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The Equivalence Myth of Quantum 
Mechanics-Part II 

F. A. Muller * 

To axiomatize a theory is to de$ne a set-theoretical predicate 
Patrick Suppes (1957, p. 249). 

The author endeavours to show two things: first, that Schriidinger’s (and 
Eckart’s) demonstration in March (September) 1926 of the equivalence 
of matrix mechanics, as created by Heisenberg, Born, Jordan and Dirac 
in 1925, and wave mechanics, as created by Schrodinger in 1926, is not 
foolproof; and second, that it could not have been foolproof, because at the 
time matrix mechanics and wave mechanics were neither mathematically 
nor empirically equivalent. That they were is the Equivalence Myth. In 
order to make the theories equivalent and to prove this, one has to leave the 
historical scene of 1926 and wait until 1932, when von Neumann finished 
his magisterial edifice. During the period 192632 the original families of 
mathematical structures of matrix mechanics and of wave mechanics were 
stretched, parts were chopped off and novel structures were added. To 
Procrustean places we go, where we can demonstrate the mathematical, 
empirical and ontological equivalence of ‘the final versions of’ matrix 
mechanics and wave mechanics. 
The present paper claims to be a comprehensive analysis of one of 
the pivotal papers in the history of quantum mechanics: Schrodinger’s 
equivalence paper. Since the analysis is performed from the perspective of 
Suppes’ structural view (‘semantic view’) of physical theories, the present 
paper can be regarded not only as a morsel of the internal history of 
quantum mechanics, but also as a morsel of applied philosophy of science. 
The paper is self-contained and presupposes only basic knowledge of 
quantum mechanics. For reasons of length, the paper is published in two 
parts; Part I appeared in the previous issue of this journal. Section 1 
contains, besides an introduction, also the paper’s five claims and a preview 
of the arguments supporting these claims; so Part I, Section 1 may serve 
as a summary of the paper for those readers who are not interested in the 
detailed arguments. 
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1. Structures 

Before we can prove the mathematical equivalence of two physical theories, 
we need to be clear about the meaning of ‘mathematical equivalence’ and 
of ‘physical theory’. We characterise these terms in (a); and we present the 
mathematical structures of matrix mechanics in (b) and those of wave mechanics 
in (c), as expounded in Part I, Sections 3 and 4, respectively. 

(a) The structural view on physical theories, founded by Patrick Suppes, is 
that a physical theory T essentially is a class of set-theoretical structures. ’ The 
structural view dissolves a number of difficulties that plagued the linguistic view 
on physical theories of the logical-positivists (Rudolf Carnap cum suis). One 
prominent virtue of the structural view lies in the fact that the classes of set- 
theoretical structures can be formulated and discussed informally but rigorously. 
In a time-honoured abuse of language of Tarskian origin a set-theoretical 
structure U E T is also called a model. Each structure (model) U E T belongs to 
the same species of structure or family of structures or type of models, specified by 
a predicate. What precisely is meant by ‘a family of structures’ etc. will become 
sufficiently clear in the applications below. To describe a physical system by 
theory T means constructing an adequate model U that qualifies as a member 
of T. Suppose the set 9, called a data structure, consists of measurement results 
of an experiment concerning a particular physical system that T is supposed to 
deal with. T is empirically adequate iff each relevant data structure is embeddable 
in T, which means: isomorphic to some substructure2 of some U E T. This 
substructure is then called an empirical substructure [IL],,, of that model U. 
Model U has various empirical substructures iff various non-isomorphic data 
structures are embeddable in U. 

The physical system under consideration is supposed to be an instantiation of 
the stipulated ontological substructure [U] ant of U; the meaning of ‘instantiation’ 
is the same as in the assertion that SchrGdinger is an instantiation of homo 
sapiens. 

The ‘mathematical equivalence’ or ‘formal equivalence’ or ‘formal identity’ 
or ‘identity in content’ or ‘exact mathematical equivalence’ or ‘fundamental 
identity from the mathematical standpoint’ or ‘strict equivalence’ of matrix 
mechanics and wave mechanics (terms used by the Myth disseminators men- 
tioned in the Part I, Section 1) is now readily construed as the statement that 
a matrix-mechanical structure and a wave-mechanical structure that describe 
the same physical system are isomorphic [Ludwig (1968, p. 32), Wick (1995, 

1 (Suppes, 1957; Suppes, 1960, Chap. 12); Torretti (1990, pp. 109-130) reports on a voyage through 

the awesome maze of Balzer et al. (1987); Van Fraassen (1991, pp. 4-15) presents a very short 

introduction. The name ‘semantic view’ is misleading because it carries linguistic connotations 

whereas the core idea of the structural view is to achieve a non-linguistic characterisation of 
scientific theories. Parenthetically, the existence of a class of set-theoretical structures is troublesome 

when based on standard Zermelo-Fraenkel set theory. 
2 We non-standardly take the notion of ‘a substructure of LI’ to include ‘(substructure of) a 
contraction of LI’; a contraction (expansion) of a structure U results when slots are deleted from 

(added to) U. 
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p. 26).] Since we shall suppose that the values in the data structures and in 
the empirical substructures are always suitably gauged, we define the empirical 
equivalence of matrix mechanics and wave mechanics as the identity of their 
empirical substructures; we define the ontological equivalence as the isomorphism 
of their ontological substructures. The principal set of phenomena that matrix 
mechanics and wave mechanics were intended to describe, which we therefore 
need to consider, were the measured frequencies and intensities of the atomic 
spectra: 

D(E, Z, Z’) = { ( m, n, k, Vk(m, n), &(m, n)) E 1 X I’ x fd3 x R x [O, ~11, (1) 

where the Index-sets I, I’ c N of finite cardinality contain the labels of all the 
measured levels, and E is an Element of the Periodic System. For instance, in 
the case of the Balmer series we have Z = {2} and I’ = {3,4,_5,6}, where the 
labels are identified by the putative embeddablility relation as Bohr’s principal 
quantum numbers. 

