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The Equivalence Myth of Quantum 
Mechanics-Part I 

F. A. Muller * 

If only I knew more mathematics! 
Erwin Schrddinger * 

The author endeavours to show two things: first, that Schrodinger’s (and 
Eckart’s) demonstration in March (September) 1926 of the equivalence 
of matrix mechanics, as created by Heisenberg, Born, Jordan and Dirac 
in 1925, and wave mechanics, as created by Schrddinger in 1926, is not 
foolproof; and second, that it could not have been foolproof, because at the 
time matrix mechanics and wave mechanics were neither mathematically 
nor empirically equivalent. That they were is the Equivalence Myth. In 
order to make the theories equivalent and to prove this, one has to leave the 
historical scene of 1926 and wait until 1932, when von Neumann finished 
his magisterial edifice. During the period 192632 the original families of 
mathematical structures of matrix mechanics and of wave mechanics were 
stretched, parts were chopped off and novel structures were added. To 
Procrustean places we go, where we can demonstrate the mathematical, 
empirical and ontological equivalence of ‘the final versions of’ matrix 
mechanics and wave mechanics. 
The present paper claims to be a comprehensive analysis of one of 
the pivotal papers in the history of quantum mechanics: Schrodinger’s 
equivalence paper. Since the analysis is performed from the perspective of 
Suppes’ structural view (‘semantic view’) of physical theories, the present 
paper can be regarded not only as a morsel of the internal history of 
quantum mechanics, but also as a morsel of applied philosophy of science. 
The paper is self-contained and presupposes only basic knowledge of 
quantum mechanics. Due to its length, the paper is published in two parts. 
Section 1 of the paper contains, besides an introduction, also the paper’s 
five claims and a preview of the arguments supporting these claims; so 
Section 1 serves too as a brief summary of the paper for those readers who 
are not interested in the detailed arguments. 

* Schriidinger in a letter to Wilhelm Wien. 27 December 1925; quoted in Moore (1989, 

p. 196). 
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1. Introduction and Summary 

In 1924 atomic physics was a lamentable hodgepodge of experimental reg- 
ularities, cabbalistic sum-rules, computational recipes, bold conjectures and 
above all unsolved problems (d’Abro, 1939; Heilbron, 1977; Jammer, 1966, 
Chap. 5). And then suddenly there were two atomic theories. First there was 
matrix mechanics, developed in 1925 by Werner Heisenberg, Max Born and 
Pascual Jordan (Gdttingen) in a series of three papers in Zeitschrijt fiir Physik 
(Heisenberg, 1925; Born and Jordan, 1925; Born et al., 1926) and P. A. M. 
Dirac (Cambridge) in two papers in the Proceedings of the RoyaE Society 
(Dirac, 1925a; Dirac, 1925b). 1 Second there was wave mechanics, created by 
Erwin Schriidinger (Zurich) in a series of five papers in Annalen der Physik 
[Schrodinger (1926a; 1926b; 1926~; 1926d; 1926e)]. * 

By 1926 their mathematical equivalence already had been allegedly proven 
by Schrodinger and independently by Carl Eckart (Cambridge, U.S.A.), and 
by Wolfgang Pauli (Munich) in a letter to Jordan discovered by B. L. van der 
Waerden in 1972 (Schrodinger, 1926~; Eckart, 1926; Van der Waerden, 1973) 
. About 15 years ago Linda Wessels emphasized that the nearly simultaneous 
emergence of two theories and their alleged almost unanimous acceptance by 
the physical elite barely 2 years later (at the Solvay Conference of October 1927 
in Brussels) constitute a rare sequence of events in the history of physics and 
as such provides unique material for studying issues concerning the appraisal, 
comparison, pursuit, acceptance and interpretation of physical theories (Wessels, 
1980, p. 59). Accordingly Wessels asserted that a careful study of the matrix- 
wave controversy was long overdue. Like the papers of Van der Waerden (1973), 
Wessels (1977; 1980; 1981), MacKinnon (1980) and Beller (1983; 1985; 1990; 
1992; 1996) and part of De Regt’s (1993) doctoral dissertation, the present paper 
can be seen as part of Wessels’ programme. 

The Equivalence Myth is that matrix mechanics and wave mechanics were 
mathematically and empirically equivalent at the time when the equivalence proofs 
appeared and that Schriidinger (and Eckart) demonstrated their equivalence. 3 
Since the story that first there were two entirely different theories that were 
subsequently proven equivalent by Schrodinger (and Eckart) is generically taken 
for granted, whereas in fact it is false, the term ‘myth’ seems appropriate. A 
survey of the physics library illustrates the ubiquity of the Equivalence Myth: it 

1 Collected, introduced and German papers translated into English, in Van der Waerden (1967). 
2 Translations in Schrodinger (1927). 
3 Literature dealing explicitly with Schrodinger’s and Eckart’s equivalence proofs that the author 
was able to find: Hanson’s confusing (1961) also published as Chapter VIII of Hanson (1963) 
and MacKinnon (1980, pp. 1 l-23), which are highly non-mathematical and therefore do not even 
come close to the heart of the matter; the historical works of Jammer (1966, pp. 270-275) and 
Mehra and Rechenberg (1987, pp. 636-684) who report the historical events, provide a wealth of 
internal background information (especially the latter), but omit critical analyses (idem dito); Van 
der Waerden (1973), where a gap in Schrodinger’s proof is exposed; Emch (1983, pp. 288-289, 
336338), who views the proof as a precursor of von Neumann’s unitary-uniqueness theorem; and 
Ludwig (1968, pp. 32-44) who supplies some mathematical scaffolding for Schrodinger’s proof. 
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is to be found in text-books on quantum mechanics [Pauling and Wilson (1935, 
p. 417) Kramers (1937, p. 61), Royanski (1938, p. 341), Mott and Sneddon 
(1948, p. 356), Bohm (1951, §16.24), MacConnel (1958, p. 51), Powell and 
Crasemann (1961, p. 282), Messiah (1962, p. 47), Dicke and Wittke (1963, 
p. 176), Borowitz (1967, p. 244), Greiner (1989, p. 147), Bransden and Joachain 
(1989, p. 51), Peres (1993, p. 20)], in works of the founding fathers [Schrodinger 
(1926e; 1927, p. 58), Heisenberg (1929, p. 493), Born (1935, p. 128), Jordan 
(1936, p. 154)], in a variety of historical writings [d’Abro (1939, p. 810), Gamov 
(1966, p. 105), Jammer (1966, p. 271), Hund (1967, p. 139), Cline (1969, p. 159) 
de Broglie ( 1969, pp. 192- 195), MacKinnon (1980, pp. 3, 11,46), Wessels ( 1980, 
pp. 60, 69) and (1981, p. 192), Beller (1983, p. 470), (1992, p. 283) and (1996, 
p. 548), Forman (1984, p. 335), Mehra and Rechenberg (1987, pp. 636, 684) 
Wick (1995, p. 26)], in philosophical-foundational analyses [Reichenbach (1944, 
p. iv), Bub (1974, p. 2), Hughes (1989, pp. 45-46), Torretti (1990, p. 15 l), 
Van Fraassen (1991, p. 450), De Regt (1993, pp. 138, 145, 146, 156) Omnes 
(1994, p. 15)], in mathematical-foundational treatises [von Neumann (1932, 
p. 5) Ludwig (1968, p. 32) Prugovecki (1981, p. 296), Emch (1983, p. ZSS)], 
in pure mathematics monographs (Chae, 1995, p. 221), in scientific biographies 
[Moore (1989, p. 212), Kragh (1990, p. 31), Cassidy (1992, pp. 214215)] and in 
autobiographies (Casimir, 1983, p. 53). Careful statements about the issue are 
rare. 4 

In order to understand Schrlidinger’s equivalence proof, we provide a synoptic 
description of matrix mechanics (Section 3) and wave mechanics (Section 4) as 
they were at the time when this proof appeared (March 1926). Then we give a 
comprehensive review of Schrddinger’s equivalence proof, not Eckart’s or Pauli’s, 
for Schrodinger’s is the most elaborate one and had the greatest historical impact 
(Section 5). 

