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Abstract : The problem of missing spectroscopic strength in proton knock-out reactions is addressed by
calculating this strength with a realistic interaction up to about a hundred MeV missing energy.
An interaction suitably modified for short-range correlations (G-matrix) is employed in the
calculation of the self-energy including all orbitals up to and including three major shells above
the Fermi level for protons . The spectroscopic strength is obtained by solving the Dyson equation
for the Green function with a self-energy up to second order in the interaction. Results for 48Ca
and 9°Zr are compared with recent (e, e'p) data . The calculated strength overestimates the data by
about 10-15% ofthe independent particle shell-model (I PSM) sum rule . This is in accordance with
what is expected from depletions calculated in infinite nuclear matter. Inclusion of higher order
terms into the self-energy, especially the correlated motion of particles and holes, is found to be
necessary to reproduce the observed fragmentation ofstrength in the low-energy region . The widths
of the strength distributions compare well with empirical formulas which have been deduced from
optical potentials. The validity of the conventional shell-model picture is connected with the
relevance of Landau's quasipari:cle picture for strongly interacting Fermi systems .

The interest in nuclear spectral functions has been revived by recent accurate
(,e; e'g1 data '-~; . The knock-out from specific shell-model orbits has now been very
well identified, also for heavy nuclei . From the analysis of these data it came out
somewhat as a surprise that the total observed spectroscopic strength for orbits
below the Fermi level amounts to only 50-70% of the independent particle shell-
model (IPSM) sum rule. This has raised the question whether the depletion of orbits
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Research of the U.S . National Science Foundation under Grant No. DMR-9002863 (at Washington
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below the Fermi level, in magic nuclei, may indeed be as large as 30-50% or whether
there is a large fraction of the strength still undetected at higher missing energies .

Several authors have addressed this question recently s-') . Part of the answer may
be found in the effect of short-range correlations . Most calculations using realistic
short-range forces have been performed for infinite nuclear matter (NM). These
results are also relevant for finite nuclei, since the short-range repulsive forces scatter
particles into states far above the Fermi level and this process is hardly affected by
the presence of the rather dilute nuclear medium. The depletion of states by these
short-range correlations is expected to be somewhat less for finite nuclei than for
nuclear matter at normal density (kF =1 .4 fm -') since the average density for finite
nuclei is lower. The effect of short-range correlations in nuclear matter can be well
calculated with realistic interactions . This one :nay conclude from the fact that
similar results have been obtained with different methods. Ramos et al. 6) have
calculated the self-energy including the effect of short-range correlations . The
spectral functions are obtained by solving the Dyson equation and are found to
span an energy domain of several GeV. With a semi-realistic interaction derived
from Reid's soft-core potential these authors find about 13% depletion of states
below the Fermi level for normal nuclear matter density due to the influence of
short-range correlations . This removed single-particle (s.p.) strength is found as
particle strength in a smooth distribution out to very high energy as a result of the
short-range correlations. The hole strength is found to be mainly concentrated
around the quasiparticle peak and only a few percent is obtained at higher missing
energy . Similar results were obtained using the method of correlated basis func-
tions'). In these calculations also the effect of tensor forces was included, as a
consequence of which a somewhat larger depletion of about 20% is found. In
addition a somewhat larger background contribution to the hole strength is observed,
which does not exceed 10%, however. These depletions can in principle be related
to the parameter x in the hole-line expansion ') which yields similar results for the
wound integral y) . In finite r:uclei, such as '60, 4"Ca and 4"Ca, which have a smaller
average density than nuclear matter, one may therefore expect a depletion of
shell-model orbits by short-range and tensor correlations of roughly 10-15%.

In addition to these correlations due to the short-range and tensor interactions,
there are correlations caused by the long-range components of the NN force. Also
induced forces, such as those arising from phonon exchange may enhance correlation
phenomena. For these phonons, by which we understand excitations of the nucleus
up to about 100 MeV, the finite size of the nucleus plays an essential role . This finite
size is the origin of shell effects and gives rise to a variety of surface excitations .
The influence of these long-range forces on spectral functions must therefore be
calculated explicitly in finite. nuclei . It is the aim of the present paper to contribute
to the investigation of this aspect. Only the influence of excitations up to about
100 MeV on the spectral functions will be considered in this work. The influence
of short-range and tensor correlations should therefore still be added to the results
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presented here . As a reasonable starting point for the effective NN interaction a
Brueckner G-matrix is used which has proven to be very useful in finite nucleus
calculations .
The importance of the dynamic coupling between particle motion and nuclear

excitations at low energy, up to a hundred MeV, and the corresponding signature
of the breakdown of the mean field picture is observed when protons or neutrons
are knocked out of shells far from the Fermi level. Recent (p, 2p) and (p, pn)
experiments on '60 show this for the lowest s,i2 shell which exhibits a broad energy
distribution in contrast to the p3/2 and p,/2 states close to the Fermi energy '°). This
is similar to the older Saclay results obtained with electrons "). A similar picture
emerges from the (e, e'p) results on 4o,4"Ca [ref. 3)], 9°Zr [ref.')] and 2~38Pb [ref. 2)] .
This broadening of states which in a Hartree-Fock picture are far removed from
the Fermi energy, indicates clearly that hole states at those energies can mix readily
with more complicated states like two-hole-one-particle states which are abundantly
present. This same mixing occurs for states near the Fermi energy, although it does
not result in broadening since the density of more complicated states is very low
there, due to the gap in the single-particle spectrum . Instead, the mixing leads to a
reduction of the hole strength, as is experimentally observed. Therefore the single-
particle energy gap plays an important role in increasing the validity of the shell-
model concept, as we shall illustrate.
As a tool for our investigations we shall employ the Green function method,

which is also well suited to describe the nuclear response beyond a mean-field
approximation as discussed recently '2 ) . In sect. 2 we discuss an approximation to
the self-energy which treats the coupling to 2pIh and Ip2h states . With the interaction
and model space given in sect. 3 the spectral functions of48Ca and "Zr are calculated.
These results are presented in sects. 4 and 5, respectively . Both nuclei have recently
been investigated by means of the (e, e'p) reaction ' ' 3 ) . Older calculations of this
type '3-'s) have concentrated mainly on '60 and the cross section for knock-out
reactions . In addition, simple zero-range interactions were used in refs. '4,'') . The
calculated fragmentation of the spectroscopic strength at low energy is compared
with the experimental observations and a prediction is given for the amount of
strength at higher missing energies, as well as for the depletion by the effects of
long-range forces. This is done for 48Ca in sect. 4 and 90Zr in sect . 5 . In sect. 6
contact is made with empirical results describing the width of the hole states and
the imaginary part of the optical potential for states above the Fermi energy .
Sect . 7 contains more general comments and conclusions concerning the fragmenta-
tion of spectral strength and its implications for the validity of the shell model.

