheme
and the case of algebraic stacks is similar.

If F is an presheaf of spectra on a site, we denote by πkF the sheafification of the
presheaf X 7→ πk(F(X)). On Aff ét /Mell the presheaf X 7→ πk(Otop(X)) is already a
sheaf, namely 0 if k is odd and ω⊗k/2 if k is even. In particular, πkOtop is 0 for k odd
isomorphic to ω⊗k/2 if k is even.

Theorem 5.5. Let X → Mell be an étale map from an algebraic stack. There is a
spectral sequence

Hq(X ;πpOtop) ⇒ πp−qOtop(X ).

In particular, we have a spectral sequence

Hq(Mell;πpOtop) ⇒ πp−q TMF .

The edge homomorphism is

π2k TMF → MFk,Z = H0(Mell;ω
⊗k).

Lemma 5.6. If X = SpecA or [SpecA/Gm] and F is a quasi-coherent sheaf on X ,
then Hq(X ;F) = 0 for q > 0.

Proof. The former case is well-known. For the latter: We observed before that QCoh(X )
is equivalent to evenly graded A-modules and that the global sections functor corre-
sponds to taking degree-0. This is obviously exact and so all higher derived functors
vanish.

Proposition 5.7. Let A∗ be an evenly graded ring and X = [SpecA∗/Gm] with an
étale map to Mell. Then π∗Otop(X ) ∼= A∗. Thus, Otop also refines Ohom on stacks of
the form [SpecA/Gm] étale over Mell.

This discussion also confirms that π2∗ TMF[ 16 ] is just the ring of modular forms
MF∗,Z[ 16 ]

∼= Z[ 16 ][c4, c6,∆
−1]. The homotopy groups are considerably more difficult to

calculate without 6 inverted.
end of lecture 22

5.2 The spectral sequence for a tower of fibrations
Lemma 5.8. Let Y • = (· · · → Y 1 → Y 0) be a tower of Serre fibrations. Then we
obtain a natural exact sequence

0 → lim 1
nπ∗+1Y

n → π∗ lim
n

Y n → lim
n

π∗Y
n → 0.

In particular we get the following: Let Y • = (· · · → Y 1 → Y 0) and Z• = (· → Z1 →
Z0) be two towers of Serre fibrations. Let Y • → Z• be a map of towers that is levelwise
a weak homotopy equivalence. Then we obtain a weak equivalence on the inverse limits.

We obtain an analogous statement for a tower of levelwise Serre fibrations of Ω-
spectra Y •. We obtain an exact couple

D =
⊕

n π∗Y
n // D =

⊕
n π∗Y

n

tt
E =

⊕
n π∗(fib(Y

n → Y n−1)

jj
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This produces a spectral sequence with E1-term
⊕

n π∗(fib(Y
n → Y n−1) and con-

verging to limn π∗Y
n, which is under good circumstances the same as π∗ limn Y

n.

5.3 The spectral sequence for a cosimplicial spectrum
Before we discuss general homotopy limits, we discuss as a first example a homotopy
equalizer and let’s start in the category of (compactly generated, weak Hausdorff)
topological spaces. Recall that the equalizer of two maps f, g : X → Y consists of all
x ∈ X such that g(x) = g(x). In the homotopy world, we replace equality by paths.
Thus, the homotopy equalizer of f and g consists of the space of x ∈ X together with
a path γ : I → Y such that γ(0) = f(x) and γ(1) = g(x). We generalize this to the
totalization of a semi-cosimplicial diagram.

Let ∆inj be the category with objects n = {0, 1, . . . , n} (for n ∈ Z≥0) and (not
necessarily strictly) monotonic injective maps as morphisms. We denote the injection
n− 1 → n that has i not in its image by di. All morphisms are composites of di. For
a category C, we will call a functor ∆inj → C a semi-cosimplicial object. By the remark
above, an equivalent description is a sequence of objects Xn ∈ C with morphisms
di : Xn−1 → Xn satisfying the compatibility djdi = didj−1 if i < j.

Definition 5.9. Let ∆• be the semi-cosimplicial space whose n-th space is the n-
simplex (with di the inclusion of the face opposite to the i-th vertex). Let X• be a
semi-cosimplicial space or spectrum.

We define its totalization Tot(X•) as the mapping space/spectrum Map∆inj
(∆•, X•).

(i.e. in the space case the subspace of
∏

n Map(∆n, Xn) compatible with cofaces and
codegeneracies; in the spectrum case we do this construction levelwise).

Let X•≤n be the restriction of the diagram to the full subcategory (∆n
0 )inj of ∆ on

[0], . . . , [n]. We define the n-th partial totalization Totn(X
•)of X• to be the mapping

spaces (or spectrum) Map(∆n
0 )inj

(∆≤n, X≤n).

Example 5.10. Let X• be a semi-cosimplicial space with Xn = pt for n > k. Then
the map Tot(X•) → Totk(X

•) is a homeomorphism. If k = 1, this totalization recovers
the homotopy equalizer.

Lemma 5.11. Let X• be a semi-cosimplicial space. The map Totn(X
•) → Totn−1(X

•)
is a Hurewicz fibration.

Proof. We have to show that every commutative diagram

Y × 0

��

f // Totn(X•)

��
Y × I

α //

88

Totn−1(X
•)

has a diagonal lift. It suffices to show this for Y = pt since the general case reduces to
this by considering (X•)Y . From f and the diα, we obtain a map ∆n×0∪∂∆n×I → Xn.
We precompose with the standard retraction ∆n × I → ∆n × 0 ∪ ∂∆n × I to obtain a
map ∆n × I → Xn or, by adjunction, I → Map(∆n, Xn). This map defines together
with α the required lift I → Totn(X

•).

Lemma 5.12. Let X• be a pointed semi-cosimplicial space (i.e. a semi-cosimplicial
object in pointed spaces with base point ∗). Then the fiber of Totn(X•) → Totn−1(X

•)
is homeomorphic to Map(∆n/∂∆n, Xn) ∼= ΩnXn. The induced map ΩnXn−1 →
ΩTotn−1(X

•) → ΩnXn is homotopic to dn − dn−1 + · · · ± d0 if n ≥ 2 and to (d0)
−1d1

if n = 1.
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Proof. By definition, the fiber is the space of all maps ∆n → Xn, which maps all faces
to the base point. This shows the first part.