Ever since two sacred texts on quantum mechanics appeared, Dirac’s The 

Principles of Quantum Mechanics (1930) and von Neumann’s Mathematische 

Grundlagen der Quantenmechanik (1932), the state-observable characterisation of 
quantum mechanics has reigned-notwithstanding the remarkable differences 
between the two sacred texts. According to the state-observable characterisation 
the theory of quantum mechanics exhaustively describes physical systems in 
terms of measurable physical magnitudes, baptised observables by Dirac, and of 
states (Dirac, 1930, pp. 19,25); from the state the probability measure regarding 
any observable of interest can in principle be calculated. 5 Projecting the state- 
observable characterisation back into Schrodinger’s equivalence proof prevents 
us from fully understanding what is really going on in the proof, for the only 
historically valid question reads: how Schrddinger intended his equivalence 
proof to be understood, not what we make of it from today’s characterisation 
of quantum mechanics which simply did not exist at the time. 

In Suppes’ structural view of physical theories, according to which the 

4 Tomonaga (1966, p. 162), Gibbins (1987, p. 24); Hanson (1961; 1963) denies the equivalence. 

but unfortunately for all the wrong reasons (vide infra). 
j See further any textbook of quantum mechanics. 
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essence of a physical theory lies in the mathematical structures it employs to 
describe physical systems, the equivalence proof, including part of Schrodinger’s 
intentions, can legitimately be construed as an attempt to demonstrate the 
isomorphism between the mathematical structures of matrix mechanics and wave 
mechanics [Cf. Ludwig (1968, p. 32) and Wick (1995, p. 26)]. Matrix mechanics 
and wave mechanics such as they were around March 1926 are thus tailored in 
structural terms in Part II, Section 1. 

We shall explain and argue for five claims. The first three-major--claims 
(I, II, IIIA) are historical in nature and are meant to challenge the Equiv- 
alence Myth; the other three-minor-claims (IIIB, IV, V) are foundational- 
mathematical in nature, of which the latter two (IV, V) were essentially estab- 
lished long ago but are added for the sake of elucidation and comprehension, and 
of which the first one (IIIB) is novel and is established by a little mathematical 
proof. 

Claim I: at the time when Schrodinger’s equivalence proof (March 1926) and 
Eckart’s (September 1926) appeared, matrix mechanics and wave mechanics 
were neither mathematically equivalent (IA) nor empirically equivalent (IB). 
That matrix mechanics and wave mechanics were ontologically distinct, in the 
sense of making conflicting assertions concerning atomic reality, was obvious 
from the very beginning and recognised by all the players. But in arguing against 
the mathematical and empirical equivalence the author means to question at least 
all the testimonies of the Equivalence Myth referred to above. One reason for the 
failure of the mathematical equivalence is the fact that whereas matrix mechanics 
could in principle describe the evolution of physical systems over time (by 
means of the Born-Jordan equation), but limited itself unnecessarily to periodic 
phenomena, wave mechanics could not-Schriidinger’s time-dependent wave- 
equation dates from 3 months later than his equivalence proof. Other reasons for 
the failure of mathematical equivalence are: the absence in matrix mechanics of a 
state space but its presence in wave mechanics (the space of wave-functions); the 
fact that Euclidean space and a set of charge-matter densities, both prominently 
present in wave mechanics, had no matrix-mechanical counterparts; and the fact 
that matrix mechanics produced the first theory of a quantised electromagnetic 
field by means of matrix-valued fields, whereas Schrodinger emphasised there 
was no need to tinker with the classical Maxwell equations in wave mechanics. 
The empirical non-equivalence between matrix mechanics and wave mechanics 
springs from the smeared charge densities, which made it conceivable to perform 
an experimentum crucis by charge measurements on electrons. 

Claim II: the ontological difference between matrix mechanics and wave 
mechanics was entrenched in the mathematical structures characterising these 
two theories; therefore the superiority of wave mechanics with regard to 
Anschaulichkeit 6 was not redundant verbal fluff, but was firmly rooted in the 
mathematical structure of wave mechanics and was not, and could not be, rooted 
in that of matrix mechanics. (Claim II is not a consequence of Claim I only, 

6 Untranslatable; it is a proper mixture of ‘visualizability’, ‘intuitiveness’, ‘pictoriability’, 

‘comprehensibility’, ‘intelligibility’ and ‘understandability’. 
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because it also depends on which parts of the theory were stipulated to have 
ontological significance.) Euclidean space, the charge-matter densities and the 

eigenvibrations are elements of the wave-mechanical structure; all terms and 

predicates of the wave-mechanical language referring to these elements can only 

be dismissed after some ruthless chopping of the mathematical structure of wave 
mechanics. The matrix-mechanical language could not possibly refer to space, 

to charge-matter densities or to eigenvibrations, because the matrix-mechanical 
structure did not satisfy (in the rigorous model-theoretical sense) any sentence 
containing terms or predicates referring to these notions. Claims I and II are 

the subject matter of Part II, Section 2. 
Claim IIIA: on the basis of a different, non-standard definition of ‘mathemat- 

ical equivalence’, which we shall call Schriidinger-equivalence because it captures 
an intention of Schrodinger’s that the standard definition does not capture, the 

equivalence-proof fails too. The reigning state-observable characterisation will 

hinder our understanding of the gist of Schrodinger’s intentions, in a similar way 

as projecting back matrices in Heisenberg’s first paper hinders the understanding 
of that very paper (MacKinnon, 1977, p. 163). The failure of Schrodinger’s 

attempt to demonstrate Schrodinger-equivalence between matrix mechanics and 
wave mechanics is due to the fact that on closer inspection his appeal to ‘the 
moment problem’ in mathematics appears to be in vain. 

Claim IIIB: Schrodinger-equivalence does nonetheless hold, which can be 
proved in a more contemporary setting by an appeal to von Neumann’s unitary- 

uniqueness theorem from 1931. Claims IIIA and IIIB are the topic of Part II, 
Section 3. 

To attain equivalence, matrix mechanics was committed to the discovery of 

conditions governing the canonical matrices such that they generate an algebra, 
and such that corresponding wave-operators exist. 

Claim IV: the shift in mathematical perspectivefrom looking upon an infinite 
matrix as a mathematical entity in its own right, as the founding fathers originally 
did, to looking upon an infinite matrix as a partial specification of a linear 

operator acting on the Hilbert-space of complex sequences, as required by 
the reigning state-observable characterisation of quantum mechanics, resolves 

the problem. Claim IV, obvious from our present understanding of quantum 
mechanics, will nonetheless be exemplified briefly in Part II, Section 4, for the 
sake of completeness. 

In Part II, Section 5 we formulate an Equivalence Theorem (Claim V): the 

‘final versions’ of matrix mechanics and wave mechanics, which exhibit the 
familiar state-observable characterisation and are therefore quite distinct from 

their historical progenitors, can be proven to be mathematically and empirically 
equivalent. We shall not prove this Equivalence Theorem because all the 
ingredients of such a proof are available elsewhere. Finally, we indicate the precise 
connection between the final versions of matrix mechanics and wave mechanics 
on the one hand and orthodox quantum particle mechanics on the other hand; we 
take the last mentioned to be von Neumann’s edifice (1927a; 1927b; 193 1; 1932). 

This paper ends with a speculative remark on the distinction formal- 
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ism/interpretation in quantum mechanics, which Heisenberg surreptitiously in- 
troduced to justify his use of the wave-mechanical equations (Part II, Section 6). 

2. Mathematical Preamble 

Our nomenclature and notation coincide with those used in Prugovecki’s 
book, which can be viewed as a self-contained, expanded and modemised 

version of von Neumann’s book (Prugovecki, 1981; von Neumann, 1932). For 
the purposes of the present paper we need the following additional definitions 

and notational deviations. 

For the sake of expediency, we treat ‘morphism’ and ‘structure-preserving 
map’ as synonyms. Two members U and ‘11 of two families of set-theoretical 

structures are isomorphic (notation: U = !Z7) iff there exists a bijective morphism 

between them; whenever both structures U and % are ordered n-tuples of set- 
theoretical structures, U is isomorphic to %I iff there exist n bijective morphisms 

between their IZ respective slots (= elements). Two sets are equinumerous iff 
they have the same cardinality. Notation of natural numbers is as follows: 

No:= {0,1,2,3 ,... };lV:= {1,2,3 ,... );andN,:= {1,2,3 ,..., n},wheren~N. 