We have to know the matrix-mechanical and wave-mechanical structures 
precisely in order to consider the purported isomorphism between them. Clearly 
these structures are not spelled out in the papers of the founding fathers. So 
we have to reconstruct them from their papers (up until March 1926). Our 
Postulates of Part I, Sections 3 and 4 make this a fairly straightforward task. 
The pay-off will be that the holes in the equivalence-proof, as well as suggestions 
about how to fix some of them, will be staring us in the face. 

(b) The Postulates of matrix mechanics (Part I, Section 3) are (intended to 
be) satisfied by the following mathematical structure: 

9X;,,, = (Prop,,, C,,, WC,,), _T‘cC,,), {l-l, l-1, 

aT(C,,), &T(C,,L TBJ, .L,,, G,(H), %,, {E, Bl, Const). (2) 

To single out one member of this family of structures, one needs to specify: 
the number of particles of the atomic system (N E W); the number of degrees 
of freedom (Nd, d E I%); the charges and the masses of the N particles and 
the total charge and mass of the composite system which together constitute 
the ordered (2N + 2)-tuple Prop,, E lR2N+2 (the properties of the particles); 
C mx, which consist of non-denumerably many canonical matrices because of 
the time-dependence (for each t E lR there are Nd canonical pairs); the 
Hamiltonian matrix H E y(C,,); and the set {E, B} of the vector-matrix- 
valued functions that solve matrix-versions of the (Lorentz-covariant!) Maxwell 
equations (Postulate M7). 3 The problem of how to characterise exactly the 
elements of the putative matrix algebra U(C,,) (Postulate Ml), and the set 
y(C,,) of matrix-valued functions (Postulate M2), is relegated to Section 2. 
The subset {H, L} c y(C,,) consisting of the Hamiltonian matrix and the 
Lagrangian matrix is set apart for emphasis (Postulate M3). The set ay(C,,) is 
the set of all first-order partial matrix-derivatives of all matrix-valued functions 

3 Pauli took the Galilean-covariant (!) Coulomb-potential in the Hamiltonian matrix for the 

hydrogen atom [Part I, Section 3, consequence (ml)]. thereby avoiding any contact with these 

vector-matrix-valued fields. 
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in y’( C,,) : 2Nd partial matrix-derivatives, at a fixed time, for each F E y (C,, 1. 
The set &3’(C,,) contains all time derivative matrices of all elements of 
y(C,,). The set TBJ c lR x ‘3’(C,,) contains the solutions of the Born-Jordan 
equation (I.1 1) for each F E y(C,,); a solution is a set of ordered pairs 
(t, F(t)) for all t E Iw (implied by Postulates M2 and M5). The set a,,(H) 
contains the diagonal elements of the diagonalised H (Postulate M3). The set 
L,, contains the orbital angular momentum values [consequence (m2)], and 
the set R,, contains all ordered quintuples (m, ~1, k, vk(m, n), &(WI, n)), wherein 
the frequency and the intensity are defined by Bohr’s frequency condition 
(1.4) and the matrix-mechanical formula (1.6), respectively (Postulates M4 and 
M6). Finally, the set Constc Iw is a finite set of physical constants: Planck’s 
constant 6, Coulomb’s constant K, Sommerfeld’s (fine structure) constant o( 
and other required parameters that are not regarded as particle properties (and 
are therefore not in Prop,,). 

The frequencies and intensities per direction of polarisation and the charges 
and masses of the electron are measurable physical magnitudes; they were 
experimentally determined at the time. Thus the substructure 

m&,,lm, := (Prop,,, am,, LA (3) 

is the empirical substructure of matrix mechanics. The inference (‘to the best 
explanation’) that particles really exist was resisted by Heisenberg and Pauli, 
who doubted in particular ‘the reality of particles’. 4 On the other hand, Born 
regarded the existence of particles as inescapable in the light of the atomic 
collision experiments that were performed in Gottingen by his friend James 
Franck; Jordan took Born’s side. 5 So it is difficult to decide whether Prop,, 
not in [m&l,,, (Heisenberg, Pauli) or Prop,, in [M&lont (Born, Jordan). 
Since neither choice will undermine any of the claims defended in this paper, 
and since closer analysis has revealed that neither Heisenberg nor Pauli was an 
anti-realist (Regt, 1993, pp. 118-121, 116-117), we guardedly put the particle 
properties in the ontological substructure: 

[~~,Nlont = (Prop,,, ~mxWL Qd. (4) 

We have put the set of energy values a,,,,(H) in [9X&,N]ont because matrix 
mechanics took the energies to be as least as fundamental as the frequencies. 
Heisenberg said in 1972: ‘It was extremely important for the interpretation to 
say that the eigenvalues of the Schrodinger equation are not only frequencies 
-they are actually energies’. [Heisenberg (1977, p. 269), Beller (1983, pp. 480- 
481)]. 