For the second: The map ∂ : ΩTotn−1(X
•) → fib(Totn(X

•) → Totn−1(X
•)) ∼=

ΩnXn is defined as follows: Given α : I → Totn−1(X
•) with α(0) = α(1) = ∗, lift it in

the manner of the last lemma to α̃ : I → Totn(X
•) (using the map ∗ : 0 → Totn(X

•) as a
start) and ∂(α) = α̃(1). Restriction ∂ to ΩΩn−1Xn−1 means that the map I×∆n → Xn

is the base point on the (n− 2)-skeleton. If we identify ∆n× 0∪ (∂∆n× I) with ∆n (as
the retraction defining α̃ does), we see that the resulting map ∆n/∂∆n is the alternating
sum of the maps on the faces, which are exactly the diα (as the bottom face is constantly
∗). [This should be worked out more carefully with the orientations/signs!]

Proposition 5.13. Let X• → Y • be a levelwise weak homotopy equivalence of semi-
cosimplicial spaces. Then the induced map on totalizations is a weak homotopy equiva-
lence as well.

The same is true if X• → Y • is a π∗-isomorphism between Ω-spectra.

Proof. By the five lemma and the Lemmas 5.11 and 5.12, we see that the induces map
Totn(X

•) → Totn(Y
•) is a weak equivalence. [One has to be a little careful with π0 and

π1 as these are not abelian groups; we will not be so careful with this because we will
switch to spectra in a moment.] By the Lemma 5.8, we obtain the same result for Tot
itself. The case of Ω-spectra follows because a π∗-isomorphism between Ω-spectra is a
levelwise weak homotopy equivalence and every levelwise weak homotopy equivalence
is a π∗-isomorphism.

Because of this homotopy invariance property, we call Tot(X•) also the homotopy
limit of X• (if the Xn are spaces or Ω-spectra). If X• is any semi-cosimplicial diagram
of spectra, we can first functorially replace the spectra by π∗-isomorphic Ω-spectra and
then take Tot to obtain the homotopy limit.
Construction 5.14. Let X• be a semi-cosimplicial spectrum.13 We replace all Xn by
Ω-spectra without changing their π∗. Then the tower

· · ·Totn(X•) → Totn−1(X
•) → · · · → Tot0(X

•) = X0

defines a spectral sequence in the manner of the last section. It takes the form

Epq
1 = πpΩ

qXq ∼= πp−qX
q ⇒ lim

q
πp Totq X

•.

In this indexing, this is an upper half-plane spectral sequence. If only finitely many
differential exit each spot, then the spectral sequence converges strongly and the target
can be identified with

πp lim
q

Totq X
• ∼= πp TotX

• ∼= πp holim∆inj
X•.

(See [Boa99, Theorem 7.4] for the last point) The d1-differential on E1 is induced by
the alternating sums of the di in the cosimplicial spectrum.

The spectral sequence is called the Bousfield–Kan spectral sequence associated with
the semi-cosimplicial spectrum X•.

References: [GJ99, Chapter VIII], [BK72], [Dou07]

13There is an analogous version for pointed spaces; the difficulty is however that π0 and π1 are not abelian
groups so that one gets a spectral sequence where some things are just non-abelian groups or pointed sets,
which complicates everything. The version for non-pointed spaces is even more difficult, partially because
Tot(X•) might be a priori empty.
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5.4 Descent spectral sequence again
As noted above, the maps M1(n) → Mell×SpecZ[ 1n ] are étale and surjective. Moreover
M1(n) is equivalent to an affine scheme for n ≥ 4. Thus, there exists an étale cover of
Mell by an affine scheme. The same is true for every algebraic stack X that is étale
over Mell. Indeed, just pull the cover SpecA → Mell back to SpecA ×Mell

X → X ;
the source is equivalent to a scheme as X → Mell is representable and the map is étale
and surjective (because these properties are closed under pullbacks). Now we can just
Zariski cover the source by affine opens.

Let U → X be an étale cover by an affine scheme U . We obtain the so-called descent
spectral sequence

Epq
1 = πpOtop(U×X q+1) ⇒ πp−q holim[n]∈∆ Otop(U×Xn+1).

We want to identify source and target with more familiar quantities. Let’s begin with
the source. The map U → X is affine (as X is algebraic) so that the U×Xn+1 are affine
schemes. Then the cochain complex Ep•

1 -term can be identified with the Cech complex
for the ω⊗∗ for the cover U → X . Using that all intersections are affine (and hence
acyclic for cohomology), one sees that the cohomology of this cochain complex (i.e.
Epq

2 ) is isomorphic to Hq(X ;πpOtop). Now to the target:

Definition 5.15. A presheaf F of spectra on a site C is called a sheaf if for every cover
U → X, the map

F(X) → holim∆ Otop(U×Xn+1)

is an equivalence.

Lemma 5.16. Otop is a sheaf on Aff ét /Mell (with the étale topology).

Proof. Consider the descent spectral sequence for a cover U → V of affine schemes.
The E2-term is concentrated in line zero as affine schemes have no higher cohomology.
This also implies (by a degenerate form of the Mittag–Leffler criterion) that the lim1-
term vanishes. We obtain that πk holim∆ Otop(U×V n+1) is πkOtop(V ), as was to be
shown.

One can show that extending a sheaf on Aff ét /Mell to all algebraic stacks étale over
Mell preserves the sheaf property. Thus, we have holim∆ Otop(U×Xn+1) ≃ Otop(X ).
This gives the final form of the descent spectral sequence:

Proposition 5.17. For any algebraic stack X étale over Mell, there is a spectral
sequence

Epq
2

∼= Hq(X ;πpOtop) ⇒ πp−qOtop(X ).

This is conditionally convergent in the sense of [Boa99].