A Hilbert-vector (Cooke, 1950, p. 224) is an element of some Hilbert-space 
?f. The inner product of Hilbert-vectors @ and Cp is denoted as (VI+), and 

an ordered pair as (w, 4). O(i) G 3f- and R(i) c ti denote the domain and 

range of operator A, respectively (operators wear hats); recall that domains are 

defined as (not necessarily topologically closed!) vector spaces. The operatori 

is complete iff it has a complete set of eigenvectors in H. Hilbert-vectors of H 

are Weyl-equivalent iff they differ by a complex overall factor of modulus 1 (‘a 

phase factor’); PM is the ensuing projective Hilbert-space of rays (Weyl, 193 I, 
p. 75). 

A Schmidt-sequence s is a denumerable sequence of complex numbers s, such 
that the sum of the ls,12 converges; Z2(N) is the Hilbert-space of all Schmidt- 
sequences. 7 Denote by e” the sequence all of whose elements equal 0 except the 

nth element, which equals 1: ezz = 6,,, where 6,, is the Kronecker-delta; the set 
{e’} of these Schmidt-sequences is an orthonormal basis for /‘(NJ), called the 
natural basis. A sequence-operator& is an operator acting on a Schmidt-sequence. 

By a matrix we mean a complex matrix with denumerably many rows and 
columns, unless stated otherwise. A matrix B is bounded iff Bs is a Schmidt- 
sequence whenever s is a Schmidt-sequence. s A matrix Q is a Schriidinger- 
Eckart matrix iff Qs is a Schmidt-sequence for every s in some vector space 
that is dense in l’(N). A matrix is a Wintrier-matrix’ iff its rows and columns 
are Schmidt-sequences. The product of two Wintner-matrices always exists. The 

’ The structure f’(M) to which these sequences give rise was first explored by Erhardt Schmidt 
in 1928; cf. Wintner (1929, p. 278). 
’ The historically important Hilbert-matrices coincide with the bounded matrices, as a result 

of Theorem 9.4 III in Cooke (1950, p. 246); Crone (1971) solved the long-standing problem of 
characterising a bounded matrix in terms of its matrix elements only. 
’ Wintner (1929, p. 122) baptised them ‘Q-matrices’, from the German ‘Quadrat’. 
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relations between all these matrices are as follows (.7&d is the set of bounded 

matrices, etc.): lo 

Mbnd C ~Wintner and mbnd c MSE. (1) 

A subset G of matrices (operators) of a matrix (operator), aZgebru U(G), by 
definition closed under addition and multiplication and containing the unit 
matrix (operator) consists of the generators iff G is the smallest subset of Zt(G) 

such that every element of the matrix (operator) algebra can be written as a 

polynomial of the elements in G; the set G is irreducible iff the only element 
that commutes with all the generators is (a scalar multiple of) the unit matrix 

(operator). 
An element cc/ E I,2(R”), the Hilbert-space of all complex functions on R.” 

whose modulus is square-integrable, is called a wave-function; a basis for L2 (IV 1 

is called a wave-basis. A wave-operator A^ is an operator acting on a wave- 

function; two wave-operators A^ and E are called Lebesgue-equivalent iff their 

action upon a wave-function q yields two wave-functions AI& and 6~ that are 
Lebesgue-equivalent (i.e. all their definite Lebesgue-integrals coincide). 

3. Matrix Mechanics 

The historical emergence of matrix mechanics has been described exhaus- 
tively. ” We present mat rix mechanics as an axiomatised theory, much as in the 
Dreimiinnerurbeit of Born et al. (1926). I2 The postulates apply to an atomic 

system of Nd degrees of freedom (d f NJ), consisting of N E N material 
particles. 

3.1. Postulate MI 

Each Cartesian component of the classical magnitudes momentum and posi- 

tion corresponds in matrix mechanics to a time-dependent, Hermitian matrix 
Pk(t) and Qk(t), respectively, called canonical matrices (k E &d;n, m E W): ” 

Pk(m, n; t) := Pk(m, n)eiw(m”“t and Qk(m, n; t) := &cm, n)e’w(‘n”‘)‘, (2) 

‘uThe tirst ‘C‘ is the content of a Corollary in Cooke (1950, p. 259); the second ‘C’ is trivial. 

I1 See Van der Waerden (1967, pp. 2%35), Jammer (1966, pp. 208-227) and Beller (1983); see 

Mehra and Rechenberg (1973, pp. 62-138) for the most elaborate exposition of all the founding 

papers of matrix mechanics; Tomonaga (1962, pp. 204259) and Ludwig (1968, pp. 17-25) provide 

rational reconstructions; elucidating from a mathematical point of view is Emch (1983, pp. 252- 

276), who focusses on Born and Jordan (1925). and elucidating from a historical point of view is 
MacKinnon (1977), who analyses Heisenberg (I 925); easy and written from a working physicist’s 

point of view is d’Abro (1939, pp. 810-863). 
I2 We ignore the operator reformulation of a part of matrix mechanics by Born and Wiener 

(1926), because it is now regarded as a dead end and because Schrodinger ignored it too. 

‘“To avoid doubly indexed matrices, we assume that in the case of, say N = 2 and d = 3. 

k = I refers to the x-component matrix pertaining to the first particle, , k = 6 refers to the 

:-component matrix of the second particle; etc. 
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where the frequency v(m, n) := o(m,n)/2~~ of the emitted or absorbed 
electromagnetic radiation of the atomic system in the transition m Ft n obeys 

the following two conditions: (Mla) v(m, n) + v(n, 1) + v(l, m) = 0, where 
m, n, 1 E N are assumed to refer to the labels of the atomic spectral lines; and 
(Mlb) if IZ + m, then v(n, m) + 0. The canonical matrices, the set of which is 

denoted by CmX, l4 obey the following canonical commutation relations: 

[Pk(t), Qj(t)l = -ifi6jkl and [Pk(t), Pj(t)] = [Qj(t), Qk(t)] = 0, (3) 

where 8jk is the Kronecker-delta and 1 and 0 the unit and zero matrices, 

respectively. l5 Pairs (Pk(t), Qk(t)) are called canonical(ly conjugated) pairs. 
QEP l6 

Condition (M la) regarding the frequencies, which was known at the time 
as the phenomenological Rydberg-Ritz combination rule, was postulated by 
Heisenberg in 1925 solely to achieve consistency with H. A. Kramer’s phe- 
nomenological dispersion formula (Van der Waerden, 1967, pp. 29-33). Condi- 

tion (Mlb) merely asserts that transitions result in the emission or absorption 
of electromagnetic radiation (non-zero frequency). Born and Jordan saw that 

the relations (3), which presuppose the existence of the products Qj (t ) Pk (t ) and 

Pk(t)Qj (t), force the canonical matrices to be infinite (Van der Waerden, 1967, 
p. 291). 

3.2. Postulate M2 

All physical magnitudes correspond to time-dependent, Hermitian, matrix- 

valued polynomial functions of the canonical matrices. QEP 
In their ‘Fundamental Principle III’ Born et al. restricted the class y( C,,) of 

matrix-valued functions of the canonical matrices to polynomials; so y (C,,) = 
!Zl(C,,), where the latter is the canonical matrix algebra, generated by C,,. But 
further on in the Dreimiinnerarbeit, they asserted that certain relations hold 

for ‘every function F(Pk(t), Qj(t) ) which can be formally expressed as a power 
series’ (Van der Waerden, 1967, pp. 325, 281,327). To presuppose the existence 
of arbitrary polynomial expressions of unbounded injnite matrices in U( C,,) is 

mathematically as baffling as it is bold; it will be one of the troublesome issues 

taken up in the present paper. 