(c) The Postulates of wave mechanics (Part I, Section 4) are (intended to be) 
satisfied by the following mathematical structure: 

4 Heisenberg (1926, pp. 989, 991) Beller (1983, pp. 475479) Miller (1986, pp. 139-154). 
Concerning the claim that Heisenberg was an anti-realist De Regt (1993, p. 118) however declares: 

‘I submit that closer analysis reveals that this claim is false.’ 
’ Beller (1985); on the subject of the unobservable atoms Jordan (1938, p. 91) writes that ‘there 
is no longer any possible doubt concerning their real existence’. 
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c5;,, = (iwy L2(RWNdL E3, Prop,,, C,,, WC,,), 

Y(CW”), a_F(G”), IH^L L wv, a,,@), {+,I, %,2 W, Bl, ConsO. (5) 

To single out one family member, one needs to specify: the number of ‘particles’ 
of the atomic system (N E N), the number of spatial degrees of freedom 
(d E Nx), the Hamiltonian wave-operator H^ E y(C,,) and the electromagnetic 
fields {E, B} involved. The Euclidean structure IE’, referring to the spatial canvas 
which Schrbdinger needed in order to paint his picture of the atomic world with 
smeared matter-charge densities, is defined as: 

lE3 := (R3, r(R3), dEUC.), (6) 

where dEucl : IR3 x R3 - [O, a] is the Euclidean distance-function, leading 
to the Pythagorean theorem, and T(IR’) is the standard topology of open 
balls, licensing the use of familiar topological concepts like continuif~~, which 
Schrddinger uses all over the place, eg Schriidinger’s quotation that opens 
Section 1.5. (Actually, IE3 is isomorphic to each spatial slice of the Galilean 
space-time manifold of classical mechanics.) We henceforth follow the time- 
honoured tradition of confusing the structure IE3 and its base set R’; we shall use 
E” to remind ourselves of the fact that it is assumed to represent physical space. 
The set Prop,, E (E3 x IL?) contains N+l charge and N+l matter densities, 
thereby extending Postulate W5 to many-electron systems, defined as follows. 
The charge density Pj : IS3 - Iw for the jth electron is defined by integrating 
over all 3(N - 1) configuration-coordinates save the ones referring to the ,jth 
electron (9 j - r) : 

I 
+CU 

pi(r) := e I~/(qI,q2,....qN)12dqNdqN-I...q,+ldqj~I...qI. (7) 
pm 

The total charge density Ptotal : E3 - IR of the compound system )+F define as: 

V 

Ptotal(r) := 1 Pi(r), (8) 

j=l 

in contrast to Schriidinger’s original definition of Ptotal as the function ell/* @ : 
RNd - IR defined on configuration space (SchrGdinger, 1926e; SchrGdinger, 
1927, p. 120). And mutatis mutandis with regard to the matter densities. ’ The 

canonical wave-operators &, Qj E C wv are unbounded self-adjoint operators. 
So they cannot be defined everywhere. ’ But they do however have dense 
domains (Prugovecki, 1981, pp. 226226, Theorem 4.11). Examples of dense 
domains on which all elements of the canonical wave-operator algebra U(C,,) 
are defined are: the set C,“(IRNd) of all C”-functions having compact support, 
and the Schwartz space s(IRNd) of C”-functions that are rapidly decreasing 
(Emch, 1983, p. 272). The singleton set {H^} c y(C,,) is mentioned explicitly 

fi With these definitions we need not waste time on an irrelevant but ineradicable objection to 

Schriidinger’s interpretation, levelled for example by Heisenberg (1926, p. 992), (1929. p. 493). 

vi-_. that CC, is defined on configuration space rather than on physical space. 

i Prugovecki (1981, p, 195), Hellinger-Toeplitz Theorem 2.10. 
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due to the importance of the Hamiltonian wave-operator for the characterisation 
of the atomic system under consideration (Postulate W3). The set ay(C,,,,) is 
the set of first-order partial wave-operator-derivatives. The set Q,, contains, just 
like R,,, frequencies and intensities, defined by Bohr’s frequency condition (4) 
and the wave-mechanical formula (1.38) respectively (Postulates W4 and W6). 
The set Const of physical constants and parameters is identical to the one in 
matrix mechanics. 

Schrddinger emphasised that in wave mechanics there is no need to go to 
matrix-valued electromagnetic fields with non-commuting components or to 
reformulate ‘the MaxwelllLorentz equations’; on the contrary, wave mechanics 
meshes quite nicely with classical electrodynamics due to the presence of the 
charge densities in Prop,, E EF;,,,. Schrodinger declared (1926~; 1927, pp. 59- 
60): 

the mechanical field scalar [= wave-function] is perfectly capable of entering the 
Maxwell-Lorentz equations between the electro-magnetic field vectors, as the ‘source’ 

of the latter; just as, conversely, the electro-dynamical potentials enter into the 
coefficients of the wave equation, which defines the field scalar. 

This meshing of wave mechanics with classical electrodynamics was the fuel on 
which Schrodinger was to travel a few miles, for example arriving at a putative 
explanation of why atoms in stationary states do not radiate [see MacKinnon 
(1977, pp. 19-20, 2429) and Mehra and Rechenberg (1987, pp. 797-799)]. 