Recall that we showed that πpOtop = 0 vanishes if p odd and π2pOtop ∼= ω⊗p so that
the E2-term is indeed completely algebraic.
Remark 5.18. We do not have to take an affine scheme U for this to work; we can any
étale cover Y → X instead on which the ω⊗i have no higher cohomology, e.g. Y could
be of the form [SpecR/Gm].

end of lecture 23
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5.5 A tale of two spectral sequences
There is another, even more important spectral sequence: The Adams–Novikov spectral
sequence. We will consider it only in the special case, where it computes (potentially)
the stable homotopy groups of the sphere spectrum. The importance for us is that
there is a comparison map to a descent spectral sequence for TMF, which allows to
transfer information both ways.

We want to use in this section a smash product of spectra that is not only defined
on the homotopy category. For definiteness we will use orthogonal spectra for this (see
[MMSS01] for the original source or [Sch12] for a comprehensive treatment of the similar
theory of symmetric spectra, which are almost equally as good for our purposes; it also
contains a brief treatment of orthogonal spectra in Section I.7 – one can also have a look
at [Mal11], which is an introduction to stable homotopy theory including orthogonal
spectra). The basic idea is that the category of orthogonal spectra is an enhancement
of the category of usual spectra (essentially the n-th level is equipped with a nice O(n)-
action). This enhancement allows us to define a smash product on the category of
orthogonal spectra. Furthermore, the forgetful map from orthogonal spectra to usual
spectra induces an “equivalence of homotopy theories”. In the background, we will use
the positive convenient model structure of [Sto11, Section 1.3].
Construction 5.19. Let E be a spectrum with a map e : S → E. We obtain a semi-
cosimplicial spectrum X• with Xn = E∧(n+1) with the di induced by e. The resulting
Bousfield–Kan spectral sequence is called the E-based Adams spectral sequence (for S).
In this generality, it is rather useless though. (In particular, it should be only applied
if E is cofibrant as else the smash product will not be homotopically correct.)
Remark 5.20. The construction is obviously functorial in maps of spectra f : E → E′,
where we have e′ = fe (where e : S → E and e′ : S → E′ are the two “unit maps”).
We claim that it is even functorial if we only have e′ ≃ fe with specified homotopy
H : fe ⇒ e′. It is enough to consider for this the case f = id. We denote the n-th
partial totalization associated with e by Totn and the one associated with e′ by Tot′n.
It is enough to construct maps fn : Totn → Tot′n such that the squares

Totn

��

// Tot′n

��
Totn−1

// Tot′n−1

are commutative. Assume we have already constructed fi for i ≤ n. Recall that a point
in the k-th level of Totn consists of a point (g0, . . . , gn−1) ∈ (Totn−1)k together with a
map gn : ∆

n → (E∧n+1)k satisfying diegn−1 = gnd
i; here die : E

∧n → E∧(n+1) uses e at
the i-th factor. We obtain maps I × ∆n−1 → (E∧n+1)k by (t, x) 7→ (diH(t)gn−1)k(x).
We can glue them together with gn to obtain a map (∆n×0)∪ (∂∆n×I) → (E∧n+1)k.
Using the usual retraction, we obtain a map ∆n × I → (E∧n+1)k, whose restriction to
∆ × 1 we use as the image of (g0, . . . , gn) in (E∧n+1)k. [There is probably an easier
way to do this by replacing E′ by E′∆1

to make the equality e′ = fe strict.]
What if e and e′ just define the same map S → E in the stable homotopy category?

Using model category language (see [MMSS01] for the stable model structure we are
using in this paragraph), we find a π∗-isomorphisms r : E → Ef to a fibrant orthogonal
spectrum. Clearly, r induces isomorphisms of spectral sequence the ones for (E, e)
and (Ef , re) and the ones for (E, e′) and (Ef , re′). Furthermore, re and re′ are really
homotopic as S is cofibrant. Thus, we can use the previous arguments.

The two most important examples are the following:
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Example 5.21. Take E = HFp. Then the spectral sequence converges (strongly) to
the p-completion of π∗S. The E2-term can be identified with Es,t

2 = ExtsA(Fp,Fp[t]),
where A denotes the mod-p-Steenrod algebra and Fp[t] indicates a grading shift. This
is one of the most powerful tools to compute the homotopy groups of spheres (especially
at p = 2). This was the original example of an Adams spectral sequence, with which
Adams solved Hopf invariant 1 problem.

Example 5.22. Let E = MU .14 Then the spectral sequence converges (strongly)
to π∗S. The E2-term can be identified with E2

s,t = ExtsMU∗MU (MU∗,MU∗+t). Here,
the Ext is taken in the category of (MU∗,MU∗MU)-comodules. This is as well an
extremely powerful tool to compute the homotopy groups of spheres, especially at odd
primes. This spectral sequence is also called the Adams–Novikov spectral sequence,
which we will just abbreviate to ANSS.

Let us make the identification of the E2-term more explicit. From the general
identification of the E1-term of the Bousfield–Kan spectral sequence we know that the
E1-term is a cochain complex with n-th term π∗(MU∧n+1). The differential is the
alternating sum of the maps induced by taking the unit in the i-th factor.

Recall that MU∗MU = π∗MU ∧MU . Thus, we obtain a map

fn : (MU∗MU)⊗MU∗n → π∗(MU (n+1))

as follows: First, we have a map

(MU∗MU)⊗n → π∗(MU ∧MU)∧n ∼= π∗(MU∧ 2n).

Then we use the map MU∧ 2n → MU∧n+1 that multiplies the second and third entry,
the fourth and fifth entry etc. This descends to a map fn as above. The argument
above Example 4.43 shows that fn is an isomorphism. One checks that the differential
on the E1-term becomes under fn the following:

d0(a) = ηR(a)− ηL(a) (5.23)

dn(γ1 ⊗ · · · ⊗ γn) = (1⊗ γ1 ⊗ · · · ⊗ γn) +

n∑
i=1

(−1)iγ1 ⊗ · · · ⊗Ψ(γi)⊗ · · · γn + (−1)n+1(γ1 ⊗ · ⊗ γn ⊗ 1).