2. Spectral functions and single-particle propagator

Experimentally the motion of nucleons in shell-model orbits may be investigated
with knock-out reactions such as (e, e'p), (p, 2p) and (p, pn). From these one deduces
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robability for removing a nucleon from its orbit a in the ground state of the

ucleus with A particles ending up in the nth state of the A- I system with energy

11 -' (n = 0 denotes the ground state). is probability determines the hole spectral

function

the

W > F

=0

In the IPSM description of the nuclear ground state the hole spectral function (2.1)
would have only contributions with weight equal to unity at energies W = E. corre-
sponding to the s.p. energies of the occupied states in the non-interacting approxima-

tion to the ground state . In reality (2.1) consists of many fragments for the various
I nucleus . It is therefore clear

ns.
e ground state of the A-nucleus

excited states, including the continuum of the
that the I PSM should be corrected for correlati

he occupation probability of the orbit a i

he integration in (21) may be extended up to infinity, however, as Sh

F

ne defines similarly the particle spectral function corresponding to processes
where a particle is added to the A-nucleon system :

SP(a'(O)=

	

j(Vf A+1j aj jpA) j2(5((j)-(E A+1-EA))
U A 0

	

n 0
U=O

The emptiness of orbit a is obtained by integration of this particle spectral function

n(a)
IrFF

doi Sp(a, w)

ere the lower Hmit of integration is given by

t

EF
= E A+ - E A0 0

ap 4 ' (aPjVjy5)aUa9"aaay(ajTjP)a,,
a/3

	

aj3YS

(2.0

is zero for

(2.4)

(15)

(2k)

In infinite systems without pairing correlations the energies (2.3) and (2.6) coincide
and are equal to the Fermi energy EF .

These spectral functions may be calculated from the single-particle propagator
in the exact ground state . Consider the hamiltonian

(23)

in which T is the kinetic energy operator, V an effective nucleon-nucleon interaction,
and the operators aa(a,,) denote particle creation (annihilation) operators in the

is given by the integrated hole spectral function :

n(a) =
j

dw Sh(a, w) - (21)

ere the upper limit is the particle removal energy

F~=E A A-1
0 E0 (23)
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s.p. states 1a) (a = na , la, ja,

	

a), which form a complete set of single-particle orbits.
As discussed in the Introduction, the interaction will be of G-matrix type, suitably
approximated as a static interaction. As the results presented in this formalism have
general validity we shall use the symbol it

Often one makes a separation:

H = (?'+ U) + (V- U) =

	

o+(V- U)

	

(2.g)

in which

	

is chosen a suitable mean field potential (e.g. Hartree- ock, harmonic
oscillator or Woods-Saxon) . Since it is a one-body potential for which the above-
mentioned single-particle orbits are supposed to be the eigenstates, this leads only
to a trivial extension of the formulas presented in this section .
The exact ground state I To) of eq. (2.7) may be formally written as a perturbation

expansion in the interaction V [refs . 16°17)] . It is assumed here that this ground state
refers to a doubly magic nucleus . The single-particle propagator is defined as

iga0(t-00

	

a~(â)a0Ât')]l ~ô) '

	

(2.9)
Oi 0)

in which T represents the time-ordering operation, IWA) is the HeisenbergA-particle
ground state of the interacting system satisfying

Hl ô)=EOI ô)

	

(2.10)

and a,, (t) is a Heisenberg operator with the time dependence

a,,(t)=e°H'a~ e-iHf .

	

(2.11)

Note that h is set equal to 1 .
The single-particle propagator characterizes the propagation of a state containing

an additional particle (for t > t') or a state with a removed particle (for t < t') . I t
contains information about the expectation value of any single-particle operator in
the ground state of the system 16), e.g . the charge density, and the ground-state
energy when the interaction is of two-body nature . Besides this it contains informa-
tion about the excited states of the system which are obtained by adding or removing
a particle . This latter property is demonstrated clearly by inserting a complete set
of A+1 (I IP n+1)) and A -1 (I V/ n -1)) eigenstates of the hamiltonian H, introducing
the integral represe~_Utâtion of the step function and performing the time Fourier
transform over t-t' . In this way one obtains the spectral or Lehmann representation
of the s.p . propagator :

_

	

(eOla,,l

	

n+l)( n+ll a ' 1e )

	

~ (

	

Olaal `m
_

1)

	

'la,, 1 'P0)
A+1 A +

	

A A-1)

	

2.l2
n

	

w-(En

	

- EO)+1'l')

	

in

	

W - (EO - Em

	

- TÎ

From this representation one can infer that the poles of (2.12) correspond to the
exact excitation energies of the A + 1 and A -1 states with respect to the ground
state of the system of A particles, while the residues at these poles contain the
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corresponding transition amplitudes . It is important to note that (2.12) contains this
information for all states with non-zero transition amplitudes, e.g. also for those
which have predominantly 2p1h (lp2h) or more complex nature .

he relation between the spectral functions and the single-particle propagator is
eat from (2.12) . One obtains:evi

n
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AW W) = lim
I
Im &JW) ;

	

W<6

	

(113)
n-U 7r

QK W) = lim

	

Im gjw) ;

	

W > lcF+

	

(114)

yson equation 16,17), which in thehe s .p . propagator satisfies the well-known
energy representation is written as

( ,W)gâo(w)

	

(115)
'/îî

and graphically represented in fig. 1 . Considering the equation of motion of the s.p .
propagator it is possible to obtain an algebraic expression for the irreducible
self-energy, !*, in terms of the ventex function, F, which consists of all possible
interaction diagrams between two dressed particles 17

) . Any approximation to r
then automatically leads to a self-consistent formulation of the calculation of the
s.p . propagator. This method is referred to as selfconsistent Green function (SCGF)
theory . Neglecting r result- :i : no dynamic coupling between the particles and only
the lowest order in V contributes to the self-energy in this approximation. This is
the sellconsistent Hartree-Fock (HF) self-energy Ic ", depicted in fig . 2a, and
written as

nj - E (aju 1 VIt8v)( ~Po(H F) l a ;"a~c 1 ejHF» "

	

2.16
gi,

0 0
Fig . 1 . Graphical representation of the Dyson eq . (2.15) . The double arrows represent the fully dressed

single-particle propagator g.
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R

Fig . 2 . Two diagrams which are considered here. Diagram (a) represents the selfconsistent HF diagram
(exchange included) and diagram (b) the second-order self-consistent self-energy diagram.

e

	

field is static and leads to a ground state described by a single Slater
determinant. In the

	

F s.p. basis the s.p . propagator is diagonal :
/ 0(a-F) ®(F-a)

g«(3lW)- - EHF+1T)+lD- EQF-i77
(2.17)

From now on we will assume to be working in the

	

F basis.
The next higher-order self-consistent problem is defined by approximating the

vertex function by V This results in the second-order self-consistent self-energy
(fig. 2b) :

ß(W)-

	

dW, f dW,

~.vKAys

	

27ri

	

2Ti
f

X (aSI VIJGK)(T1~ I vl i y)

	

tL

	

-W1 + (D,)gKA (W I )gyR (W? )I

in which the s .p . propagator g''' satisfies
g«ß(a) - g«ß(W)+ g«ly(W)

_y
ys(W)gsp(W) .

Yh

,V(2)HF(W)
-2 1

(2J+1) (aKJI VIIu,PJ)(IuPJI VIßKJ)
(2Ji, + 1) AL -K

0(j,-F)0(v-F)e(F-K) ®(F-g)®(F-v)O(K-F)
X

	

ca-(EHF+EHF-E"F)+in
+
cv-(EHF+FHF-fHF)_t,1

	

.