Schrodinger’s ontological cIaim that (unobservable) microphysical systems 
exist in space and consist of smeared charge-matter densities is now expressed 
succinctly by: the ontological substructure 

[C$fNlont := W3, Prqh {+,I, G,, L,) (9) 

is instantiated. In contradistinction to Heisenberg [see end of part (b)], 
Schriidinger regarded energy as an ‘abstract idea’, as a derivative magnitude; 
fundamental for wave mechanics are the frequencies (Schrodinger, 1926~; 
Schrodinger, 1927, pp. 59, 141). Schrodinger asked rhetorically: ‘Is it quite 
certain that the conception of energy, indispensable as it is in macroscopic 
phenomena, has any meaning in micro-mechanical phenomena other than the 
number of vibrations in h seconds? 8 Hence a,,($& & [ 62 m]ont. The empirical 
substructure of e;,,, is of course: 

K&&l, := Prqh fiw,, L,). (10) 

To summarise parts (b) and (c): according to the structural view, the physical 
theories called matrix mechanics and wave mechanics are now defined as follows: 

MM’ := { @-%i,., P’J&,,l,,,, KJ&,J,,t) I d E N3, N E N,. . . j, (11) 

WM’ := {(f&v> P$,,lm,, K&&t) I d E N3. N E M.. 1, (12) 

a Quoted in MacKinnon (1980, p. 41) 
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where the dots stand for the Postulates specifying the slots in !LYX&,, (2) and in 
62 ,,, (5), respectively. It is not standard to mention ontological substructures 
explicitly, but it is requisite to achieve a faithful construal of physics, as the 
present examples of matrix mechanics and wave mechanics bear witness. 

Define Bs(H, Balmer) as the s-th set of measured frequencies of the Balmer 
series in the Hydrogen spectrum that was considered to be reliable by the 
community of atomic physicists at the time; where s E { 1,2,. , S} such that 
S E N is the number of relevant experiments performed at the time. So 

a),(H, Balmer) := {(2,n, k, v(2,n)) E {2) x {3,4,5,6} x RI3 x (0, co)}. (13) 

At the time when the equivalence proof appeared, the entire empirical adequacy 
of matrix mechanics MM’ (11) and wave mechanics WM’ (12) resided in the 
fact that D,,(H, Balmer) was embeddable in some 9X;,, E MM’ and in some 
G;,, E WM’, respectively. Matrix mechanics and wave mechanics were actually 

empirically equivalent in the narrow sense that they were both able to embed one, 
and only one, type of data structure, which contained precisely four frequencies. 
(At this point in time the Bohr-Sommerfeld model of an atomic system was 
still empirically superior to both matrix mechanics and wave mechanics.) This 
fact, the derived quantisation of orbital angular momentum, and the coinciding 
energy values of a few toy systems (harmonic oscillator, rigid rotator) constituted 
the mentioned explanandum (in Section 1.5) for which an equivalence-proof 
was supposed to furnish the explanans (Schrodinger, 1926~; Schrbdinger, 1927. 
pp. 4546). 

We have now characterised matrix mechanics MM’ (11) and wave mechanics 
WM’ (12) such as they were in March 1926 in the structural framework with 
sufficient precision for the purposes of the present paper. For convenience we 
list the empirical and ontological substructures together: 

mn;,,1m, := Prop,,, fi2,,, LA, (14) 

P-J&,,10nt := (Prop,,, a,,(H), %,). (15) 

PqfJlenI, := Prop,,, Q2,,, L,), (16) 

[e&,,lO”t := (E3, Prop,,, ~&I, Q2,,, L). (17) 

2. Equivalence Wrecked 

Having defined the mathematical structures of matrix mechanics and of wave 
mechanics as they were in March 1926, we show that matrix mechanics and wave 
mechanics are: (a) neither mathematically, (b) nor empirically equivalent (Claims 
IA and IB); and point out in (c) that the Anschaulichkeit of wave mechanics 
was not mere ‘interpretation’ of one of two equivalent formalisms’ (‘formalism’ 
provisionally identified as the employed class of mathematical structures), but 
was firmly rooted in the wave-mechanical ‘formalism’ and was not, and could 
not be, rooted in the matrix-mechanical ‘formalism’ (Claim II). 

(a) One does not need to be a mathematical genius to see that a matrix- 
mechanical structure !J_JIL,. E MM’ (11) and a wave-mechanical structure 
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CT&,, E WM’ (12), both describing the same physical system with the ‘same’ 
Hamiltonian etc. are manifestly not isomorphic: 

(18) 

To begin with, their number of slots (elements) differ. Six further features of the 
structures evidently cause trouble for constructing a fully-fledged isomorphism. 

(i) The time-evolution in matrix mechanics, codified by the solution ?“BJ E 
9J$, (2) of the Born-Jordan equation, has no counterpart in wave mechanics. 

(ii) The substructure consisting of configuration-space, the space of wave- 
functions and the eigenvibrations: 

(RN5 L2(RNd), {&z])? (19) 

has no counterpart in the matrix-mechanical structure !YI&, (2). Matrix mechan- 
ics lacks a ‘state space’. von Neumann was aware of this. Beller’s observation that 
nothing in matrix mechanics corresponds to the eigenvibrations, is a corollary 
of the absence of a state space [von Neumann (1932, p. 14, fn 18), Beller (1983, 
p. 480)]. Finally we quote Bohr from a letter to Kronig (in 1926): 

[. ] in the wave mechanics we possess now the means of picturing a single stationary 
state. In fact, this is the very reason for the advantage which wave mechanics exhibits 

when compared to the matrix method. ’ 

The absence of states in matrix mechanics was not a mathematical oversight 
of the founding fathers. On the contrary, Heisenberg counted the abolition of 
such unobservable relics from the old quantum theory, wherein (stationary) 
states were identified with electron orbits, as a personal victory; he originally 
even intended to eliminate the ‘indirectly observed’ electron paths in Charles 
Wilson’s cloud chamber experiments! (Beller, 1983, pp. 4799480, 472). In 1972 
Heisenberg reflected upon the formation of concepts in quantum mechanics and 
admitted [Heisenberg (1977, pp. 268, 269); (cf. Beller, 1983, p. 481)]. 