(5.24)

This is called the cobar complex for the graded Hopf algebroid (MU∗,MU∗MU).
We can interpret this also as a Cech complex. We have maps

gn : (MU2∗MU)⊗MU2∗n → ω⊗∗([SpecL/Gm]×MFG
n+1)

defined in a fashion analogous to the maps fn and these are also isomorphisms. Under
gn the cobar differential corresponds exactly to the Cech differential. The cohomology
Hi of quasi-coherent sheaves vanishes for i > 0 on the

[SpecL/Gm]×MFG
n+1 ≃ [SpecMU2∗MU⊗MU2∗n/Gm]

(for n ≥ 1) and thus the cohomology of the Cech complex is actually H∗(MFG;ω
⊗∗).

As we have discussed before,

Hs(MFG;ω
⊗k) ∼= ExtsMU2∗MU (MU2∗,MU2∗+2k).

One easily sees that E2
s,t = 0 for t odd.

14We choose a nice model for MU as a commutative monoid in orthogonal spectra that is cofibrant (as a
commutative monoid and hence as an underlying orthogonal spectrum).
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Construction 5.25. Let X be an algebraic stack with an étale map f : X → Mell

and U = [SpecR/Gm] → X an étale cover (for R an evenly graded ring). We want
to construct a comparison map between the ANSS and the descent spectral sequence
(DSS) computing π∗Otop(X ). Set X := Otop(U).15 Note that π∗X = R. As X is even,
we can choose a complex orientation MU → X, which commutes up to homotopy with
the unit maps. This induces a map from the ANSS to the X-based Adams spectral
sequence.

Now recall that the smash product is the coproduct in commutative monoids in
orthogonal spectra. We have the n + 1 maps pr∗i : X = Otop(U) → Otop(U×Mell

n+1),
which induce a map X∧n+1 → Otop(U×Mell

n+1). For varying n, these assemble into a
map of cosimplicial objects. Thus, we obtain a map from the X-based Adams spectral
sequence to the DSS computing π∗Otop(X ).

We have identified the E1-term of the ANSS with the Cech complex for ω⊗? based
on the cover [SpecL/Gm] → MFG. The induced map on E1-terms between the ANSS
and the DSS is just that from the Cech complex above to the Cech complex for ω⊗?

based on the cover U → X , using the commutative square

[SpecR/Gm] //

��

[SpecL/Gm]

��
X

Φf //MFG.

Here, the lower map uses the map Φ: Mell → MFG considered before (sending an
elliptic curve to its formal group) and the upper map comes from the graded formal
group law on R = π2∗X.

In particular, the map on E2-terms is just the map Hs(MFG;ω
⊗t) → Hs(X ; f∗ω⊗t)

induced by fΦ.
As we have already computed π∗ TMF[ 16 ], we are interested in computing π∗ TMF(2)

and π∗ TMF(3). Here, we can take the covers M1(3)(2) → Mell,(2) and M1(2) →
Mell,(3), which are very explicit. We will concentrate mostly on the prime 3 as compu-
tations here are easier.

5.6 Computations in cobar complex: Moduli of elliptic curves
We will implicitly invert 2 everywhere in this section. Recall that

M1(2) ≃ [SpecZ[b2, b4,∆−1]/Gm].

Set A = Z[b2, b4,∆−1]. The pullback SpecA ×Mell
M1(2) classifies 2-torsion points

on elliptic curves of the form y2 = x3 + b2x
2 + b4x; these 2-torsion points are exactly

points of the form (r, 0), where r is a zero of the right hand side. Thus, SpecA×Mell

M1(2) ≃ Spec Γ with Γ = A[r]/r3 + b2r
2 + b4r. We conclude M1(2) ×Mell

M1(2) ≃
[Spec Γ/Gm].16 By the same arguments as for MU∗, we can compute now the coho-
mology of Mell as the cohomology of the cobar complex of (A,Γ). This has n-th term
Γ⊗An and differential as in (5.23).

Let us make the structure maps ηL, ηR and Ψ explicit. The map ηL : A → Γ is the
obvious inclusion; indeed, the projection pr1 : M1(2)×Mell

M1(2) → M1(2) forgets in
our identification just the 2-torsion point. The map ηR corresponds however to pr2. If
we want to bring the elliptic curve y2 = x3 + b2x

2 + b4x with 2-torsion point (r, 0) into

15We should replace X cofibrantly (up to π∗-isomorphism) for all things to be good.
16Here, we use that [X/G] ×Y Z ≃ [(X ×Y Z)/G] (for G = Gm) if X is equipped with a G-action; this

can be shown using the definition of [X/G] given in Exercise 4.67, which generalizes to stacks.



70

the standard form we have to move (r, 0) to (0, 0). The coordinate change x 7→ x + r
sends exactly the (0, 0)-point to the point (r, 0). We compute

(x+r)3+b2(x+r)2+b4(x+r) = x3+(b2+3r)x2+(b4+2b2r+3r2)x+(r3+b2r
2+b4r).

Note that the constant term is zero. We obtain

ηR(b2) = b2 + 3r

ηR(b4) = b4 + 2b2r + 3r2

To compute Ψ, we observe that composing x 7→ x + r with x 7→ x + r′, we obtain
x 7→ x+ (r + r′). This is represented by the map

Ψ: Γ → Γ⊗A Γ, r 7→ r ⊗ 1 + 1⊗ r.

Note that this is both a map of A-bimodules and of algebras, thus the image of r
determines the whole map.

This makes the cobar complex completely algebraic. Its cohomology has been com-
puted in [Bau08, Section 5] (without ∆ inverted). We will do just a few sample com-
putations and then cite the result of Bauer.

Proposition 5.26. The ring of modular forms MF∗,Z[ 12 ]
is the zeroth cohomology of

the cobar complex above and it is Z[ 12 ][c4, c6,∆
±1]/(27∆ = 4c34 − c26).17

Proof. The 0-th cohomology of the cobar complex is the equalizer of ηL and ηR. By
the definition of a sheaf (and the matching of gradings and the ω⊗∗), this agrees with
the global sections of the sheaves ω⊗∗.