3.3. Postulate M3 

The physical magnitude energy corresponds to a Hermitian, diagonalizable 
matrix-valued function H = H (Pk (t), Qj (t) ) E ‘J (C,,), called the Hamiltonian 

“Throughout this paper the subscripts ‘mx’ and ‘WV’ indicate that the subscripted mathematical 
entity belongs to matrix mechanics or wave mechanics, respectively. 
l5 Eq. (38) of Born and Jordan (1925), eq. (12) of Dirac (1925a) in Van der Waerden ( 1967, 
pp. 3638,292, 42, 315) and Jammer (1966, pp. 220, 238). 
I6 Quod erat ponendum; signals end of Postulate’s formulation-supposed to be a joke! 
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marrix. The only possible energy values are the diagonal elements E, of the 
diagonalised H, which we collect in the set a,,,,(H). QEP 

Notice that in contrast to Postulate M3 the diagonal elements of Pk(t) and 

Qj (t) are not postulated to have any physical significance. There is a cogent 
reason for the absence of such a postulate: neither member of a canonical pair 
can be diagonal. ” For non-deg enerate atomic systems (v(m, n) f 0 for some 
n, m) Born et al. derived that H is diagonalizable; for degenerate atomic systems 
their derivation crashed. l8 

3.4. Postulate M4 

The frequency v(m, n) of the emitted or absorbed electromagnetic radiation 

of an atom in transition m Z II is given by Bohr’s 1913 frequency condition: 

hv(m, n) = E,,, - E,, (4) 

where E,,,, E,, are elements of o,,(H) (vi& Postulate M3). QEP 

For non-degenerate atomic systems Bohr’s frequency condition could be 
derived from the other postulates; lg once again, for degenerate atomic systems 

this derivation crashed [Born et al. (1926) in Van der Waerden (1967, pp. 343- 

345)]. 

3.5. Postulate M5 

A postulated matrix version of Hamilton’s Principle of Least Action was 
shown to lead to the matrix versions of the classical Hamilton equations: 20 

aH 
c&(t) = - 

aH 

aPk(t) 
and P,&) = -- 

aQk(t)’ 
where the definitions of the partial matrix-mechanical derivatives closely resem- 

ble the familiar definition of ordinary differential calculus. ” QEP 

3.6. Postulate M6 

The intensity zk (m, n) of the electromagnetic radiation emitted or absorbed by 
an atom in a transition n S m with frequency vk (m, n) polarised in direction k 

is proportional to the square of the absolute value of the corresponding matrix- 

element of Qk (t): 

“This is established by an easy reductio ad absurdurn argument using the fact that the trace of 

products and sums of finite matrices equals the products and sums of their traces, respectively. 
‘sVan der Waerden (1967, pp. 328-329, 343-345). The restriction to diagonalizable Hamiltonian 
matrices implies a restriction to point-spectra. 
lg Heisenberg (1925) in Van der Waerden (1967, p, 273) Born and Jordan (1925) in Van der 

Waerden (1967, pp. 38, 294); cf. Part II, Section 2.2. 
“Born and Jordan (1925) in Van der Waerden (1967, p. 290), eq. (35). 
2’ Van der Waerden (1967, p. 282), Mehra and Rechenberg (1982, pp. 69,97-98); we do not need 

these definitions in this paper. 
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where t is arbitrary 22 and where Qk(t) is expressed in the diagonal representa- 
tion of H. QEP 

Born and Jordan realised that a quantum theory of matter (atoms, electrons) 

had to be supplemented by a quantum theory of (electromagnetic) radiation. 
They set out to formulate the Maxwell equations in matrix language. In classical 
electrodynamics the electromagnetic field is characterised by two vector-valued 
functions E(r, t), B(r, t) E IK3 on space-time, whose points are here arbitrarily 
labelled by Cartesian coordinates r E IR3 and t E Iw: 23 

E(r, t) := E,(r, t)e, + EY(r, t)e, + E,(r, t)e,, (7) 

B(r, t) := &(r, t)e, + B,(r, t)e, + B,(r, tie,, (8) 

which solve the Maxwell equations. 

3.7. Postulate M7 

Each component of the electromagnetic field corresponds to a space-time- 
dependent, Hermitian matrix. Define the vector-matrix for the electric and the 

magnetic field as follows: 

T(r, t) := E,(r, t)e, + E,(r, t)e, + E,(r, t)e,, 

%(r, t) := B,(r, t)e, + B,(r, t)e, + B,(r, t)e,. 

(9) 

(10) 

These vector-matrix-valued fields are postulated to obey the free matrix Maxwell 
equations, which are obtained by replacing the vectors E and B in the familiar 

Maxwell equations with their vector-matrix analogues. QEP 
We next bring some consequences of these postulates into the limelight, for 

future reference. 
(ml) The problems posed by the (an)harmonic oscillator and the rigid rotator 

were solved in matrix mechanics. By means of an ingenious and laborious 
calculation, Pauli obtained the frequencies of the Balmer series of the hydrogen 

spectrum, and their shift when hydrogen is exposed to a homogeneous electric 
field (Stark effect, discovered in 1913) and to crossed electric and magnetic fields; 
Dirac obtained a few results independently. 24 At this stage matrix mechanics 

could hardly be said to have superseded the old Bohr-Sommerfeld model as far 
as the empirical content was concerned. According to Van der Waerden and 
Jammer, Pauli’s achievement nevertheless managed to convince most physicists 
that matrix mechanics was the way to create order out of chaos [see Van der 
Waerden (1967, p. 58) and Jammer (1966, pp. 241-242)]. But according to Beller, 

“The time t can be taken arbitrarily because the norm of each matrix element Qk(m, n;t) is 
time-independent. 
23 Born and Jordan (1925, Section 4) and Born et al. (1926, Section 4.3); Van der Waerden did 
not include these sections in (1967, iv, pp. 277); see also Mehra and Rechenberg (1982, pp. 87-90, 
129-156). 
24 Pauli (1926), Dirac (1925b), Mehra and Rechenberg (1982, pp. 174-185), Van der Waerden 

(1967, pp. 57-59, 387415). In 1972 Vleck (1973, pp. 30-31) discovered that Dirac had cheated. 
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victorious squeaks came exclusively from the hills around Cijttingen; everywhere 
else the physicists were all sitting on the fence, watching how these awkward 

infinite matrices were invading atomic physics (Beller, 1983). 

(m2) The conservation of orbital angular momentum was established. The 
introduction of orbital angular momentum matrices, elements of y( C,,), 

obeying a novel commutation relation led to the result that in atomic transitions 
orbital angular momentum changes only in integer units of Planck’s constant 
(Van der Waerden, 1967, pp. 364-369). This was in fact a well-established 

selection rule of experimental spectroscopy. Here matrix mechanics provided a 

theoretical explanation for a phenomenological regularity. 
(m3) On the assumption that the Hamiltonian matrix H can be decomposed 

in a sum of two matrices depending only on Pk(t) and Q;(t), respectively, Born 
and Jordan derived that any physical magnitude corresponding to a matrix- 

valued polynomial function F( Pk (t), Qj (t)) satisfies the following equation of 
motion (Born and Jordan, 1925; Van der Waerden, 1967, p. 293, eq. (43)): 

ifii(Pk(t), Qj(t)) = [F(Pk(t), Qj(t)), HI. (11) 

This Born-Jordan equation is always incorrectly called ‘the Heisenberg equation’. 
(m4) A canonical transformation P - P’, Q - Q’ is a transformation that 

leaves the canonical commutation relations (3) invariant. Born and Jordan 
showed that similarity transformations are canonical transformations: 

P’ = SPS’“” and Q’ = SQS’““, (12) 

where S must be a unitary matrix (St = Sin”) iff the Hermiticity is to be con- 

served; we then speak of unitary transformations. *’ The importance of canonical 

transformations lies in the fact that if the diagonalizable H (Pk (t), Qj (t) ) is not 

a diagonal matrix, then there must be a unitary matrix U such that 

H’(P;(t), Q;(t)) := U H(UPk(t)Ui”“, UQ;(t)U’““) Uinv 

is a diagonal matrix. 

(13) 

(m5) Jordan derived from Postulate M7 a number of interesting results, one 

of which we mention. The intensity of Hertzian dipole radiation polarised in the 
direction of k, associated with the transition n s m, appeared to be equal to 

which provided a magnificent justification for expression (6) of Postulate 
M6. [See Van der Waerden (1967, p. 38) and Mehra and Rechenberg (1982, 
p. 90, eq. (190)). Matrix mechanics anno 1926 included the first serious 
attempt, entirely due to Jordan, to formulate a quantum field theory (Van der 

Waerden, 1967, p. 38).] 

2Tj Born and Jordan (1925). Van der Waerden (1967, pp. 330,35 1); compare Weyl(l931. pp. 96-98). 
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4. Wave Mechanics 

De Broglie’s hypothesis concerning matter waves, Hamilton’s principle of 
least action, wave optics, Einstein-Bose gas theory and the demand for an 

anschauliche theory of what is happening in atomic reality, all stimulated the neu- 

rons of Schrodinger’s brain when it was in the process of creating wave mechan- 

ics. 26 The postulates below are to be found almost verbatim in Schrodinger’s first 
three papers [Schrodinger (1926a; 1926b; 1926~) in Schrodinger ( 1927, pp. l-40, 
45-61)]; they apply to one material particle (the electron) in three-dimensional 

Euclidean space. 