2.18

(2.19)

Due to the explicit energy dependence of V''', this poses a very difficult self-
consistency problem. This is illustrated clearly by considering for the moment only
the lowest order contribution to _y``'' which is obtained by replacing g''' by g"' in
(2.18). One then can evaluate the integrals in (2.18) obtaining:

(2.20)

This self-energy describes the coupling of particles and holes to unperturbed 2plh
and lp2h states . The two contributions to (2.20) are represented in fig. 3, using the
time-ordered Goldstone diagrams .
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eq. (2.20) represented by Goldstone diagrams . The single
particle lines represent the HF propagators with the convention that up-going lines represent particle

states (p l , p :! ) and down-going lines represent hole states (h,, h:? ) .

orking in a discrete basis one can solve the Dyson equation with self-energy
(210) by explicitly calculating the poles and the corresponding residues of the s.p .
ropagator; Inserting the Lehmann representations (2.12) and (2.17) into (2-19),
ultiplying by w - (

	

,,E',1" - EO ) and taking the limit w -*

	

A,,E }' - E® one obtains an11

	

0

	

It

	

0
eigenvalue equation for the excitation energies E~` - EOA and corresponding spec-
tral strengths:

0
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and

hl

(2)HF(

	

A"-

	

A»(qf A+lla -', I

	

A)

	

A+1

	

EA)( pA+ll a I ,pa)E

	

E

	

e= (Eap 98 0 9l J3 0

	

0 n

	

0

(211)

in which the transition amplitudes have to be normalized by a condition that can
also be obtained from the Dyson equation :

vfA

	

1)(gf A+l1

	

j~Vj= i + 1 (s j laa le`

	

ja` 1a 0

	

ß
aß

similar set of equations is obtained for the excitation energies E A- EA- ' and0 n
corresponding transition amplitudes by multiplying by w - (E A -EA-' ) and taking0 n
the limit

	

EAO -EA-' :
(,S«i3EHF+_y(2)HF(E A - EA-,»( PA-1

ap

	

0

	

fi

	

98

	

lapl Ip0
A) = (E0

A -E n
A

	

0

(223)

2 =

	

d-Y(2)HF( O)
y

	

pA-

	

pA)1

	

1 +	(qfA

	

IgfA-1)(Vf A-i

	

aje
n	'la,,1

	

0

	

0 la js

	

n

	

n	la,,IIPÔ> ,
LI

	

ae

	

dw
(214)

The set of eqs. (121)-(214) can be solved by calculating the eigenvalue curves
E(o)) of the eigenvalue equation

HOEaF+ _y(a2)pHF( a») 0
X «lE(a.

	

r»= E((o)X,,( (, )
0

d (2)HF(,W)

dw 1,.,,=E~+1-EAt)
(222)

(215)



and crossing these curves with the line w = E (co ) . This is illustrated in fig. 4.

	

e
solutions E (w) <I- F correspond to the excitation energies Eo-En-' and the sol
utions E (w) > e F correspond to the excitation energies EA+' -

	

®. The correspond-
ing eigenvectors can be normalized by the conditions given in eqs . (2.22) and (2.24),
which show that the spectral strength is determined by the slope of the eigenvalue
curve. The self-energy should conserve angular momentum (which implies h,j. =

lb, jb in (2.18} and (2.2®)), and then the dimensions of the self-energy matrices are
very small (not larger than 4 by 4 in the model spaces considered) so that all
solutions can be obtained easily with high accuracy .

Because the diagonal self-energy _V((2~)HF is a monotonically decreasing function
ofw between each two successive poles (as it should be to satisfy the normalization
condition), the eigenvalue curve always crosses the line w = E(w), so that between
each two poles a solution is obtained . The majority of these solutions are found
very close to the 2plh or lp2h poles and these 2plh- and lp2h-like solutions have
therefore only a small spectroscopic strength. Due to the large number of 2plh and
lp2h states (typically a few thousand in the model spaces considered), the single-
particle strength becomes strongly fragmented .
The coupling of hole states to 2plh states will lead to a depletion of the hole

states, while the coupling of the particle states to the 1p2h states leads to a filling
of the partitle states. In order to conserve the particle number these two effects
have to compensate each other, which is one of the reasons why one should solve
the Dyson equation self-consistently '` ) . This would mean that the solution obtained

E(w)
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w
EF EF

Fig. 4 . Illustration of the procedure to find the self-consistent eigenvalues of eq . (2.25) for the case of
a one-dimensional self-energy. The black dots denote the self-consistent solutions (see text) .
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t e selfenergy (2.20), should

	

e substituted back into the expression for the
selfenergy (2 .20) .

	

his would increase the number of poles (and thus of solutions)
to roughly the cube of the number one already obtains with (2.20) . Iterating such
a sc e e to converge cy is clearly not feasible due to the numerical complexity.
o site lift' the calculation it $s suggested to replace

	

~`'~ in (2.1g)

	

y the single-pole
ro~i anon:a

he single- ole energies ~rB are then related to the empirical

	

uasiparticle energies
for states near the Fermi level, while for states far from the Fermi energy the
single-pole energies can be eonsidere

	

as "mean removal energies '~). With this
tip ro~i anon the second-order selfenergy becomes:

: .~ . ~N~~tt~t'~ flN

. G. E.
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ct~ ®~Q, + i

	

cet ® ~<~ ® f
(2.26)

and t e

	

yson equation can be solved with the procedure sketched above.
e choice for the ~~,'s is discussed in more detail in sect . 3 . As mentioned at the

end of sect . , the violation of the particle number, due to the lack ofself-consistency,
is then found to be very small.

nterac i®

	

® e s ace

As `ve shall perform our calculations within a limited shell-model configuration
space, this space is insufficient to accemmodate correlations due to the short-range
repulsion, which is present in realistic NN potentials . Therefore it is necessary to
construct first a suitable effective interaction for such a limited space . We shall
assu e that it is a good approximation to treat the short-range correlations by
solving the two-body scattering equation in the nuclear medium. In the Brueckner
approximation this scattering equation is solved by treating the particle-particle
scattering to all orders in an individuaï pair approximation '`~) . The result of such
a partial summation, known as the Brueckner G-matrix, is then a well-behaved
interaction suitable for model spaces which span a range of single-particle energies
u to 100 eV. Although the interaction between the particles will have been
properly renormalized for short-range correlations, the contributions due to short-
range correlations to the self-energ; still have to be considered explicitly. This means
that their influence on the spectroscopic amplitudes is not included in our calcula-
tions . As discussed in the introduction this aspect can be well studied in nuclear
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matter. Based on such studies 6,') and on the argument that the effect of short-range
correlations will be largely independent of other aspects of nuclear structure, one
expects that the short-range correlations remove 10-15% of the hole strength which
appears then as particle strength at very high energy. This means that in the present
results, which are obtained by including only excitations up to about 1 eV from
the Fermi energy, an ovc7estimation of hole strength by roughly such an amount
should be expected for orbitais which are occupied in mean field approximation .