It is easy to see that the elements

c4 = b22 − 3b4

c6 = 2b32 − 9b2b4

lie in the equalizer of ηL and ηR. Thus, also

∆ =
1

27
(4c34 − c26) = b24(b

2
2 − 4b4)

is in the equalizer. We obtain a map

φ : Z[ 12 ][c4, c6,∆
±1]/(27∆ = 4c34 − c26) → MF∗,Z[ 12 ]

.

As we know the right-hand side after inverting 3, we see that the map is an isomorphism
after inverting 3. Viewing the right-hand side as as subring of Z[ 12 ][b2, b4,∆

−1], we see
that is torsionfree and thus φ must be injective. Moreover, for every f ∈ MF∗,Z[ 12 ]

,
there exist k, l ∈ N such that 3k∆lf = φ(P (c4,∆) + Q(c4,∆)c6), where P and Q
are polynomials with coefficients in Z[ 12 ]. An elementary argument shows that the
image of P (c4,∆) + Q(c4,∆)c6 in F3[b2, b4] can only be zero if P (c4,∆) + Q(c4,∆)c6
has zero image in F3[c4, c6,∆]. Hence, P (c4,∆) + Q(c4,∆)c6 is divisible by 3k and
f = φ(3−k∆−l(P (c4,∆) +Q(c4,∆)c6)). This shows the surjectivity of φ.

end of lecture 24
17Usually one chooses a different convention for ∆, c4 and c6, but these differ just by powers of 2.
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We identify two cocycles in the cobar complex:

d(r) = r ⊗ 1−Ψ(r) + 1⊗ r = 0

d(r2 ⊗ r + r ⊗ r2) = 1⊗ r2 ⊗ r + 1⊗ r ⊗ r2 −Ψ(r2)⊗ r −Ψ(r)⊗ r2

+r2 ⊗Ψ(r) + r ⊗Ψ(r2)− r2 ⊗ r ⊗ 1− r ⊗ r2 ⊗ 1

= 0,

where we use Ψ(r2) = r2 ⊗ 1 + 2r ⊗ r + 1 ⊗ r2. We set α = [r] ∈ H1(Mell;ω
⊗2) and

β = [−r2 ⊗ r − r ⊗ r2] ∈ H2(Mell;ω
⊗6).18

As d(r2) = 2r ⊗ r, we see that α2 = [r ⊗ r] is zero. Furthermore, d(b2) = 3r
(hence 3α = 0) and d(r3) = 3r2 ⊗ r + 3r ⊗ r2 (hence 3β = 0). We obtain a map
Λ(α) ⊗ F3[β] ⊗ F3[∆

±1] → H∗(Mell;ω
⊗∗). By [Bau08], this is an isomorphism in

positive cohomological degree. (See also [Mat12] for a more detailed treatment.)
Remark 5.27. There is a more conceptual way to see that all cohomology classes in
positive degree have to be 3-torsion. Consider the map f : M1(2) → Mell. As

H0(M1(2);F) ∼= H0(Mell; f∗F)

and f∗ is exact (as f is finite and in particular affine), we have

Hi(Mell; f∗F) ∼= Hi(M1(2);F)

for all i ≥ 0. If F is quasi-coherent, this means in particular that these groups vanish
for i > 0. Note furthermore that if F is a line bundle (e.g. f∗ω⊗j) that f∗F is a vector
bundle because f is finite and flat and finite flat modules are projective (hence locally
free); the rank of f∗F is 3 as the degree of f is 3.

For quasi-coherent sheaves G and G′ on an algebraic stack X , we use HomOX (G,G′)
to denote the sheaf evaluating on g : U → X to the abelian group HomOU

(g∗G, g∗G′). If
G is a vector bundle of rank n, then the map HomOX (G,OX )⊗OX G → HomOX (G,G)
is an isomorphism because it is locally so. Consider now the composite

OX → HomOX (G,G) ∼= HomOX (G,OX )⊗OX G → OX .

Locally one can check that the first morphism corresponds to the unit matrix and the
second morphism to the trace. Thus, the composite is just multiplication by n. If
G is a sheaf of algebras, the map OX → HomOX (G,G) factors through G (via left
multiplication). The resulting map G → OX is also called the transfer.

In particular, we see that the multiplication by 3 map on OMell
factors over f∗OM1(2)

and hence the multiplication by 3 map on ω⊗i factors over f∗OM1(2)⊗ω⊗i ∼= f∗f
∗ω⊗i.

(In the last step, we use the projection formula, see e.g. [Har77, Ch III, Exercise 8.3].)
Thus, the multiplication by 3 map on Hj(Mell;ω

⊗i) factors over Hj(M1(2); f
∗ω⊗i),

which is zero for j > 0. Thus, all cohomology in positive degrees of ω⊗i on Mell is
3-torsion. (Recall that we are still inverting 2 here! In general, it is only 24-torsion by
using a similar argument with the cover M1(3) → Mell,Z[ 13 ]

of degree 8.)

We can actually compute the transfer tr : f∗OM1(2) → OMell
(or the same map after

tensoring with ω⊗∗) concretely via the equivalence between quasi-coherent sheaves on
Mell and (A,Γ)-comodules. Evaluating tr on SpecA gives a map

Tr: Γ = f∗ω
⊗∗(M1(2)) → A.

18[Bau08] has a plus and a minus sign in the definition of β instead. It seems that there is either a subtle
difference of convention or there is an error either here or there.
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This transfer is the composite of M : Γ → HomA(Γ,Γ) (given by (left) multiplication)
and the trace Trace: HomA(Γ,Γ) → A. The latter trace is just the usual trace of
a matrix if we identify Γ = A{1, r, r2} so that HomA(Γ,Γ) becomes the algebra of
A-valued 3× 3-matrices. Both maps are A-linear. We have:

M(1) =

1 0 0
0 1 0
0 0 1


M(r) =

0 0 0
1 0 −b4
0 1 −b2


M(r2) =

0 0 0
0 −b4 b2b4
1 −b2 b22 − b4


Here, we use the equality r3 = −b2r

2 − b4r. Thus, we obtain

Tr(1) = 3

Tr(r) = −b2

Tr(r2) = b22 − 2b4.

When evaluated on SpecA → Mell, the map tr induces a commutative square

A

ηR

��

tr // MF∗,Z[ 12 ]

��
Γ

Tr // A.