4.1. Postulate WI 

Each Cartesian component of the classical magnitudes momentum and po- 
sition corresponds in wave mechanics to a wave-operator acting on a suitable 
complex function @, defined on R3. These so-called canonical wave-operators are 

defined as the differential operator (up to a factor -ifi) and the multiplication 
operator, as follows: 

act/(q) &t&(q) := -ifi- 
aC?k 

and 6jWCq) := qj(J/(q), (15) 

where j, k E IV3 and q := (41, q2.43) E lR3. C,, denotes the set of the six 
canonical wave-operators. QEP 

The only motivation for the introduction of these wave-operators was the fact 

that they obey canonical commutation relations analogous to (3): 

[i;k, 6j] = -ifidjki and [pk, pj] = [Gj,bk] = 6. (16) 

Initially these canonical wave-operators played no part whatsoever in wave 

mechanics: Schrodinger only invented these wave-operators when pursuing his 
equivalence proof (cf. Section 5). This initial absence is perfectly intelligible, 
for we currently think of these operators as having something to do with the 

measured momentum and position in space of a particle, but wave mechanics 
was not (intended by Schrodinger as) a particle theory since it was a wave theory; 
and waves ‘occupy’ non-denumerably many positions in space simultaneously, 
whether measured or not. 

4.2. Postulate W2 

All physical magnitudes correspond to wave-operator-valued functions of the 
canonical wave-operators. QEP 

“Wessels (1977) traces Schrodinger’s route to wave mechanics and Regt (1993, pp. 138-159) 
isolates the purely philosophical factors; Mehra and Rechenberg (1982, pp. 367-576) describe 
the rise of wave mechanics in their distinctive whirligig of details; Jammer (1966, pp. 242-277) 
provides a briefer account; Ludwig (1968, pp. 25-3 1) reconstructs wave mechanics rationally from 
classical-mechanical point-mechanics; Emch (1983, pp. 276-295) looks at wave mechanics through 
von Neumann’s spectacles; and MacKinnon (1980) addresses the rise and fall of ‘Schrodinger’s 
interpretation of the wave-function’. 
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Schrodinger required these functions to be polynomials in &, in order to 
replace Pk (t) meaningfully by -iFia/ aqk in matrix expressions [Schrodinger 

(1926~; 1927, p. 27)]. We remain provisionally silent about the precise math- 

ematical characterisation of the set ‘j’(C,,) of allowed wave-operator-valued 
functions, as did Schrodinger, but we let it include all polynomials. 

4.3. Postulate W3 

The physical magnitude energy of an electron corresponds to a complete ” 

Hermitian wave-operator-valued function H^ = H^(&, ej) E 7 (Cc,,), called the 

Humiltonian wave-operator, whose eigenvalue-equation reads: 

H^(c/(q) = E(IJ(q). (17) 

The only possible valurs for the energy are the eigenvalues E, of H^, which we 
collect in the set a,,(H); the solutions & of the eigenvalue-equation (17) are 
the so-called eigenvibrations of the atomic system. QEP 

We prefer to take the eigenvalue equation (17), called the time-independent 

Schriidinger equation, as a postulate, notwithstanding Schrodinger’s two distinct 
derivations. 28 The eigenvibrations (4,) are the wave-functions upn which H^ 
acts as multiplication by a constant (E,,). The Hermiticity of H entails the 

orthogonality of { +,,} as well as the fact that the energy values are real numbers. 
The Hamiltonian wave-operator H^ : = gfr,, + V(q)i is assumed to consist of a 

free and a potential term, where the potential V is some well-behaved function 
on IR3. ” Equation (17) then turns out to be a second-order, linear, parabolic, 

homogeneous partial differential equation, which poses, when boundary and 
initial conditions are added, a determinate problem for all E, E a,,(H 1. 

4.4. Postulate W4 

The frequency v(m, n) of the emitted or absorbed electromagnetic radiation 
of an atom in the transition m S n is given by Bohr’s frequency condition (4): 

E, - E,, = hv(m, n), (18) 

where E,,,, E,, E c,,(H) are the energy values of the eigenvibrations m and n, 

respectively. QEP 

17See Section 2. 
28 Schriidinger (1926~1; 1926b; 1927, pp. 1-2, 13-27); see Wessels (1977, pp. 330-335) MacKinnon 
(1980, pp. 4-6). 
2gWhether the potential term is an element of 3(C,,) is at this juncture undecidable because 

it is not necessarily a polynomial. But ‘well-behaved’ is taken to imply the existence of ,a Taylor 
expansion for V(q). every approximation of which can be rewritten as a polynomial in Q. whic_h 

would make the approximation an element of 3(G); to write an infinite power series in Q, 
one first needs to specify a topology. Fbr an elementary rigorous treatment of the mentioned 

Hamiltonian wave-operator, see F’rugovecki (198 1, pp. 354-369). 
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4.5. Postulate W.5 

Electrons are smeared charge-matter densities in space, the electric charge 

density being 

P(q) := w*(q)w(q) = elw/(qV, (19) 

where e is the electron charge. QEP 
The wave-function rc/ must of course be normalised to obtain the total electron 

charge-after integration of p over R3: 

I 
+CU 

p(q) dq = e. 
-cc 

So wave-functions reside in L* (8X3). Replacing the electron’s charge e with its 
mass m, yields a similar formula for the matter density (Tomonaga, 1966, 

pp. 17-23), although Schrodinger did not explicitly write it down. [In March 

1926 Schrodinger did not yet have the particular definition (19) for the charge 
density; it saw the light of day in his fifth founding paper of wave mechanics 

3 months later [Schrodinger (1926e; 1927, p. 120)]. But Schrodinger did have 
another definition. Since what is important for the present discussion is the 
fact that Schrodinger had a charge density p : iR3 - I?& not which particular 
definition for this mapping he had, we have taken the definition that would 

survive as the most promising one. For the purposes of the present paper, this 
historical incongruency is harmless.] 

This ends our description of the five postulates of wave mechanics as it was in 
March 1926. A sixth postulate (W6) concering the intensity of electromagnetic 

radiation will be added in the next section. We report the main consequences 

of these postulates. 
(wl) Schrijdinger solved the problems posed by the harmonic oscillator, the 

rigid rotator with fixed and with free axes, and the non-rigid rotator; further- 

more, he calculated the frequencies of the Balmer series of the hydrogen spec- 
trum, by solving the eigenvalue equation (17) of the Hamiltonian for one electron 
in the Coulomb field of an atomic nucleus (‘Kepler problem’) [Schrodinger 

(1926a; 1926b; 1927, pp. 2-8, 30-40)]. Schrodinger also derived the continuous 
part of the spectrum: [0, 00); the fact that the corresponding eigenvibrations 
(plane waves) make serious trouble for the total charge formula (20) was ignored. 

(~2) The quantisation of angular momentum, and the implied integer 
selection-rule, constituted a success that matched consequence (m2) of matrix 
mechanics. 

Schrodinger’s eigenvalue equation (17) was soon used by all physicists, 
the founding fathers of matrix mechanics included. Solving a linear partial 
differential equation, something physicists had been accustomed to for centuries, 
was so much easier than to diagonalise an unbounded infinite matrix. Eventually, 
it was not wave mechanics as expounded above which was accepted but a quite 
distinct version (vide Part II, Section 5). 
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5. The Equivalence Proof 

Schrodinger opened his equivalence paper as follows (1926~; 1927, pp. 4546, 

his italics): 

Considering the extraordinary differences between the starting-points and the con- 
cepts of Heisenberg’s quantum mechanics [= matrix mechanics] and of the theory 
which has been designated ‘undulatory’ or ‘physical’ mechanics [= wave mechanics] 
[ . . ] it is very strange that these two new theories agree with one another with 
regard to the known facts where they differ from the old quantum theory [ ] 
That is really very remarkable because starting-points, presentations, methods and 
in fact the whole mathematical apparatus, seem fundamentally different. Above all, 
however, the departure from classical mechanics in the two theories seems to occur 
in diametrically opposed directions. In Heisenberg’s work the classical continuous 
variables are replaced by systems of discrete numerical quantities (matrices), which 

depend on a pair of integral indices, and are defined by algebraic equations. The 
authors themselves describe the theory as a “true theory of a discontinuum”. On 
the other hand, wave mechanics shows just the reverse tendency; it is a step from 
classical point-mechanics towards a continuum-theory. In place of a process described 

in terms of a finite number of dependent variables occurring in a finite number of 
differential equations, we have a continuousfield-like process in configuration space, 
which is governed by a single partial d@rential equation, derived from a Principle 
of [Least] Action. 