But what was this state of the atom? How could it be described? It could not be 

described by referring to an electronic oribit. So far it could be described only by 
stating an energy and transition probablities; but there was no picture of the atom. 
[ ] we did not know what the word ‘state’ could mean. 

(iii) The wave-mechanical Euclidean structure IE3 (3) which is the mathemat- 
ical structure satisfying all microphysical talk in wave-mechanics about physical 
space, has no matrix-mechanical counterpart. lo 

(iv) The electromagnetic substructure {E, B) in 5JX&,, is not isomorphic to its 
wave-mechanical counterpart {E, B} in (5L,N, if only because the components 
of the latter commute whereas the components of the former do not (Mehra 
and Rechenberg, 1982, p. 88). 

’ Quoted in Beller (1996, p. 555). 
“The directions of polarisation, which were recognised in matrix mechanics as ‘observable’, do 
not require the full-blooded Euclidean structure lE3. 
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(v) Schrddinger’s confession (Part I, p. 20) about the possible non-existence of 
wave-operators implies at the very least a hole in the proof of the isomorphism 
of the canonical algebras !U(C,,) and Z!t(Ck,). One may try to cover this hole 
by the verbum nauseabilum ‘technicality’, but even for those of us having a 
strong stomach, such a cover-up will ultimately be an obstacle to discerning and 
appreciating the crucial shift in mathematical perspective that will let us fix this 
hole once and for all (cf. Section 4). 

(vi) There are finitely many canonical wave-operators in C,, (2Nd to be 
precise), but there are non-denumerably many canonical matrices in C,, due 
to the time-dependence of the matrices. This makes a bijection, and hence an 
isomorphism, between C,, and C,, impossible. 

These observations establish Claim IA of the mathematical non-equivalence 
of matrix mechanics and wave mechanics as they stood in March 1926. 

(b) Claim IB of empirical non-equivalence, 

~~n;,,lan, f K&&n,~ (20) 

is grounded in at least the following fact. 
Suppose a charge-detector occupies a volume A c JR3 and the wave-function 

of an electron is w. Then wave mechanics predicts that a quantity of charge of 

e 
I 

* p(r)d3r = e 
s 

IW) 12d3r (21) a 

will be detected. This value will in general be smaller than e, whereas there is 
nothing in matrix mechanics to suggest that it predicts anything different from 
precisely e for every spatial volume A. So there is conceivably an experimentum 
crucis that will decide which of the two theories is empirically correct: Prop,, # 

Prop,, implies inequality (20). If one were to remove the charges and masses 

Prop,, from P-J~,NI~~~, then matrix mechanics would either be empirically 
more limited than wave mechanics whenever the wave-mechanical predictions 
were confirmed, or would empirically stand up whenever the wave-mechanical 
predictions were refuted. On both counts the conclusion (20) of empirical non- 
equivalence follows, 

So far, of course, charge measurements of electrons had (and have) always 
resulted in (integer multiples of) the electron charge e, never any other amount; 
this fact threatens the empirical adequacy of wave mechanics. Schrodinger 
recognised this threat ab initio-and ultimately with a vengeance. The threat 
was to increase after wave mechanics had been enriched with the time-dependent 
Schriidinger equation (in June 1926) which inevitably led to the inevitable 
spreading of the charge-matter densities over time. 

Further support for Claim IB was to come very soon, in the Summer of 1926, 
from Max Born’s wave-mechanical treatment of atomic collision experiments, 
an issue about which matrix mechanics remained and had to remain mute. Even 
without Born’s ‘interpretation of the wave-function’, Born’s wave-mechanical 
model (‘Born approximation’) resulted in an increase in the empirical content 
of wave mechanics; this increase was not matched by a similar increase in the 
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empirical content of matrix mechanics. l1 In January 1926, before Schrodinger’s 
first paper on wave mechanics had appeared, Born and Wiener had already 
stated: ‘The matrix analysis fails in the case of a-periodic motions’ (Born and 
Wiener, 1926, p. 214, my translation). 

(c) On the one hand, Schrodinger drew the strongest possible conclusion from 
his equivalence proof [Schrodinger (1926c)Schrodinger (1927), my italics]. 

If the two theories-1 might reasonably have used the singular-, should be tenable in 
the form just given, i.e. for more complicated systems as well, then every discussion 
of the superiority of the one over the other has only an illusory object, in a certain 
sense. For they are completely equivalent from the mathematical point of view, and it 
can only be a question of the subordinate point of convenience of calculation. 

But on the other hand Schrodinger pointed out that the distinction ‘mathe- 
matical equivalence’ and ‘physical equivalence’ would collapse if one were to 
regard ‘the task of physical theory as being merely a mathematical description 
(as economical as possible) of the empirical connections between observable 
quantities [ . . . 1’ Schrodinger (1926~; 1927, p. 58); he rejected this task as being 
too shallow an aim for physics. Schrodinger then proceeded to argue in favour 
of the superiority of wave mechanics as a physical theory: wave mechanics is an- 
schaulich, it paints figurative pictures on space-time of atomic reality, justifying 
the standard talk of physicists about atomic processes pan der Waerden (1967, 
pp. 33,23 l), Miller (1986, pp. 143-144) Mehra and Rechenberg (1987, pp. 772- 
804)] and wave mechanics harmonises perfectly with classical electromagnetic 
field theory. l2 Surely this is not ‘only a question of the subordinate point of 
convenience of calculation’! It seems as if Schrodinger felt trapped in a version 
of G. E. Moore’s Paradox, by thinking: matrix mechanics and wave mechanics 
are equivalent but I don’t believe it. l3 (The fact that matrix mechanics and wave 
mechanics were not equivalent dissolves the paradox.) 