Using Proposition 5.26, we may view the right vertical map as an inclusion. We further
note that all the maps are MF∗,Z[ 12 ]

-linear. We have:

tr(1) = Tr(1) = 3

tr(b2) = Tr(b2 + 3r) = 3b2 + 3Tr(r) = 0

tr(b4) = Tr(b4 + 2b2r + 3r2) = 3b4 + 2b2(−b2) + 3(b22 − 2b4)

= b22 − 3b4 = c4

tr(b2b4) = Tr((b2 + 3r)(b4 + 2b2 + 3r2))

= 9b2b4 − 2b32 = −c6

We see that the ideal (3, c4, c6) ⊂ MF∗,Z[ 12 ]
lies in im(tr); one can actually show

that this containment is equality and so MF∗,Z(3)
/im(tr) = F3[∆

±1]. Indeed: The
ideal (3, c4, c6) is a maximal homogeneous ideal (as the quotient is the graded field
F3[∆

±1]) and thus it suffices to show that 1 is not in im(tr). One can show that in
general for x ∈ H∗(Mell;ω

⊗∗) we have x tr(y) = tr(xy), where we view tr as a map
H∗(M1(2); f

∗ω⊗∗) → H∗(Mell;ω
⊗∗); but for x in positive cohomological degree tr(xy)

must be zero, but if tr(y) = 1 it must also be equal to x. This is a contradiction as
there are classes in H∗(Mell;ω

⊗∗) of positive cohomological degree.

5.7 Computations in cobar complex: Moduli of formal groups
It is much harder to make the Hopf algebroid (MU∗,MU∗MU) explicit, but we will do
it in very low degrees. Recall that MU∗ ∼= Z[u1, u2, . . . ] and

F (x, y) = x+ y + u1xy + · · · .
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Furthermore, MU∗MU ∼= MU∗[m1,m2, . . . ] and the mi correspond to power series
x+m1x

2 +m2x
3 + · · · that defines an isomorphism. The morphism ηL is under these

identifications just the obvious inclusion.

Lemma 5.28. We have ηR(u1) = u1 − 2m1.

Proof. Let f(x) = x +m1x
2 +m2x

3 + · · · . We have to compute f−1F (f(x), f(y)) in
low degrees (i.e. modulo terms of degree higher than 2). For these low degrees we can
pretend that f(x) = x + m1x

2 and f−1(x) = x − m1x
2 and F (x, y) = x + y + u1xy.

With this identification, we have (modulo terms of degree higher than 2):

f−1F (f(x), f(y)) ≡ (x+m1x
2) + (y +m1y

2) + u1xy −m1(x+ y)2

≡ x+ y + (u1 − 2m1)xy.

Lemma 5.29. We have

Ψ(m1) = m1 ⊗ 1 + 1⊗m1

Ψ(m2) = m2 ⊗ 1 + 2m1 ⊗m1 + 1⊗m2.

Proof. Let f(x) = x+m1x
2+m2x

3+ · · · and g(x) = x+m′
1x

2+m′
2x

3+ · · · . We have
(modulo terms of degree higher than 3):

f(g(x)) ≡ x+m′
1x

2+m′
2x

3+m1(x+m′
1x

2)2+m2x
3 ≡ x+(m′

1+m1)x
2+(m′

2+2m1m
′
1+m2)x

3.

This implies the result.

It is easy to see that m1 and m2 − m2
1 are cocycles. We set η = [m1] and ν =

[m2−m2
1]. As d(u1) = −2m1, we see that η is 2-torsion. It is a little harder to see that

ν is 24-torsion.
Let Γ be as in the last section. We want to make the map MU∗MU → Γ explicit.

Consider the coordinate change (x, y) 7→ (x + r, y). In homogeneous coordinates, this
becomes [x, y, z] 7→ [x + rz, y, z]. Recall from Section 3.6 that in a neighborhood of
[0 : 1 : 0], we have z = x3+ · · · . Thus, the coordinate change induces x 7→ x+ rx3+ · · ·
on the level of formal groups. This shows that MU∗MU → Γ sends m1 to 0 and m2 to
r.

In particular, we see that the map H∗(MFG;ω
⊗∗) → H∗(Mell,Z[ 12 ]

;ω⊗∗) maps ν
to α. We remark that there is a further class β1 in the E2-term of the ANSS that is
mapped to β.
Remark 5.30. It becomes clear how hard it is to do these computations via the cobar
complex based on MU∗MU . They become easier when using BP instead of MU , but
even for BP the cobar complex should be replaced by better methods. See [Rav86].

5.8 Homotopy groups of TMF at the prime 3

We will implicitly 3-localize everything in this section. Recall from Section 5.6 that the
E2-term of the descent spectral sequence for computing π∗ TMF is

Z[c4, c6,∆±1, α, β]/(27∆− (4c34 − c26), 3α, 3β, α
2, c4α, c6α, c4β, c6β).

We have four major weapons to compute the differentials, namely the comparison map
from the ANSS, the transfer, the Toda differential and Toda brackets. We begin with
the transfer.
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Construction 5.31. Consider again the map f : M1(2) → Mell and the Otop-module
f∗f

∗Otop; this is defined by f∗f
∗Otop(U) = Otop(U ×Mell

M1(2)). It is easy to see
that π∗f∗f

∗Otop ∼= f∗f
∗π∗Otop, i.e. the odd homotopy groups are zero and the evens

are π2kf∗f
∗Otop ∼= f∗OM1(2) ⊗ ω⊗k.

Note that f∗f
∗Otop is a sheaf of E∞-rings. This allows us to define the transfer

trtop as in the algebraic setting as the composite

f∗f
∗Otop // HomOtop(f∗f

∗Otop, f∗f
∗Otop)

Otop HomOtop(f∗f
∗Otop,Otop)∧Otop f∗f

∗Otop.

≃

OO

oo

The vertical equivalence can be checked locally and follows there because f∗f
∗Otop is

(étale) locally free as an Otop-module. It follows easily that trtop induces on homotopy
groups just the transfer considered above.