So the explanandum is ‘the agreement with regard to the known facts’ of matrix 

mechanics and wave mechanics (coinciding energy values for the hydrogen atom 

and for a few toy systems, and quantisation of orbital angular momentum), 
and the ensuing equivalence proof is offered as the explunans. In this section 

we present the explication of this explunans. After (a) an introductory remark, 

we (b) treat the purported isomorphism of the canonical matrix- and wave- 

operator algebras, (c) expand wave mechanics by a sixth postulate concerning 
the intensity of electromagnetic radiation, and (d) immerse ourselves in wave 
mechanics to understand the part of the proof wherein the wave-functions are 

constructed from the matrices. 
(a) Schrodinger effectively proposed a generalisation of his postulates for 

the application to atomic systems consisting of N E N ‘particles’ in d E iV3 
dimensions, just as in matrix mechanics; we shall not spell out this generalisation 
to an arbitrary number of degrees of freedom (from IR3 to configuration 

space RNd), which proceeds straightforwardly. For the sake of simplicity, we 

shall confine ourselves to the simplest case (N = 1 and d = I), unless 
indicated otherwise; generalisations of the equivalence proof again proceed 
straightforwardly. Henceforth we also walk the familiar route of writing the row- 
and column-indices of the matrices as subscripts: Qmn(t) := Ql (m, n; t), etc. 

(b) Consider the putative canonical wave-operator algebra U(C,,) generated 

by G,, and the putative canonical matrix algebra Zr(C/,,) generated by Co,,, 
where the latter contains only P := P(0) and Q := Q(0); all their elements 
are polynomials over @ of their two generators. We use the word ‘putative’, 
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because the question whether the canonical wave-operators and the unbounded 
injkite canonical matrices do generate algebras is non-trivial; in March 1926 

the tacit alhrmative answer was at best a mathematical conjecture and at worst 
speculation. Let us reflect for a moment on whether matrix mechanics and wave 
mechanics need fully fledged algebras in the first place. 

The quantisation programme of the old quantum theory was to find quantum- 
mechanical counterparts of (all) magnitudes in classical physics. Dirac’s famous 
quantisation rule of replacing the Poisson brackets in classical expressions with 
ifi times the commutator, and concomitantly replacing classical dynamical 

variables (‘c-numbers’) with operators (‘q-numbers’), revived the quantisation 

programme in quantum mechanics (Dirac, 1925b; Van der Waerden, 1967, 

pp. 58,420-421). 
If the canonical wave-operators and the canonical matrices generate algebras, 

then one has rolled out a red carpet for the quantisation programme: all 
polynomial expressions, which include Taylor-approximations to nth order 
(n arbitrary) of appropriate functions, are mathematically allowed. Without 

algebras, the quantisation programme may produce diverging expressions, which 
are both mathematically and physically unacceptable. The non-existence of the 
canonical algebras would however not necessarily be a physical drawback: as 

long as a sufficient number of polynomials of the canonical elements exist that 

correspond to all the relevant physical magnitudes (kinetic and potential energy, 

angular momentum), the physicist is in business. Hence to get off the ground, 

the quantisation programme needs at least the guarantee that some polynomials 
exist, like the monomials QP and PQ of Postulate M2, like P2, which occurred 

in all Hamiltonian matrices considered, and like Q2 (Q3), which occurred in the 

(an)harmonic oscillator. But it is precisely this modest requirement that puts the 
matrix-mechanic in the predicament-of having to check all his needed matrix 

expressions by hand, for the postulates of matrix mechanics do not provide the 
necessary guarantees. The fact that some polynomials of physical relevance did 

indeed appear to exist [consequence (ml), Section 31 was the springboard for 
a leap to the existence of all polynomials-a move not uncharacteristic of the 
theoretical physicist. We provisionally follow the founding fathers in assuming 

the existence of the fully fledged canonical algebras U(C,,) and U(CL,). 
Another issue we provisionally pay little attention to is the notion of self- 

adjointness, which would become a pearl in von Neumann’s crown. Taking the 
adjoint is an example of what is currently known in mathematical physics as a 
*-map; 3o consequently the canonical algebras 2t(C,,) and 2t(Cz,) are called 
*-algebras; henceforth we leave this implicit. 

Enter Schrodinger. 
Suppose the canonical matrices P, Q E Co,, correspond to the canonical wave- 

operators p, 6 E C,,, respectively. Then to every polynomial of 9 and 6 there 
should correspond the same polynomial of P and Q, and vice versa. For example, 

3oA map A - A* is a *-map iff (A*)* = A, (AB)* = B*A* (A + B)* = B* +A* and 
(CA)* = CA*. 



The Equivulence Myth of Quantum Mechanics 51 

(21) 

corresponds to 

F(P, Q) := f=iQ*P - 2niQPQP + 8Q3P2Q2. (22) 

Due to the non-commutativity of the putative algebras, the order of the 
factors in each term is essential. Consider furthermore the set y(C,,) of 

wave-operator-valued functions of the canonical wave-operators and the set 
y(C$,) of matrix-valued functions of the canonical matrices. The existence of 

these sets of functions, which are taken to include all polynomials, is an even 
bolder mathematical conjecture. A one-to-one correspondence between the sets 

y (CO,,) and y(G,) would presumably be a straightforward extension of the 
correspondence displayed in (21) and (22). 

The pivotal question which has to be answered before the correspondence 

displayed in (21) and (22) can take off is: which matrices P and Q correspond to 

the differential operator ? and the multiplication operator 6 (of Postulate W 1). 

respectively? The following considerations provide an answer to this question. 

Suppose that A^, g are arbitrary Hermitian wave-operators and that {&) c 

D(i) n D(B^) is an orthonormal basis for L2(IR). Define the wave-operators 

2 := A^ + g and fi := A^B^. Next Schrodinger defines the following complex 
numbers, for each pair (j, k) of natural numbers: s’ 

I 

+CC 
Ajk I= +f (q)%&/) dq, (23) _-M 

and mutatis mutandis for Bjk, cjk and njk. Formula (23), also discovered by 
Eckart and Pauli [Eckart (1926, pp. 720, 723), Pauli in Van der Waerden (1973, 
p. 281)], is the illuminating connection between ‘the discrete matrices’ and ‘the 

continuous waves’; its provenance lies in Hilbert’s theory of quadratic forms 

and integral equations, wherein infinite matrices appeared for the very first time. 

Kornel Lanczos (Frankfurt am Main) had used a similar formula in a paper 
(December 1925) which addressed the connection between matrix mechanics 

and Hilbert’s theory of integral equations; Schrodinger knew this paper because 
he referred to it [see Lanczos (1926, p. 8 13) Schrodinger (1927, p. 60); cf. Van 

der Waerden (1973)]. Notice that njk E @. iff g$k E D(i). X2 Thence we obtain 

four infinite matrices: A, B, C and fI, for which Schrodinger showed that: 

C=A+B and n=AB. (24) 

Equations (23) define what we shall call a Schriidinger-Eckart mapping, which 

assigns matrices to wave-operators: 

f4 : a(G) - m(CO,,), ;i - ,&(& = A, (25) 

where the subscript 4 indicates that the wave-basis {&} is chosen. Together 

with the fact that f+ (i ) = 1, f+ (6) = 0 and the fact that the Schrbdinger-Eckart 
mapping f+ (25) preserves the relation ‘is the adjoint of’: 

.jl We omit Schrijdinger’s redundant ‘density functions’ from all integrals 

3’Notice that in general the domains of .% and fi do not coincide. 
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&(A^+) = &,(A^,+ = A+, (26) 

equations (24) demonstrate that f# preserves the structure of the wave-operator 
algebra and the matrix algebra, i.e. it is a morphism: 33 

f,(A++) = f+(A^)+f+(B^) = A+B 

f+ (A^3 = f&f&) = AB. 
(27) 

The Schrijdinger-Eckart mapping f+ assigns one matrix to each wave- 
operator-or actually to each class of Lebesgue-equivalent wave-operators (cf. 