In this work a G-matrix type of interaction is employed which is derived from
an older version of the one-boson-exchange (OBE) potential '") of the Bonn group.
Since the calculation of the G-matrix in finite nuclei is technically involved, it is
convenient to calculate it in nuclear matter (NM). The resulting nuclear matter
G-matrix is non-local and depends on the nuclear matter density (characterized by
the Fermi-momentum kF) and the starting energy. Because this energy dependence
is weak, the nuclear matter G-matrix can be well approximated by calculating it
only for an average starting energy 21,22) (in the following denoted as ) . e
so-obtained G-matrix can then be represented by a local force`' ), which is para-
metrized as a set of meson-exchange potentials. It has been demonstrated that this
simple effective force gives correctly the same binding energy and other quantities
like Landau parameters in nuclear matter, as one obtains with the exact G-matrix '' ) .
It therefore contains all the features of the exact nuclear matter G-matrix and is
simple enough to be manageable in nuclear-structure calculations. Its explicit form

GNM(q, E, kF) -fE,k,~(gl ~h .~E.~F-(q)°rl "T"+b9E,kF(q)47 1 , cr, ' gf(q)u1 T1

263

+hE,k,(q)S12(q)+hF_k,_(q)S12(q),r1 " ~r, ,

	

(3.1)

SI 2(q) =3Q1 - gur., - ql q2- a1 . Q, .

	

(3.2)

The functions f, f', etc. are sums of Yukawa interactions . The argument corresponds
to the momentum the effective mesons carry . The essence of the G-matrix is thus
contained in the q-dependence which is different for each spin-isospin operator .
The form (3 .1) facilitates the calculation of particle-hole matrix elements [see
refs . 21,23,'4)] .

In this work two versions of this potential are employed . The first one is denoted

by GNM and was calculated for nuclear matter with a Fermi momentum k,=
1 .20 fm - ', which corresponds to 70% of the normal NM density, and an average

starting energy E = -74 MeV. The second one is denoted by GNM and was calculated

for nuclear matter with a Fermi momentum kF =1 .06 fm -', which corresponds to

50% of the normal NM density, and an average starting energy E = -20 MeV. Due

to the smaller density and starting energy the G NM interaction is somewhat stronger

than the GNM interaction . However, it was shown in refs . 23,25) that both interactions

provided a reasonable approximation to a G-matrix, that was calculated for a finite
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ucleus . Both interactions have been used before in nuclear structure calculations,
rovi i g good results 12.23 .26-28.37 ) . The explicit parameters for both interactions

ca

	

e found in the appendix.
o explicit density or energy dependence of the

	

-matrix interaction is considered
ere. t was shown in ref. 21 ) that an explicit density dependence as used i

	

s local
ensity approximation is not necessary to obtain the correct surface properties for
clear excitations .

	

herefore we make only this global correspondence between
the density in nuclear matter and in finite nuclei.

	

e neglect o the explicit energy
e en ence of the G-matrix

	

as little influence on the results of the present work
because the energy dependence is very weak, especially as compared to the energy
dependence of the second-order selfenergy .

e interactions GN;,, a

	

"r,, have been obtained with the conventional gap
i

	

the s.p. spectrum . Therefore they

	

o not contain any detailed shell-structure
information a

	

consequently there is no essential double counting, provided that
e includes only low-energy excitations in the intermediate summation of the 2plh

intermediate states in eq. (2.27) . Naturally, one could avoid the problem of double
counting completely by calculating the G-matrix for a particular nucleus with the
consideration of only those two-particle intermediate states that lie outside the space
one considers for the calculation of the self-energy .
We conclude that these interactions GNP, and GNm, though amenable to further
rove ents, should provide a suitable tool for the spectroscopic investigations

resented here . This fins further support in the good results obtained in earlier
spectroscopic calculations, especially of the fragmentation of the nuclear
response '`) .

3.2 . MODEL SPACE AND SINGLE-PARTICLE ENERGIES

The configuration space considered in the calculations is large enough to guarantee
convergence for the excitations in the even-even nucleus 24,2'°29) . This includes all
sells below the Fermi surface and three major shells above. As single-particle states
harmonic-oscillator wave functions with range parameters b = 2.00 fm for 48Ca and
= 2.12 f

	

for 9®Zr were adopted.
For the s.p . energies around the Fermi energy experimental information on thv

energies of typical s.p. states in the adjacent odd nuclei was used. These states are
characterized by large spectroscopic factors in one-nucleon transfer ructions and
have therefore naively been interpreted as the original nucleus plus or minus one
nucleon in a specific shell-model orbit. It is these states Chat we identify with the
solutions of the yson equation with the largest spectroscopic factor and therefore
it is these energies which were used in the expression for the self-energy (2.27) . The
shift of this quasiparticle energy with respect to the

	

F energy is almost entirely
determined by the diagonal selfenergy . So for the states around the Fermi energy
one can obtain the corresponding "HF energy" uniquely by "undressing" the

AI. G.
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empirical energy with the diagonal components of the self-energy (2.27) :

This procedure assures that for states around the Fermi energy the largest fragment
of s.p . strength as solution of the Dyson equation coincides with the experimental
information . e calculation then predicts the size of this fragment as well as the
distribution and size of all the other fragments .
The empirical energies used are listed in table 1 for "Ca and for 9OZr. Note that

for 48Ca the single-particle energies are similar to those given in ref 3®) except for
the proton gap which is 0.40

	

eV larger and more in accordance with the binding
energy of 47K (EB= -400.118

	

eV) as quoted in ref. 3' ). For hole orbits far from
the Fermi energy such empirical information is mostly not available and the undress-
ing procedure (3.3) loses its meaning because of the large fragmentation . Therefore
we have taken these energies equal to the

	

F energies, assuming these may be
considered as mean removal energies ") and provide a good characterization of the
hole spectral functions . The same was done for the particle states far from the Fe

	

i
level . In this HF calculation the pure oscillator states were adopted instead of a
fully self-consistent

	

F basis. Such a calculation provides s.p . energies with an
energy spacing of hoi =16 MeV for 413Ca and hw =14

	

eV for 9°Zr which is some-
what larger than the empirical harmonic-oscillator spacing htuv = 41 4- '/3 which is
11.28 MeV for 4gCa and 9.14 MeV for 90Zr. The more self-consistent

	

F single-
particle states turned out to have a spacing of fiuw = 24 MeV for 48Caand hw = 22

	

eV
for 9GZr, which we considered to be unrealistically large within the present approach.

Summarizing the procedure, we start with calculating a

	

Fspectrum and replace
the energies around the Fermi level by empirical energies. This set of energies is
then used in the self-energy _V(2) in eq . (2.27) . The empirical energies are then
undressed by relation (3.3) to obtain the corresponding HF single-particle energies .

TABLE 1
Quasiparticle energies E in 18Ca deduced from the neighboring nuclei 47Ca, 4gCa,
47K, 49Sc, and in 90Zr deduced from the neighboring nuclei x9Zr, 9'Zr, g9Y, 9'Nb
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~HF=
aemp.-~(2)(W = aemp.) .