Above, we set up the descent spectral sequence only for the sheaf Otop, but one can
do it equally well for f∗f

∗Otop and we obtain a map of descent spectral sequences

trSS : DSS(f∗f
∗Otop) → DSS(Otop).

We have seen in Remark 5.27 that the H∗(Mell; f∗f
∗ω⊗k) vanishes for ∗ > 0. Thus, the

E2-term of DSS(f∗f
∗Otop) is concentrated in the 0-line and there can be no differentials.

Thus, the image of trSS consists of permanent cycles. On the zero line, trSS is just the
algebraic transfer discussed in 5.27 and thereafter. Thus, the ideal (3, c4, c6) consists of
permanent cycles.

Let us draw the descent spectral sequence for TMF modulo the image of the transfer
(where we know anyhow that it consists of permanent cycles; as it is completely in the
line 0 it can also not be hit by any differentials). Note that the E2-term is 24-periodic
(with periodicity element ∆).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

4

8

∆1
α

β

β2

β3∆−1 β3

β4∆−1

β5∆−1β5∆−2

By the discussion in the last subsection, we know that α is a permanent cycle,
namely the image of ν ∈ π3S under the unit map S → TMF. To proceed, we have to
talk about Massey products and Toda brackets.

Definition 5.32. Let C• be a differential graded algebra, i.e. a monoid in the category
of cochain complexes. This means that we have a product satisfying the Leibniz rule.
We use cohomological grading, i.e. the differential d has degree 1. Let α, β, γ ∈ H∗(C•)
with αβ = 0 = βγ. We obtain a new cohomology class as follows: Choose cocycles
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x, y, z representing α, β, γ. Choose u with d(u) = xy and v with d(v) = yz. Then
xv−(−1)|x|uz is again a cocycle. The (non-empty) set of the classes of all such cocycles
is called the Massey product ⟨α, β, γ⟩ ⊂ H |α|+|β|+|γ|−1(C•). If δ ∈ ⟨α, β, γ⟩, then

⟨α, β, γ⟩ = δ + αH |β|+|γ|−1(C•) +H |α|+|β|−1(C•)γ.

Example 5.33. One computes that ⟨α, α, α⟩ = {β} in the cobar complex (A,Γ) from
Section 5.6.

Theorem 5.34. 19 Let R be an E∞-ring spectrum (actually A∞ would be enough) and
α, β, γ ∈ π∗R with αβ = 0 = βγ. Then there is a naturally defined set ⟨α, β, γ⟩ ⊂
π|α|+|β|+|γ|+1R, called the Toda bracket of α, β and γ. The formula for the indeter-
mancy is analogous to the one for Massey products.

What makes this really useful is the interplay between Massey products and Toda
brackets. In most spectral sequences of interest the following is true under usual cir-
cumstances20: Consider a spectral sequence converging to π∗R. Let α, β, γ ∈ π∗R be
classes with αβ = 0 = βγ and let x ∈ ⟨α, β, γ⟩. The spectral sequence comes with a
filtration on π∗R. If the filtrations of α, β and γ are p, q, r, then the filtration of x is at
least p+ q + r − 1. If moreover α, β, γ reduce to α, β, γ in the spectral sequence of the
Et-page, then x reduces to an element in the Massey product ⟨α, β, γ⟩. (Beware that
the −1 degree shift in the definition of the Massey product corresponds exactly to the
+1 degree shift in the Toda bracket.)

This is proven in the Adams–Novikov spectral sequence in the book [Koc96]. I do
not know a published reference for this fact for the descent spectral sequence. In the
case of TMF one can actually (via a non-trivial theorem) identify the descent spectral
sequence with the Adams–Novikov spectral sequence for TMF, but this is not the way
it should be done.21 Anyhow, we will use it.

Corollary 5.35. The Toda bracket ⟨α, α, α⟩ consists of exactly one element and this
reduces in the spectral sequence to β; by abuse of notation, we will also call it β.

Now we use the following theorem of Toda:22

Theorem 5.36 (Toda). Let R be any E∞-ring spectrum and x ∈ π∗R a 3-torsion
element. Then νx3 = 0 ∈ π∗R.

To apply this, we need 3β = 0. The easiest way to see it is that β is the image
of ⟨ν, ν, ν⟩. Furthermore, π10S = Z/3 (as follows directly from the computation of the
E2-term of the Adams–Novikov spectral sequence). Thus, we must have 3⟨ν, ν, ν⟩ = 0
and hence 3β = 0. Thus, Todas’s theorem yields αβ3 = 0 ∈ π∗ TMF.

The only possible differential causing this is d5(β∆) = ±αβ3. By multiplicativity
(which we also did not show for the descent spectral sequence! But this should follow
from the methods of [Dug03]), this implies βd5(∆) = ±αβ3 and hence d5(∆) = ±αβ2.
Multiplicativity also implies some other differentials, in particular:

d5(∆
n) = ±nαβ2∆n−1

d5(αβ
k∆n) = 0

d5(β
k∆n) = ±nαβk+2∆n−1

19The state of the literature on Toda brackets is less than ideal. But see for example [Koc96] or [Mei12,
Section 4.6].

20These are: If you draw the spectral sequence, no two differentials cross each other.
21More recently, [BK21] gave an abstract form of convergence of Massey products to Toda brackets, which

is likely to apply to the descent spectral sequence.
22The original source is [Tod68, Theorem 3]. It states it only for the sphere spectrum, but the proof should

generalize to the result stated here. In any case, our applications would also follow from the spherical case.
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One sees that there is no room for further d5 or d7-differentials (and d2n-differentials
cannot occur for degreee reasons anyhow). The E9-page is 72-periodic (with periodicity
element ∆3) and looks as follows:
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Recall that β = ⟨α, α, α⟩ (as Toda bracket). The rules of Toda brackets imply that

β3 = β2⟨α, α, α⟩ = ⟨β2α, α, α⟩ = ⟨0, α, α⟩.