Section 2). How about the converse? In a footnote (!) Schriidinger wrote 
(Schredinger, 1927, p. 52, his italics): 

In passing it may be noted that the converse of this theorem is also true, at least in 
the sense that certainly not more than one linear differential operator [wave-operator] 
can belong to a given matrix. 

The matrix-elements Ajk on the jth column can be seen as the expansion 

coefficients of the image of the basis-element +j under 2 (Eckart, 1926, pp. 720- 
723): 

i$‘j = 2 Akj+kj 

k=l 

so the action of a wave operator A, such that f+(A) = A, on an arbitrary wave- 

function w having expansion coefficients cj is given by: 

A^w = i Cj fAkj+ke (29) 
j=i k=l 

Equation (29) purports to define the inverse of the Schriidinger-Eckart mapping 

f+ (25): 

f$‘” : i?l(Co,,) - U(C,,), A - f$“(A) = A^. (30) 

Notice however that the requirementA+j E L*(R) (below Postulate W5) implies 
by expansion (28) that the columns of A have to be Schmidt-sequences: 

CO > S_imm IA^+j(q) 1’ dq = 2 IAkjI’. 
k=l 

(31) 

Whenever A is Hermitian (like p, 6 and H^), the matrix A = f+ (A^) is Hermitian 
too; whence it follows that A must be a Wintner matrix. Notice also that the 
requirement iq E L*(R) implies by expansion (29): 34 

(32) 

33See Section 2. A morphism which preserves the relation ‘is the *-image of’ (see footnote 30) 

is an example of what is called a *-morphism; we leave this again implicit in the text. 
34 The assumption that A is a Wintner matrix, which we just above stumbled upon, does not help 

us here because it does not entail equation (32) [elementary exercise). 
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Since the postulates of matrix mechanics do not require the matrices to be 
Wintner matrices, or to satisfy any other (stronger) criteria, they may or may 

not have a corresponding wave-operator. As Schrodinger implies in the last 

quotation, it is indeed the case that the existence of more than one wave-operator 

corresponding to a given matrix would destroy the putative equivalence of matrix 
mechanics and wave mechanics; the mapping f+ (25) prevents this destruction 

(up to Lebesgue-equivalence, supra). But one may equally wonder whether less 
than one wave-operator corresponding to a given matrix is not equally destructive 
for equivalence: fp ( 30 must be defined on U(CO,,) such that the range of ) 

f? coincides with U(C,,) to qualify as the inverse off+. Physically speaking, 
if some matrix of matrix mechanics, say a Hamiltonian matrix for the sake 

of argument, does not have a corresponding Hamiltonian wave-operator, then 

matrix mechanics can handle situations where wave mechanics fails. That would 
destroy the purported equivalence. Remarkably, in the same footnote from which 

we quoted above, one stumbles upon Schrodinger’s confession to this effect: 

[ 1 we have not proved that a linear operator [wave-operator], corresponding to 
an arbitrary matrix, always exists. 

The conclusion is that any inference at this stage that f+ (25) is bijective, which 
is apparently considered necessary by Schriidinger for the equivalence of matrix 
mechanics and wave mechanics, would be a non sequitur. We shall resolve this 

issue in Part II, Section 4. 
We continue our exposition. The mapping f+ (25) answers the pivotal question 

posed above; the canonical matrices P := f+,(F) and Q := f+ (6) are: 

(33) 

(34) 

As a consequence of the structure-preserving nature of the Schrodinger-Eckart 
mapping f4, the resulting matrices P and Q obey the canonical commutation 

relations (3) something which Schriidinger explicitly showed. Recall our obser- 
vation below Postulate Wl in Section 4: Schrodinger introduced the canonical 

wave-operators P and 6 in wave mechanics solely in order to have something 

from which to construct the canonical matrices. 
The Hamiltonian matrix-elements are: 

H,,,, := 
I 

+oo 

4; (q)%dq) dq. (35) ~05 

This Hamiltonian matrix H : = f@ (2) is diagonal iff 

H^+,, = I%&,, (36) 

because only then we do have that H,,,, = 6,,E,,. Suppose, for the sake of 
expediency, that the arbitrarily chosen wave-basis I+,,} solves equation (361, 
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that is, it contains the eigenvibrations of the atomic system under consideration. 
Diagonalising the H of matrix mechanics is the same as solving the time- 

independent Schtidinger equation (17) of wave mechanics; H^ is complete iff H 
is diagonalizable. The energy basis I+,] is a physically preferred basis, because 
of all wave bases, only the eigenvibrations characterise the atomic system under 

consideration; and only in this basis do we obtain H in diagonal form, containing 

all the energy values on its diagonal. All other Hamiltonian matrices, obtained 
by performing unitary transformations, are empirically insignificant in matrix 

mechanics (they are in general not diagonal). 
By assuming the time-dependence of P(t) and Q(t) as given by definitions (2), 

Schr6dinger rewrote the matrix-mechanical Hamilton equations (5) as follows: 

hv(m, n)Qm,, = [l-l, Ql,, and hvh n)P,, = [H, PI,,. (37) 

He argued that the matrices P = f+ (p), Q = f+, (6) and H = f+ (H^), constructed 

by means of equations (33), (34) and (35), respectively, where $ now refers to 
the energy basis I&}, obey equation (37). Hence, again, the energy basis is 
a physically preferred basis because it generates the solutions of the matrix- 

mechanical equations of motion, as Schrtidinger emphasised (Schriidinger, 1927, 

p. 54); other bases allegedly do not. SchrGdinger furthermore showed that 

partial differentiation, properly defined, of a wave-operator-valued polynomial 

p(&, Gj) E U(C,,) yields equations identical to ones arrived at by Born, 

Heisenberg and Jordan if wave-operators are substituted for matrices [Van der 
Waerden (1967, p. 327, eq. (6)), ; Schrddinger (1926b; 1927, p. 5 1, eqs (14) and 

(15))l. 
(c) In his second founding paper Schrtidinger had confessed that wave 

mechanics could not calculate the intensity of the spectral lines, something which 

matrix mechanics in principle was able to do [Schriidinger (1926b; 1927, p. 30)]. 
Empirical equivalence lost. But from his own proof Schrijdinger learned how 

to express spectral-line intensities in wave mechanics, by looking at the matrix- 
mechanical formula (6). Empirical equivalence regained-hopefully. 

5. I. Postulate W6 

The intensity Zk(rn, n) of electromagnetic radiation with frequency Vk(m, n) 
polarised in direction k and emitted or absorbed in the transition IZ % m is 
proportional to: 

where we have taken d = 3. QEP 
So besides extending wave mechanics by adding the canonical wave operators 

(Postulate Wl) whilst in the process of proving equivalence, 35 Schriidinger was 
here extending wave mechanics once more by another brand new postulate (Van 
der Waerden, 1973, p. 277). Schriidinger was not just attempting to prove the 

35 Section 4, below Postulate W 1. 
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equivalence of matrix mechanics and extant wave mechanics, but he was also 

expanding extant wave mechanics on the spot to make it equivalent to matrix 

mechanics. As the inventor of wave mechanics, Schtidinger naturally had every 

right to expand his theory. 
Recall that 1 Qk(m, n) I2 in matrix mechanics is proportional to Zk (m, n) in the 

diagonal representation of H (Postulate M6). Hence we arrive once more at the 

conclusion that the energy basis is a physically preferred basis; in all other bases 
the proportionality (38) fails to hold. 

(d) We enter the final part of the proof, which seems never to have been 
understood properly. 36 Then Schriidinger asserted that (Schrijdinger, 1927, 
p. 58, his italics): 

The equivalence actually exists, and it also exists conversely. Not only can the matrices 
be constructed from the eigenfunctions as shown above, but also, conversely, the 
functions can be constructed from the numerically given matrices. 