	

(3.3)

n1,

4gCa

EP IT, n1,

9°Zr

EP Ir,

1d3/2 -16.16 -12.52 117512 -10.11 -13.42

2s,i2 -15.80 -12.54 2P3î2 -9.87 -13.07

1f,/ 2 -9.62 -9.94 2P,/2 -8.36 -12.56

2P3/2 -6.54 -5.14 199/2 -5.16 -11.97

If5/2 -5.55 -1 .14 2d5/2 -3.20 -7.20

2P,i2 -4.60 -3.12 3s,/2 -1.00 -5.99

1g7î2 - -5.32
2d3/2 - -5.16
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8% is therefore spread out over a large
to 125 MeV, which corresponds to the

et space. The structures which show
ly composed of ls j , 2 strength .
sides the global overestimation of the strength (-10%) in the experimentally
ed region, it is also clear from the figure that in the calculation more strength

should be shifted away from the ground state (1 .52 calculated, versus 1 .07 experi-
entally) to the first excited state, and that a stronger fragmentation mechanism is

needed . Indeed such a stronger fragmentation is obtained by coupling the single-
article motion to collective particle-hole modes, e.g . in RPA, instead of to the
correlated particle-hole motion in hg. 2b [ref. 32fl . The total calculated strength

within the experimentally analyzed energy range is not appreciably modified by
such an extension, however.

it in the ground state is calculated to be 1 .73
to 15 MeV is composed entirely of 2s,/2

d sums up to 1 .58 (79% of the sum-rule value 2j + 1) which should be
with the experimental value 1 .39 (11) (69%) . Above 15 MeV an additional

er (-400) of very small fragments up
energy of the highest Ip2h energy in the

around 20 MeV in the figure are already

The I= 2 spectral function, shown in fig . 6, is the sum of the 1d;/2 and 1d 5 /2

speciral functions, which cannot be separated in the (e, e'p) experiment . Experi-
mentally, the total strength observed up to 20 MeV amounts to 7.42 (63) (74% of
the sum rule limit) . The calculated strength up to 20 MeV is 7 .98 (80%), which
means there is a global overestimation of (6 _i: 6)%.

he total calculated occupancy of the I d3/2orbit is 3.55 (89%) which is exhausted
for a large part by the quasiparticle peak at 0.50 MeV excitation energy (with strength
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2.9à

r

-75%) . The ldy2 spectral function has a similar behavior as the 2s1/2 spectral
ctiom Besides the quasipankle peak, which is overestimated by 25% of the sum

le, there are some obviously too weak states around 5 MeV and approximately
8% is spread over a large energy region (up to 125 MeV).

e total calculated occupancy of the Ids/ :? strength is 5.59 (93%) of which a
art is exhausted by the complex of states between 4 and 10 MeV (4.54 -75%) .
treat with the 2sv2 and 2d3/2 orbits, the Id5/2 orbit is already strongly

although still fairly localized .

large
I
mg

4.3 . T

he I = I spectral function is the sum of the Ipl/ :! and I P3/2 spectral functions . It
was measured up to 23 MeV. As is seen from the upper part of g. 7 the -strength
is clearly not saturated in the experimental region . The calculated I = I spectral
function is shown in the lower part of fig. 7 .
The strength is totally fragmented . The total spectral strength calculated in the

region 0-23 MeV was 2.63 (44%), which should be compared to the experimental
value 1 .94 (24) (32%). The strength is overestimated by 12%, in line with the other
hole snectral functions .

s

4.4. SUMMARY AND CONCLUSIONS

first impression from figs . 5-7 is that the spreading of strength is rather similar
the calculation and in the data . This is a gratifying result in -iew of the very

le approximation (2.27) that was adopted for the self-energies . From a closer
ecdon of the figures one learns that indeed them are some systematic discrepan-

cies between the calculations and the data which should be expected because of
this simple self-energy approximation . The results are summarized in table 2, where
ccupation numbeirs are listed and the calculated strengths are compared with the

observed strengths.
Firstly, the total calculated strength of the hole states is larger than the observed

strength in the experimentally probed region by about 6-12% of the !PSM sum rule .
his points in the direction of scattering of particles to very high energies by the

strong short-range forces, which is not included in our calculation . The depletion
of filled orbits due to this scattering is estimated in nuclear matter calculations to
amount to 10-20% [refs . 61)I This means that this strength is moved away from the
hole spectral function to the particle spectral function and, it observable at all,

be found in transfer rather than knock-out reactions and at very high energies .
second feature is the generally smoother distribution of strength in the data

than calculated . One mechanism which would cause a finer fragmentation in the
calculation was already indicated at the end of sect . 2, viz. a more self-consistent
solution of the Dyson equation by substituting its solution back into the self-energy

S

W

E 1= I SPECTRAL FUNCTION

G. E. Brand et al. / Fragmentation



c~

	

~[.1

	

I
5°0 °o z°o °o ~°o o°o s°o ~°o s°o z°o ro o°o

z

	

Sz~

rand et al. / Fragmentation

r~

BI$ ~

	

oe~fl~

	

~ Li9

s~o s~o ~~o z~o o~o o~e ®~o s°o ~~o z°o o°o

O

O

w

U

~°
a0. ..
vcw
Û
4
M

S

U

c0

269



270

Occupation numbers and summed spectroscopic strengths for 48Ca. The suia
is taken over the experimental energy region (see text) . The factor C2 in the

calculated results is 2j + I

and iterating until convergence is obtainned 33
) . This procedure would also ensure

an exact conservation of particle number, which is now slightly violated . The total
number of protons amounts to 2105 and the total number of neutrons to 28.05, so
this violation due to lack of complete self-consistency is only very small.

third mechanism which would clearly improve the agreement between the
calculation and the data is the coupling to correlated particle-hole states, e.g . the
low-energy phonons . This would increase the size of the fragments about 5 MeV
above the main peak through the coupling to the lowest 2', reducing the size of
the quasiparticle peak 32

) . This coupling to collective phonons, is also of major
influence on the I = 3 strength shown in fig . 8 . The experimentally observed strength
below 5 MeV should be largely ascribed to the coupling of the I = 3 strength to the
self-energy terms with holes in the s- and d-shells coupled with the low-lying octupole
state. The latter is not well represented in our calculation since the particle-hole
pair is not correlated.

suing these three possible improvements of the theory in mind, we conclude
that the results of the s, p an(' d shells are very satisfactory and encouraging .

M.G.E. Brand et al, / Fragmentation

TABLE 2

ole spectral functions of 9OZr

In the IPSM picture of 90Zr the occupied proton states are the I f 2p, 2s I d, I p and
Is shells . However, 9OZr cannot be considered as a "good" closed-shell nucleus like
418Ca. Due to pairing correlations there is a non-negligible occupation of the proton
199/2 shell, and a considerable depletion of the 2p shells . In ref. 34) these pairing
correlations were treated in the broken-pair model, in a small model space and with
a phenomenological interaction, leading to an occupation probability of 0.11 for
the IgW2 and of 066 and 193 for the 2p, /, and 2P3/2, respectively .

In view of this, one cannot expect a description of the proton spectral function
for 9')Zr as good as for 48Ca, using the self-energy (2.27) . In this section we will

a n(a) I C2SJ (calc) 1: C2S, (exp) [ref.