The latter Toda brackets contains obviously 0 and thus equals απ27 TMF. Thus, the
non-zero class β3 must be ±α{α∆} (as every other class than {α∆} is in a filtration
too high for β3). It follows that β5 = ±β2α{α∆} = 0. The only differential that can
possibly kill it is d9(±{α∆2}) = β5. One can see that there is no room for further
differentials or extension issues on E10 = E∞:
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Thus, we see the homotopy groups of TMF (localized at 3 modulo transfer) here with
the non-visible relation α{α∆} = β3. For degree reasons that is the only “multiplicative
extension”.

5.9 Outlook
There is a number of applications of TMF to problems in homotopy theory and geometry
(although at this point certainly not as many as of K-theory!). We want to sketch some
of these.

The Adams–Novikov spectral sequence comes with a filtration on the stable ho-
motopy groups of spheres, corresponding to the lines in the Adams–Novikov spectral
sequence. The 0-line consists just of one copy of Z corresponding to π0S = Z.

The 1-line has been completely computed and it has been shown that all elements
here are permanent cycles for p > 2. The differentials in the case p = 2 are also
known. It turns out that at least for odd primes all these permanent cycles lie in the
image of J . One way to describe the image of J is via framed manifolds. Recall that
π∗S ∼= Ωfr

∗ the bordism of manifolds with a (stable) framing on their stable normal
bundle (or equivalently stable tangent bundle). We know that the spheres Sn have
stable framings (their normal bundle is trivial in the standard embedding). But how
many stable framings does the trivial bundle on a sphere have? Every element in
πnO = [Sn, O] defines a reframing of the standard framing, where we use the notation
O = colimO(n). One can check that this induces a homomorphism

J : πnO → Ωfr
n

∼= πnS,
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whose image consists just of all stable framing of spheres.
Let X be an oriented smooth manifold that is homeomorphic to Sn, i.e. a (possibly)

exotic sphere. One can show that its stable normal bundle is trivial as well [KM63].
Choosing framings defines a map from Θn (the diffeomorphism classes of X as above)
to Ωfr

n , which is well-defined after quotiening out the image of J . Actually, Θn is a
group (via connected sum) and we obtain a homomorphism Φ: Θn → π∗S/Im(J).

Question 5.37. When does Θn have only one element, i.e. when is every manifold
homeomorphic to Sn also (orientedly) diffeomorphic to Sn?

This is true classically for n = 1, 2, 3 and very much open for n = 4. The methods
for [KM63] say a lot about the case n ≥ 5 using the homomorphism Φ. In particular,
for n odd they show that Φ is surjective. Moreover, for n = 4k−1, the kernel of Φ is big
and Θn has many elements. For n = 4k+1 the size of ker(Φ) is intimately related to the
so-called Kervaire invariant. In monumental work by people like Browder, Mahowald,
Xu and Hill–Hopkins–Ravenel, it was shown that ker(Φ) has order 2 unless n = 2l − 3
for l ≤ 6 and possibly for l = 7; if it does not have order 2, it is trivial. Thus, the only
possibilities for odd n in the question above are n = 2l − 2 for l ≤ 7. Recently, Wang
and Xu [WX16] have deduced the following:

Theorem 5.38 (Wang–Xu). The only odd n for which Θn is trivial are n = 1, 3, 5 and
61.

This was known for n ≤ 60. The main achievement of Wang and Xu was to show
that π61S = 0 to get the result in dimension 61, but they also needed to show that
π125S/Im(J) ̸= 0 and they used TMF for that purpose. Let us briefly sketch what
they did: The homotopy groups πnS are known for n ≤ 61 and one also knows what
their image is under the map u : S → TMF. Beyond π61S we know much less and we
know very little about π∗S for, say, ∗ ≥ 90 at the prime 2. In contrast π∗ TMF is
completely known. What Wang and Xu do is the following: There are classes κ ∈ π20S
and w ∈ π45S whose image is non-trivial in π∗ TMF. More precisely, we know even that
u(κ4w) = u(κ)4u(w) is non-trivial and thus, κ4w ∈ π125S must be non-trivial as well!
It is not too hard to show that it is not in the image of J (as this image is completely
known). Thus, π125S/Im(J) ̸= 0 and thus Θ125 ̸= 0. I know of no other way to show
this. More applications in the same direction can be found in [BHHM17].

Let us briefly sketch some other directions of applications. For this, it is useful to
know that there is a connective variant of tmf with π∗ tmf[ 16 ]

∼= Z[ 16 ][c4, c6] (without
inverting ∆).

1. As Ando, Hopkins and Rezk [AHR10] have shown, the map S → TMF factors over
MString → TMF, making TMF string-oriented. Actually, this factors over a map
MString → tmf. As shown in [Hil09], the map MString → tmf is 15-connected
and thus provides a pretty good approximation to study string bordism. The map
MString → tmf refines the Witten genus, which assigns to each string manifold a
modular form. As the map from π∗ tmf to modular forms is not surjective, this
implies in particular divisibility statements for the Witten genus (e.g. ∆ cannot
be the Witten genus of any string 24-manifold, but only 24∆). As the Witten
genus has a concrete formula in terms of Pontryagin numbers, this in turn yields
divisibility statements about Pontryagin numbers. This was used by Burklund–
Senger in [BS20] to disprove a conjecture of Galatius and Randall-Williams in
dimension 24 (while proving it in all other dimensions).

2. A theorem by Hopkins and Mahowald shows that H∗(tmf;F2) ∼= A//A(2), where
this is the Hopf algebra quotient of the Steenrod algebra by the sub algebra
generated by Sq1,Sq2 and Sq4. [Mat16] It was not known before that a spectrum
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with this cohomology exists; more precisely, Davis and Mahowald had shown
that such a spectrum does not exist, but their proof had a mistake. The explicit
nature of the cohomology of tmf allows to completely calculate its Adams spectral
sequence; comparing this to the Adams spectral sequence for the sphere allows to
deduce differentials in the latter. See [IWX20] for a more sophisticated variant of
this.

3. Much of our knowledge which elements on the 2-line of the Adams–Novikov spec-
tral sequence are permanent cycles (at the primes 2 and 3) stems from tmf (and
more precisely from the construction of certain Smith–Toda style complexes ac-
complished by using tmf). See [HM98], [BP04] and [BHHM08].
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