Heisenberg declared the programme for quantum mechanics to be one ‘in 
which only relations between observable quantities occur’ [Heisenberg (1925) 
in Van der Waerden (1967, p. 261)]. At the time Heisenberg and Pauli were on 
a crusade to eliminate the unobservable electron orbits and their revolution- 
periods from atomic theory, because they had convinced themselves that clinging 
to anschauliche Bifder of atomic reality was responsible for the lack of theoretical 
success in atomic physics. l4 The fact that the matrices Pk(t) and Qi(t) 
were still called ‘the quantum analogues of momentum and of position’, 
respectively, and the Born-Jordan equation was still referred to as an ‘equation 
of motion’, was at best a way of paying one’s last respects to the sinking 

1 1 Born wanted to describe asymptotic scatter states as free particles. Pencil and paper will illustrate 

the problems that crop up whenever one tries to describe a free particle in matrix mechanics: how 

to relate the apparently continuous position of an electron in an accelerator beam to a constant, 

discrete matrix Q? 
l2 As mentioned in (c). Section 1; cf. Hanson (1963, pp. 113-l 14, 119). 
t3 Moore’s Paradox: It is raining but I don’t believe it. 

14Regt (1993, pp. 116121); compare Miller (1986, pp. 1399154). 
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ship of classical physics-because these discrete matrices were, in logical- 
positivistic jargon, theoretical terms, not supposed to correspond to anything 
in atomic reality. None of this in wave mechanics. Position and momentum 
were still intended by Schrodinger to be continuous attributes of the smeared 
electron, no matter how difficult this proved to maintain on closer inspection. 
Physical reality according to wave mechanics was comparable to physical 
reality according to classical electrodynamics, the crucial difference being that 
electrons are neither point-particles nor tiny charged rigid balls moving in space 
and obeying the classical equation of motion, but are tiny jelly-like lumps 
of vibrating charged matter, described by wave-packets moving in space and 
obeying an appropriate wave-mechanical equation of motion [Schrodinger’s 
time-dependent wave equation, discovered in June 1926 (Moore, 1989, pp. 217.. 
218)]. Matrix mechanics abolished an anschaufiche ontology for atomic reality, 
but wave mechanics provided one. Matrix mechanics proclaimed an ontological 
revolution, wave mechanics propounded a refinement of the classical spacee 
time ontology. Bearing these insights in mind, let us return to our structural 
characterisations. 

The mathematical structure satisfying Schrodinger’s description of atomic 
reality is 

(22) 

Thus all Schrodinger’s talk about atomic reality in terms of the charge-densities 
in space and time is, whenever appropriately formalised, just as rigorously made 
true (satisfied), in the model-theoretic (logical) sense, by any wave-mechanical 
structure CT&,, E WM’ as is his talk about wave-functions and wave-operators. The 
matrix-mechanical structure !IJIh N E WM’ on the other hand does not satisfy 
such microphysical talk and its creators did not intend it to. A wave-mechanical 
sentence like (Tomonaga, 1966, p. 62): 

The radial charge density at distance a~ (Bohr radius) from the centre of the hydrogen 
atom in the ground-state equals eai / exp[ 11, 

(*) 
is not even a well-formed linguistic formula in the formal language of, and hence 
not made true by, an appropriate mathematical structure CIJI\,, E MM’. 

N. R. Hanson construed the Schrbdinger-Eckart equivalence proof as having 
established ‘the intertranslatability’ of matrix mechanics and wave mechanics 
and thereby replaced, so to speak, the Equivalence Myth with the Intertrans- 
latability Myth, which is widely believed in circles of professional historians 
of quantum mechanics [Hanson (1963, pp. 132-133) Jammer (1966, p. 271) 
MacKinnon (1980, pp. 14, 19, 48), Wessels (1980, pp. 61-71), Wessels (1981, 
p. 192)] But the equivalence proof does not provide a clue about how to translate 
a sentence like (*) into matrix-mechanical language. As another counterexample 
to the intertranslatability, take a sentence pertaining to atomic collision experi- 
ments which were performed at the time in Gottingen: 
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‘The scattered electron is detected in spatial region A.’ (23) 

In wave mechanics the existence of a spatial region A is taken to be a consequence 
of the instantiation of the Euclidean structure lE3 (6). But in matrix mechanics 
there is only ‘the quantum-mechanical analogue of classical position’ (whatever 
that means): one infinite matrix Qk per Cartesian component k, which is a 
denumerable set of complex numbers. How should A c E3 be related to 
Qj (t)? The answer is again that any relevant matrix-mechanical structure ?ZJX;, I 
simply does not satisfy sentences such as (23) whenever they are appropriately 
formalised. The purported element of physical reality spatial volume A has no 
counterpart in matrix mechanics. So small wonder that Heisenberg preferred 
to call I Qk(m, n) I2 ‘radiation value tables’, in order to avoid evoking any 
associations with position [Heisenberg (1926, p. 990), cf. Beller (1983, p. 482), 
Beller (1985, p. 340), d’Abro (1939, pp. 822-824)]. And even after the community 
of atomic physicists had embraced ‘the statistical interpretation’, l5 an assertion 
like ‘the probability of finding an electron, having wave-function y, in region 
A E B(E3) is 0.35’, expressed in wave-mechanical language as (symbolically): 

‘P,(A) = 
I 

a ](C/(q)]*d3q = 0.35’, (24) 

remained inexpressible in matrix-mechanical language. Initially Heisenberg even 
repudiated the Born-Pauli position probabilities as being incoherent in matrix 
mechanics. For how could a probability measure over positions be defined if 
positions themselves are not defined, asked Heisenberg in a letter to Pauli 
(February 1927) (Beller, 1985, p. 342). Heisenberg had hit the nail on the head! 
A similar story can be told for momentum. This should not come as a surprise, 
because in the pre-von Neumann era, one simply lacked the mathematical 
resources to say in matrix-mechanical language what sentences like (23) and (24) 
express in wave-mechanical language. 