IS I/2 0.97
1PI/2 0.96 2.63 1.94(24)
lpl,, 2 0.9$

0.93 7.98 7.42(63)
0.88

2s, / :! 0.86 1 .58 1.39(11)
lf7/2 0.07 0.29 151(13)
1 2 0.06



5.2 . THE l=3 SPECTRAL FUNCTION
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compare our calculated spectral functions for the hole states and for the lg shells
with those obtained in a recent (e, e'p) experiment'). The calculated spectral
functions are represented in energy bins of 1 MeV to facilitate the comparison with
experiment . All plotted results have been obtained with the G-matrix interaction
G", which was also used for 4KCa. With the slightly weaker interaction G' only
little different strength distributions were found. Therefore we present results with
G' only in table 3 .

5 .1 . THE 1=1 AND 1=4 SPECTRAL FUNCTIONS

For the 9®Zr(e, e'p)x9Y reaction an /-decomposition has been performed up to
21 MeV [ref.')] . It was found that the 2p, /2 , 2p;/, and 199, '2 strength was only
located at low excitation energy (E K< 7 MeV). The calculated 1=1 spectral function
(fig. 9) shows a completely similar picture : the 2p,/2 state at 0.0

	

eV, the 2p3/2 state
at 1 .50

	

eV and some weak states around 5 MeV. The total occupation of the 2p,,:!

and 2p3/2 orbital in the ground state is 5.14 (86%). The total strength up to 21

	

eV
is 4.81 (80%). These numbers should be corrected for pairing correlations, however.
Ifwe make the crude approximation that the depletion caused by pairing correlations
can be treated independently from the depletion caused by the coupling to 2plh
states then we can use the occupation numbers from ref. 34 ) to calculate the spectro-
scopic strength including pairing correlations . This gives a total 1=1 strength up to
21 MeV of 4.00 (67°/®), which still overestimates the data by 17% of the IPS

	

. From
21 MeV up to 150 MeV 5% is spread over a large number of very small states. This
tail already starts at 7 MeV, but the solutions are so weak that they are not visible
in the figure . The strength above 20 MeV is made up almost completely out of 1 p
strength .
The 1= 4 spectral function (fig . 10) shows clearly the effect of ground-state correla-

tions for the valence states of 90Zr. In the calculation, the strength up to 7 MeV is
negligible (0.11) . The strength up to 21 MeV is mainly 199/, strength (0.48 for the
199/2 and 0.14 for the 197/2)-

271

The effect of pairing correlations on the 1f5/,and If,/,states is much less, although
still not negligible . In the broken pair calculation of ref. 34 ) the occupation of these
orbits was 0.97 and 0.98, respectively . In fig . 11 we compare our calculation with
the experimental 1= 3 spectral function . The fragmentation of the calculated spectral
function is very similar to that of the experimental one. The structure between 3.5
and 10 eV is almost entirely I f, / , strength, while the strong state at 1 .75 MeV is
entirely l f5/2 . The l ~5/ 2 + l f7/2 strength up to 21 MeV is 11 .39 (81%), which overesti-
mates the experimental data by 17%. The total occupation of both orbits is 12.85
(92%), which means that 11% is found above 21 MeV. The fragmentation of these
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Spectral function 90Zr(e,e'P) 09Y

	

1=3

Fig. 11 - The I = 3 spectral functions for 9 Zr.

Is is very YAW to the IQ2 and ld5/2 orWtals in 48Ca. Inclusion of pairing
tions gives a total strength of 1148 (79%), which exceeds the data by 17%

sum rule.

1=0 SPECTRAL FUNCTION

e I = 2 (fig. 12) and I = 0 (fig. 13) spectral functions have in common, that their
strength is not saturated in the experimental region . For both spectral functions the
fragmentation of the experimental and calculated functions is very similar. The total
spectra', strength up to 21 MeV is for the I= 2 function (ld3/2+ld5/2) 6.36 (64%)
and for the I = 0 functlion 1 .41 X71%), which exceed the experimental values by 19%
and 20% respectively of the IIPSM sum rule .

ARY AND CONCLUSIONS

EX (M)

table 3 we summarize the calculated occupation numbers of the hole states
and the Ig states and the summed spectroscopic strengths up to 21 MeV. To complete
the list of occupation probabilities we mention those here or the interaction G" .

e obtained for ISI/2 : 0.98, 1 P3/2 : 0.97, 1 PI/2 : 0.97 and for the higher orbits 2d5/2 :

theory
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TABi~E 3

®ccupation numbers and surnnled spectroscopic strengths for ~"Zr . The sum is taken over the
e :~ erimental energy region (0®21

	

ev).

	

e factor ~°`' in the calculations is 2j-t-1

n(c~)

	

~~-'S,(calc~

' °~ lncludir<g pairing correlations lsee te,t3 .
~~ spectroscopic strengt

	

up to 7

	

ev,

1, 3s, r , ~

	

.	31~. For still

	

igher or
ring t e results f®r ~`

s as i

	

sect.

	

,	ecalculati
enc in

	

of ~®2 °~° t roug

	

s

its the

	

ccu atio

	

robs ility is
r wit t ose for ~xCa o e can

	

raw
s for t e

	

ee -lyi g

	

o e states see
o

	

-ra ge or of er not yet inclu ed
rrelatio s is nee e

	

for ~"

	

r, dvhich is larger t an for ~x~
:.

	

ossi le partial
ex lanation for t is larger

	

iscrepar~cy

	

ay

	

e that ~oulo b

	

istortions of t e
electro

	

`va`,e function were not yet fully inclu ed in the analysis of t e data ' ) .
is

	

ig t i crease t e ex eri

	

ental nu

	

hers

	

y so

	

e 5°/® [ref. ;') . ®then reasons
for t e larger

	

iscrepancy

	

ay

	

e found in vario s as acts o the calculations . For
t e vale ce or its t e

	

icture is obscured so

	

ew at by

	

airing correlations,

	

is
already lea

	

o a consi arable

	

e lesion o f e

	

-s ells .

	

oreover, without pairing
rrelations t e low®lying 2+ in ~" r is a sent and ante t e frag entation by

coupling to t is state is also

	

issing in our calculations .

	

e do not expect that the
larger

	

iscre ancy for y"

	

r t an for `~~Ca

	

ay be

	

ue to the li

	

itation of t e model
ace, because six

	

ajor shells were included for ~sCa and seven major shells for yoZr.

tic e

	

r

	

i

	

fi	a

	

tics

	

te fiel

~.. ~` ;~a (e~Pl
(re~ '

he s ectral functions describing the singlz-particle strength below the Fermi
energy, can also e analyzed in tar s of the quasiparticle approximation. For
single- article strengt about t e Fer i energy this analysis is usually related to
the e pirica o tical otential deduced fro

	

elastic nucleon-nucleus scattering .
is subject

	

as been extensively reviewed recently by ~

	

ahaux et al. ;~) .