We should be puzzled. So far Schriidinger has investigated the correspondence 
between wave-operators and matrices by means of mapping f,+ (25) and that 
investigation seemed to be more-or-less finished when he had purportedly arrived 

at the conclusion that f+ is an isomorphism. Then, implicitly respecting the 
reigning state-observable characterisation of quantum mechanics, one would 

next expect to see the states treated, for the ohservables have been dealt with. 
There is only one problem with this line of reasoning: the concept of the 
quantum-mechanical state had still to be born (it can be projected back into wave 
mechanics with some wriggling, but most certainly not into matrix mechanics; 
cf. Part II, Section 2). To understand Schr(idinger’s words properly, we need to 

break away from the state-observable hegemony and immerse ourselves in wave 

mechanics. Here we go. 
In wave mechanics the mathematical representatives of the physical mag- 

nitudes are the wave-operators and in matrix mechanics they are the infinite 

matrices. In both theories the mathematical representatives of the canonical 

physical magnitudes are postulated to generate similar structures, videlicet the 
canonical algebras U(C,,) and U( C,,). But the canonical wave-operators and the 
canonical matrices play quite different roles in their respective theories. In matrix 
mechanics the canonical matrices Pk and Qj vur~’ ,from one physical problem 

to another: they help to characterise the atomic system under consideration: 
the squared norms of the elements of Q in the diagonal representation of 

H are the intensities, other solutions Q’ of the matrix-mechanical canonical 
commutation relations have no empirical significance. In contrast, in wave 
mechanics the canonical wave-operators do not vary from one physical problem 
ro another; the canonical physical magnitudes position and momentum, whose 
wave-mechanical significance we indicated to be obscure, 37 are mathematically 

” In all the literature on Schriidinger’s proof mentioned in the Introduction it is simply ignored 

or taken for granted. Unjustifiably so, as we shall see. Van der Waerden (1973) is possibly the 

only exception, if interpreted with extreme charity, but in any case he did not pursue the matter. 

“Section 4, below Postulate WI. 
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represented by the same@& wave-operators for all atomic systems, namely the 

multiplication operator cj and the differential operator (up to a constant) ff. In 
wave mechanics it is the collection of eigenvibrations { &,} that varies from one 

physical problem to another. What matrix mechanics azd wave mechanics have 
in common is the fact that their Hamiltonians H and H vary from one physical 
problem to another, and conseqzently so do their demonstrably identical sets of 

energy values a,, (H 1 and a,, (H). Now, a different Hamiltonian wave-operator 

2 does not have an efict on the fixed canonical wave-operators & and &, 

but does have an effect on the collection { +A} of eigenvibrations and the set of 

eigenvalues a,,(@), both of which characterise the atomic system under con- 
sideration, because they solve the time-independent Schrijdinger equation (17). 

A different Hamiltonian matrix H however does have an efSect on the canonical 

matrices Pk and Qj in the diagonal representation of H; moreover, these matrices 
solve the matrix-mechanical Hamilton equations (5), in which H occurs. 

Thence, an N-particle atomic system having Nd degrees of freedom is 

idividuzed in matrix mechanics by H, a,,,,(H), GX, and in wave mechanics by 

H, o,,(H), I&J. 
We next import this understanding into the equivalence proof. Returning to 

the last quotation, Schrddinger has tacitly changed his mathematical perspective 
on what has been ‘shown above’. The phrase ‘the matrices can be constructed 

from the eigenfunctions’ alludes to a mapping, M say, that assigns matrices to 
eigenvibrations: 

(39) 

given thefixed wave operators in U(C,,), where &.,” is the set of all wave bases, 
and { U( CO,,) } is the collection of all canonical matrix algebras each of which is 

generated by a distinct canonical pair (P, Q). Let us first spell out the connection 

between this new mathematical perspective and the old one. 
Specifically, the connection between: (i) mapping M (39), which Schrodinger 

claimed to have considered ‘above’ but in actual fact did not appear to have been 
considered ‘above’; and (ii) the Schrodinger-Eckart mapping f+ (25), which 
Schrodinger did appear to have considered ‘above’, is: given the canonical wave- 

operator algebra U(C,,), the set of all matrices determined by the (energy) basis 
{$,) coincides with the canonical matrix algebra iff for each matrix A there is 

a wave-operator 2 related to A by the Schrodinger-Eckart mapping f+ (25). 
Symbolically, 

M( I+jl) =~(CO,,) iff VA E U(C&), ZlA E U(C,,) : f+(i) = A. (40) 

(If f+, is an isomorphism, it suffices to let the quantifiers run over the generator 
sets.) We now arrive at a rigorous rendition of Schrodinger’s words as an 
assertion of the invertibility of the mapping M (39). In other words, there exists 
a mapping which assigns wave bases to matrices: 

M’ : {UCCO,,)l + *.wv, UCC”,,) - M’(U(CO,,)) = {l*j], (41) 

such that 
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M’ 0 A4 = I,, and A4 0 M’ = I,,, (42) 

where I,, is the identity on +‘wV and I,, is the identity on {U(CO,,)}, because 
equations (42) identify M’ as the inverse of M. 

To verify equations (42), we need to know whether such a mapping M’ (41) 
exists. We now follow Schrodinger almost verbatim (Schrodinger, 1927, p. 58). 
Suppose a matrix Q is given. Then by matrix multiplication all matrices Q” 

can be calculated. [Notice that the existence of the fully fledged matrix algebra 
!2t(CL,) is needed to license the last mentioned assertion!] Schtidinger looked for 
a collection of eigenvibrations { ui ] , assuming them to be mutually orthogonal, 

real-valued, positive, twice differentiable and vanishing (asymptotically) for large 

4, such that fU(@) = Q” for all n. Hence we obtain the following denumerable 
system of Riemann-integral equations: 

(Q”)$ = 1;: q”uj(q)N(q)dq. 

Then Schrodinger declared (Schrodinger, 1927, p. 58): 

(43) 

The totality (43) of these integrals, when j and k are fixed, forms what is called 
the totality of the moments of the function MI&. And it is known that, under 
very general assumptions, a function is determined by the totality of its moments. 
So all the products Ujf_dk are uniquely fixed, and thus also the squares uj and therefore 
also Uj itself. 

Thus by declaring that the subalgebra 2l(Q) of Z!t(CO,,), generated by Q only, 
determines the basis {uj), Schrodinger was proposing the following definition 
of M’: 

M’ (a( Q) ) = { uj } iff { uj } solves equation (43) uniquely. (44) 

If the system of Riemann-integral equations (43) does not have a unique 

solution, then M’ is not even a mapping and by implication the mapping A4 (39) 
is not bijective. Equivalence doomed. We can however see that if ‘Schrodinger’s 

moment problem’ (43) is uniquely solvable, then equation (42) is satisfied, by 
virtue of the connection (40), and the conclusion that the mapping M is bijective 

follows immediately. Equivalence saved-hopefully. 
In Part II, Section 3 we shall address the purported bijectivity of the mapping 

M (39), and delve into the connection between ‘Schrodinger’s moment problem’ 
(43) and what was known in mathematics at the time as ‘the power moment 
problem’. Interestingly, Schrodinger hardly says a word about that connection, 
nor does he mention what the ‘very general assumptions’ are, which the functions 
uj are tacitly assumed to fulfil. 

This completes our review of Schrodinger’s proof of his assertion that 
matrix mechanics and wave mechanics ‘are completely equivalent from the 
mathematical point of view’ [Schriidinger (1926~; 1927, p. 57)]. 

Let us summarise our analysis. We noted in (c) that the threat of the empirical 
non-equivalence of matrix mechanics and wave mechanics caused by the fact that 
wave mechanics did not contain a clue of how to calculate radiation intensities 
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was averted by Schrijdinger by adducing a novel wave-mechanical postulate. The 
problem of whether the putative canonical algebras really are algebras being set 
aside, we ascertained in (b) that their mathematical equivalence (isomorphism) 
was not yet demonstrated because the bijectivity of the Schrijdinger-Eckart 
mapping was not proved. We noted Schrodinger’s confession to this effect, 
despite his confident conclusion of the ‘complete mathematical equivalence’. 
Finally, in (d) we immersed ourselves in wave mechanics to understand the 
need to solve Schrodinger’s moment problem, and we felt fobbed off with fair 
promises. So already we can conclude that the putative proof is not entirely 
foolproof. We shall subsequently find out what is right and what is wrong with 
the proof as it stands, disclose which features of extant matrix mechanics and 
wave mechanics are ignored in the proof, and point out how to attain equivalence 
in the von Neumann manner. 
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