Finally, we draw attention again to the fact that a state space is absent in 
matrix mechanics and that eigenvibrations are present in the structure of wave 
mechanics. We then see that Schrodinger was also hitting a nail on the head when 
he emphasised that the wave-functions ‘do not form, as it were, an arbitrary and 
special “fleshy clothing” for the bare matrix skeleton, provided to pander to the 
need for anschaulichkeit’. (Schrodinger, 1927, p. 58, corrected translation). 

To conclude, the ontological differences between matrix mechanics and wave 
mechanics are mathematically codified in their ontological substructures, as 
defined in (15) and (17) which are manifestly not isomorphic: 

( Prop,, ~mxWL Q,,) + (E3, Prop,,, I&,1, G,,, L,). (25) 

Thus the anschaulichkeit of wave mechanics was firmly anchored in all wave- 
mechanical structures S& ,,, E WM’ (12) and was not, and could not be, 
anchored in the matrix-mechanical structure 9X& N E MM’ (12). This is the 
content of Claim II. 

I5 First conceived by Born (1926) 
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3. The Moment Problem 

231 

In challenging the equivalence proof (Section 2) we have standardly taken 
‘mathematical equivalence’ to mean ‘isomorphism’. This rendition of ‘mathe- 
matical equivalence’ encapsulated various features of SchrGdinger’s proof: the 
purported isomorphism f+ (1.25) between the canonical matrix algebra and 
the canonical wave-operator algebra, the ensuing identical non-commutative 
structure of the two algebras, and the coinciding energy values, leading to the 
identity of the calculated frequencies of the atomic spectra. But in our analysis of 
Schrbdinger’s equivalence proof (1.5) we also encountered the mapping M (1.39) 
from the collection @‘wV for all wave bases to the collection {(CL,)] of all 
canonical matrix algebras, each element of which is putatively generated by 
a distinct canonical pair {P. Q} =: Ci, (remember that N and d were both 
set equal to 1 in Part I, Section 5). Although we learned to understand, by 
immersion in wave mechanics, that requiring the bijectivity of mapping M was 
a prerequisite for the desired equivalence, mapping M was omitted from our 
criticism on the basis of the standard definition of mathematical equivalence 
as isomorphism. We now remedy this omission by introducing the notion of 
Schriidinger(S)-equivalence, which charitably (but stricto senw illegitimately) 
ignores the equivalence-wrecking features that SchrGdinger also ignored and 
includes only those features that are explicitly aimed at by Schriidinger. 

Definition. Matrix mechanics and wave mechanics are S-equivalent iff 

(Co,,) = (CL,), a,,(H) = CJ,,@), 

%X = GV”, mapping M is bijective. 
(26) 

S-equivalence is weaker than the fully-fledged isomorphism in the sense that it 
requires some but not all elements (albeit the salient ones from an empirical 
point of view) in each of the wave-mechanical and matrix-mechanical structures 
to be isomorphic or identical; but S-equivalence is stronger than the fully-fledged 
isomorphism in the sense that it requires the bijectivity of mapping M (1.39). 
Because of Schrbdinger’s failure to demonstrate the algebraic isomorphism, the 
demonstration of S-equivalence fails too. But let us ignore that for the moment. 
This leaves us with the bijectivity of mapping M (1.39). 

The invertibility of A4 was guaranteed, Schrbdinger claimed in the last 
quotation of Part I, Section 5, by the unique solvability of the following 
denumerable system of Riemann-integral equations (‘Schrljdinger’s moment 
problem’): 

(Q”),x- = I_, q”uj(q)uk(q) dq, (27) 

where Schriidinger requires the functions Uj to be real, positive, twice differ- 
entiable everywhere and vanishing (asymptotically) for large lq I (cf. Part I. 
Section 5). We argue that: (a) SchrGdinger’s appeal to the moment problem to 
prove the bijectivity of mapping M was in vain (claim IIIA), which makes the 
conclusion of S-equivalence a non sequitur; and that (b) by an appeal to von 
Neumann’s unitary uniqueness theorem one can, in the territory charted by von 
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Neumann (1932), safely drive home the bijectivity of mapping A4 (claim IIIB), 
which parries the non sequitur charge. 

(a) Before going into Schrodinger’s moment problem, we observe that the 
mutual orthogonality of the Uj’s (and the coincidence of the eigenvalues of H 

and #) is an immediate corollary of the fact that in the diagonal representation 
of H we have f,(g) = H, and therefore the mutual orthogonality need 
not be assumed, as Schrodinger did. An alternative way of establishing the 
orthogonality of the functions uj would be to define Q” := 1 and @’ := 1. 