	

problem
i co

	

wring the self-energy [e . (2.27)] directly with the optical potential is its

0.96 ~,5 h,36 .5i (33~0,95
0,9~ 1, 5 . d 1 . 2 (6~
0.93 t 1.~~ l ~.39 ß.75 (é~31

O,SS 5,03 .~1 2.97 (15O,Rt, .20'~t ~ l
O,OS 0,~2 ®.69
0,0 0,l l ~1 0 .~ l ~) ®.69 ( D 21

t d ~ . r 0,97
t d : , ~ 0,9~

8'~ 0.97
t f- ; m 0,9

~p ; , 0,90
~pa , 0 .~ ;~
t g~ ~ 0,0~



276

	

M.G.E. Brand et al. / Fragmentation

singular behavior as a function of energy. The empirical optical potential, on the
other hand, is a smooth function of energy, which can be obtained from the
selfenergy by a suitable energy-averaging procedure 36). It is also usually given as
a local potential in coordinate space. Note that in the coordinate representation the
selfenergy used in this work seq. (2.27)] is non-local . Another problem is that the
empirical optical potential is used as an irreducible interaction with respect to the
propagation of a plane wave particle . In the present paper, the self-energy is
irreducible with respect to the propagation of a Hartree-Fock particle or hole . A
comparison can therefore strictly only be made for the reducible interactions which
can be related to the cross sections . This is beyond the scope of the present paper.

In earlier work (refs . ' 3- '')) related to the study of the removal of protons, the
imaginary part of the selfenergy was studied as in eq. (2.27) . Only the first part of
eq . (2.27) was considered, however, which results in zero depletion of occupied
orbitals. The 1p2h contributions to the imaginary part of the self-energy appear as
arrow peaks on a continuous background in refs. ` 4-`') due to the use of continuum

wave functions for particle states. As such these contributions are very similar to
the delta-function contributions at the 2p1h and 1p2h energies in eq. (2.27) when
a discrete basis is used . These calculations were feasible due to the use of simple
zero-range interactions and were only carried out for light nuclei like '6®. The
calculated imaginary part of the optical potential reached values of 5-10 MeV for
separation energies of 40 MeV and higher. Below this energy the spectral functions
were found to consist of small peaks with widths typically less than 0.5 MeV.

In several more recent studies of the optical potential using more realistic G-matrix
interactions a similar size and energy dependence ofthe imaginary part ofthe optical
potential has been obtained for scattering states 3') . As discussed above, it is not
the aim of the present work to construct the optical potential . For the real part this
would not be meaningful since empirical single-particle energies have been adopted.

In order to make contact with empirical determinations of the strength of the
imaginary part of the optical potential a comparison at the level of the quasiparticle
approximation to the spectral function will be considered:

QP

	

2S" (£0) =-

	

ir
Z« Ea )2 +(Ir

2
e, (ci)

ere, , is the total strength contained in this distribution, which in a homogeneous
system can be directly related to the derivative with respect to energy of the real
part of the self-energy at the quasiparticle energy E,, which describes the position
of the peak. The width F,, is related to the imaginary part of the self-energy by

Taking this result too literally in finite nuclei is not useful when a discrete basis is
used as is the case in this work. Nevertheless, it is clear that the distribution of
single-particle strength for a given orbital as obtained in this work, can be interpreted



in terms of a width when the strength is fragmented as is the case for orbitals not
in the immediate vicinity of the er i energy . That such a concentration in quasipar-
ticle "peaks" or "bumps" does indeed occur is illustrated in fig . 14, where the
calculated s-strength for 48Ca is displayed. In this figure the s.p. strength is shown
differently from the preceding figures of the spectral functions . In fig . 14 both the
hole and the particle domain are covered, with the most deeply bound strength on
the left . The s.p. strength crosses the Fermi energies at -15.80

	

eV (the large peak
in the figure corresponding to e - and -9.62

	

eV (sF) at which point it must

	

e
referred to as particle strength . In the figure a smearing procedure with a width of
1 MeV has been applied. The resulting strength distributions can then be interpreted
according to eq. (6.1), allowing the extraction of a width the value of which is
compared to empirical results available in the literature 38-40) . The smearing width
is not included in this comparison . For orbitals which have a very large portion of
their strength concentrated in a single peak it is obviously appropriate to adopt a
zero width. Strength not contained in the quasiparticle peak is usually referred to
as background strength . In addition to this background, there is strength located
on the other side of the Fermi energy where there is no quasiparticle peak.
The results shown in fig . 14 indicate that the spectral functions which are obtained

with this procedure are not exactly represented by a lorentzian [see eq. (6.1)]. This
is natural since the amount of phase space corresponding to 2plh and lp2 states
increases with increasing distance from the Fermi energy. As a result an inevitable
asymmetry in the peak structure will develop for orbitals which are not too close
to the Fermi energy. Especially for the 1s,/2 it is somewhat arbitrary to assign a

v

O
-100

M.G.E. Brand et al. / Fragmentation

	

277

4BCa sl/2 spectral function

dressed with a small width (1 .0 MeV).

-f
-50

	

0

	

50

Energy (MeV)

Fig . 14 . The full s 1/2 spectral function of 4sCa. To obtain a continuous distribution all solutions are
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quasiparticle peak between -70 and -30 MeV with a corresponding width r ==

20 MeV. However, for all other orbitals a meaningful extraction of a width can be
obtained as for instance in the case of the 3s, /2 orbital shown in fig . 14 . A quasiparticle
energy of 10 MeV with a width of I I MeV can be unambiguously extracted.
The resulting widths that are obtained with this procedure are displayed in

fig. 15 for the proton orbits in 48Ca and for "'Zr. These widths (dots in the figure)
are plotted as a function of energy distance to the Fermi energy and can be
compared with three analytical expressions found in the literature. Brown and
ho ") deduced from ref. 41) the following expression

IN'ra, - VF)
_

MeV1 rBR( O ) _
S 2

(&)-4)+ :)UU
(63)

which at small w - Fr
has the characteristic quadratic dependence found in infinite

Fermi systems . An alternative expression was suggested by Jeukenne and MahaUX 39)

1 FJ NI(tu) =

	

9(£o

	

eîz)-4

	

-
MeV( 0j - EV)4+ 13,274

(6A)

based on the argument that in a finite nucleus the level density and therefore also
the width near the Fermi energy is reduced as compared to infinite systems . A third
expression, also based on the work in ref. "), was used by Smith and Wambach 40)

in a study of the nuclear response . It reads
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The resu%s deduced from the spectral functions agree very well with these empirical
parametrizations. Especially for states below the Fermi energy, they are very well
represented by eq. (6.3) . This confirms once again the encouraging results that have
been obtained for the strength distributions in comparison with the (e, e'p) results .
For the states above 20 MeV (relative to FF ) in the particle domain, the widths are
smaller than the empirical curves, in particular for 9()Zr. A calculation of the
self-energy with continuum wave functions might lead to improved results . In
addition, a limited set of oscillator states has been used in the present work. One
must also keep in mind that eq. (2.27) provides only the lowest order process that
can contribute to the~vidth . Substitution ol the obtained gear: functions back into
the calculation of the self-energies may also increase the widths 42

) . Nevertheless,
it seems that one can already accow for most of the observed widths and therefore
the imaginary pans of the optical potential at low energy .

It is possible to use eq. (6.1) for an estimate of the strength in the background
(i.e. not under the peak) when the orbitals are close to the Fermi energy. This can
be done by subtracting z,, from the amount of occupation (n(a)) or depletion
(1- n (a)) (see e.g . fables 2 and 3). The resulting background contribution is typically
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Fig . 15 . Widths of the quasiparticle peaks for proton orbitals in "Ca (upper figure) and 9°Zr (lower
figure) obtained from the calculated strength distributions as described in the text . The three curves in
the figure represent the empirical parametrizations given by eqs . (6.3)-(6 .5) . The Fermi energy FF is the

average of the Fermi energies F it and e ~
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of the order of 10%. Such results are also obtained in calculations of the hole part
of the spectral function in nuclear matter [see e.g. refs.',4;)] when realistic interac-
tions are used . Although it is expected that the total amount of strength for mean
field orbitals below the Fermi energy will be further reduced by about 10-15% when
short-range and tensor correlations are fully incorporated, it is clear that a back-
ground contribution of about 10% emerges from most theoretical investigations [see
refs . ',41 .14) and this work].

7.S t

M.G.E. Brand et al. / Fragmentation

1 functions and the validity of the shell model

In the preceding sections only results for proton removal were discussed and
compared to experiment . The results for neutrons are naturally very similar and not
discussed here, as it was our aim to focus on the comparison with the newly available
data for proton knock-out using the (e, e®p) reaction . It is also important to note
that we have concentrated on the discussion of the distribution of spectroscopic
strength and have foregone any comparisons of momentum distributions related to
individual transitions . No effort has been made to optimize the description of these
momentum distributions by using a basis (e.g . of Woods-Saxon states) which yields
a good correspondence with the experimental momentum distributions . The reason
is that in structure calculations a Woods-Saxon or harmonic-oscillator basis have
been found to yield similar results 4

:5
) . Because this work focuses on the general

features of the strength distribution, the technically easier to handle oscillator basis
with reasonable range parameters has been chosen.
Other theoretical results for occupation numbers usually refer to `'°"Pb. Using an

analysis based on the dispersion relation which connects the real part of the
self-energy with the imaginary part, it is possible to relate this imaginary part with
empirical optical potentials 44) . Making the assumption that the imaginary part of
the self-energy is symmetrical around the Fermi energy these authors obtain results
for spectroscopic factors and occupation probabilities for states just below the Fermi
energy of 0.66 and 0.77, respectively . In the work of ref. 44) the asymmetry which
exists between the 2p1h and 1 p2h phase space, especially with regard to short-range
correlations 6,') is not taken into account. It is also not possible to study the energy
dependence of the fragmentation of the orbitals away from the Fermi energy as it
has been shown here . Nevertheless, the results of ref. 44 ) are in good agreement
with the most recent analysis of the (e, c'p) experiment on 208Pb in which Coulomb
distortion was properly taken into account 35). In agreement with the present work
the additional background distribution in A -1 systern is found to contain only
about 10% of the IPSM sum rule .
As is shown here, it is important to calculate the influence oflow-energy excitations

in the finite system itself. It seems therefore that a consistent picture of the depletion
of shell-model orbitals is emerging . From the present work one can infer that a 10%
background contribution to the hole strength is indeed a reasonable estimate . By
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subtracting an additional 10-15% from the calculated occupation numbers on
account of short-range correlations, one arrives at numbers which are quite similar
to what is obtained from the direct analysis of the (e, e'p) experiments as well as
in a combined analysis with (e, e' ) elastic scattering data ~).
The spectral functions shown in sects. 4 and 5 exhibit a quite general characteristic

feature . This is that the fragmentation of strength and the width of the range over
which this strength is distributed increases with increasing distance from the Fermi
energy . States lying close to the Fermi level, called "valence" shells in the shell
model, still have a strong peak which carries the main portion of the strength, i.e.
typically 50% or more of the sum rule value 2j + 1. This "quasiparticle" state is what
is observed experimentally in the A-1 nucleus and interpreted in the naive shell
model as a single-hole state (and similarly for single-particle states in the A+ 1
system ) . Hole states or particle states which are remote from the Fermi level are in
the same region where 1p2h or 2p1 h states, respectively, are abundantly present,
with which they mix by means of the coupling through the interaction . Thereby
these states spread over a broad energy region and one can distinguish a "quasi-
particle bump" as was illutrated by fig. 14. The width of the deep-lying bump,
mainly composed of 1s strengh, is so large that the notion of a nucleon orbit loses
its meaning. In view of this the question arises how the shell model can still be
meaningful for the valence orbits. The answer is obvious that their quasiparticle
energies are far enough away from the 1p2h or 2p 1 h energies . This can only happen
because there is a finite gap in the single-particle spectrum, which has obviously to
do with the finite size of the nucleus. The larger the nucleus the smaller this gap
and consequently the stronger the reduction of the "quasiparticle" strength in the
main peak.
These results are in clear contrast with a mean field picture . For instance for the

shells of an atomic electron cloud the HF approximation works very well; all hole
states have a well-defined energy and the quasiparticle peak contains virtually 100%
of the strength . The nucleus has an intermediate structure between the atom and a
quantum liquid like 3He for which the quasiparticle peak at the Fermi surface is at
most 30% [ref. a')] and must be considered a more strongly correlated system. This
means that nuclear matter should really be considered as a quantum liquid rather
than an assembly of particles moving almost independently in orbits of the size of
the nuclear diameter . It may be remarked that there is also a similarity as far as
interactions are concerned . A Lennard-Jones potential also has a strong repulsive
core and a longer range attraction . There is even a further analogy when this repulsive
core is attributed to Pauli repulsion of the constituents (electrons in the case of the
atom and quarks in the case of nucleons) . The difference between a nucleus and a
liquid ~He is of course the finite size, which yields the aforementioned gap in the
s.p . spectrum and therefore increases the range of validity of the quasiparticle
(shell-model) picture . One can conclude nevertheless that the nuclear shell model
reveals a quasiparti~ :e picture which is very similar to the one developed b~~ Landau
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for strongly interacting Fermi liquids ax) . Further discussion ofthese features includ-
ing t e in uence of short-range correlations on the strength distributions can be
found in refs . ay,so) .
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PARA~~iEî'ERS ~OF TtiE G-t~iATitiX iNT~RACTi®d~9

he local para etrization of the G-matrix of the Bonn potential '' ) used in this
work consists of two parts:

in `vhich

	

represents the bare nucleon-nucleon interaction and G the (nuclear
after)

	

-matrix correlations. In the G-matrix interaction of ref. '') an older version
of the Bonn potential ~~) was used as bare interaction . This potential is parametrized
as a set of one-b-oson exchange potentials, using the spin-isospin ®perators , z, " ~2,
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In these expressions rn ; represents the mass of an exchanged meson and C; the
strength . The total nuclear matter C~-matrix interaction is therefore parmetrized as:
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TABLE 4
Parameters for the used interactions

in which the functions f, f', etc, are given by

f(9)=z Cg~'~

	

Aj=0 or 2 .

	

(A.6)
Mi +q`

We use two versions of this potential . The first one is denoted by GNM and was
calculated for kF=1.20 fm -' and E=-74 MeV. The second one is denoted by G"M
and was calculated for kF=1 .06 fm - ' and E=-20 MeV. The parameters for these
interactions were taken from refs.`',';) and are summarized in table 4.
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