The so-called ‘moment problem’ to which Schrodinger appealed, goes back 
to the ‘Stieltjes power moment problem’, formulated and solved in 1895 by the 
Dutch-French mathematician Thomas-Jan Stieltjes. The problem is to solve the 
following denumerable system of Stieltjes-integral l6 equations (n E N): 

I 

+a 

Xc-k(x) = a,, (28) 
0 

where a,, E [0, co] are given, and where the solution g : IR - IR is required to 
be a real non-decreasing function. l7 Schrodinger’s problem (1.43) resembles a 
non-trivial modification of Stieltjes’ power moment problem (28) from [O, 001 
to (-co, +co), propounded in 1920 by the German mathematician Hans Ham- 
burger. ‘Hamburger’s power moment problem’ concerns the following system of 
Stieltjes-integral equations (n E NO, s, E R; without loss of generality: so := 1): 

.c 

+a 
x” dg(x) = s,,, (29) 

--oo 

where g is a real non-decreasing function on IR having an infinite number of 
points of increase [g(a) < g(b) for every interval (a, b) which contains such a 
point]. Whenever g is differentiable on R, the system (29) can be written as a 
system of Riemann-integrals: 

I 

+CO 
x”g’ (x) dx = s,. (30) 

-Da 

Hamburger’s Theorem (proved in 1920) states: the system (30) is solvable iff the 
Hankel matrix S, defined as sjk := sj+k, is positive definite (Akhiezer, 1965, 
p. 30, Theorem 2.1.1). Various sufficient and necessary conditions are known 
for the unique solvability of Hamburger’s power moment problem (29), but they 
are rather cumbersome to apply (Akhiezer, 1965, pp. 41, 50, 64, 83, 84, 85, 
87, 88). Schrddinger’s power moment problem (1.43) becomes an instance of 
Hamburger’s power moment problem (30) whenever we make the identifications: 
s, = (Q”) jk and g’ = ujuk. The latter identification is allowed for two reasons. 
First, since Uj(x)Uk(x) vanishes for 1x1 - co and is differentiable everywhere, 

r6The concept of the Stieltjes-integral was going to pervade von Neumann’s (1932) edifice; in 

modern expositions, like Prugovecki’s (1981), it is replaced with the all-embracing Lebesgue- 
integral. 

“Akhiezer (1965 p. v). the function g can only be determined up to an additive constant, due / , 
to the nature of the Stieltjes-integral. In general, setting the function g in dg(x) equal to the 

identity on B reduces the Stieltjes-integral to the Riemann-integral. 
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UjUk is bounded and continuous, and therefore g’ is Riemann-integrable by 
virtue of a theorem due to Lebesgue (proved in 1902) (Chae, 1995, p. 41, 

Theorem 5.1) If g’ were not Riemann-integrable, then the Riemann-integral 

in equation (30) would not exist. Second, the differentiability and positivity of 
U, (X)UR (x) everywhere imply that g exists and is non-decreasing everywhere, 
which is a condition under which Hamburger’s power moment problem is 
defined. From the quotation in Part I, Section 5 we see that Schrddinger focuses 
on the case where j = k, such that we have to make the identifications g’ = US 

and s,, = (Q”) ,j; for each j E N we have a new g’ to determine from the sequence 
of jth diagonal elements of Q, Q*, Q’, 

We claim (IV) that Schriidinger’s appeal to the power moment problem (30), 

the only extant candidate problem to which Schriidinger could have appealed (as 
far as the author has been able to establish) is in vain, for the following reasons. 

First, the restriction to positive real wave-functions, to let ~5 determine U, 
and to meet the requirement g’(s) 2 0 (vi& supru), is unacceptable. The 

wave-mechanical solutions of the problems that SchrGdinger had solved himself 
(hydrogen atom, harmonic oscillator, rigid rotator with free and with fixed axes) 

were not positive wave-functions. For example, the solutions of the harmonic 
oscillator problem in one dimension were exp[ -x2/2]Hn(x), where H, are the 

Hermite polynomials (SchrGdinger, 1926b; SchrGdinger, 1927, p. 31). lx 
Second, the restriction to real wave-functions, necessary to make contact with 

the power moment problem, is unacceptable too. For example, Schrijdinger’s 

solution of the problem of the rigid rotator with free axes contains spherical 
harmonics, which are complex functions (SchrGdinger, 1926b; Schrddinger, 1927. 
p. 35). Subsequent developments in wave mechanics, in particular the discovery 
of the time-dependent wave equation, revealed that being complex is the generic 
case for wave-functions. A similar problem is that Q” is in general complex, so 

s,, too is in general complex, whereas the power moment problem requires .Y,, 
to be real. (Pencil and paper will convince the reader that splitting a ‘complex 

moment problem’ in real and imaginary parts in the hope of reducing it into 
two real moment problems is of no avail, due to the identification g’ = uiu,,.) 

Third, Schrbdinger’s moment problem (1.43) requires the functions u; to fall 

off faster than any power in order to prevent the integrals from diverging. Not all 
solutions of the time-independent wave equation comply with this requirement. 
For example, the asymptotic scatter states which Born found in the summer of 

1926 were of the form (in spherical coordinates): exp[ikzl + .fi (0, cp) exptikrlir, 
which do not even fall off faster than r-‘, and by implication not faster than 

any power. 
Fourth, suppose that Schriidinger’s moment problem (1.43) is uniquely solv- 

able and has solutions {uj}. Then the momentum matrix P and its powers P”. 
which matrix mechanics also has on offer, should be such that the uj satisfy: 

dx = (P”),k, (31) 

lx SchrGdinger accepted a restriction that excludes all of his own results so far. 
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for all j, k E N, and at least for n = 1. Schrodinger should have averted this 
primafucie threat of overdetermination by appealing to the only available matrix- 
mechanical facts, namely that P is Hermitian and is canonically conjugated to 
Q. Schrodinger left it lurking in the dark. 

Fifth, it is an open question whether all Hankel matrices built from the rows 
of Q and its powers Q”, the problem that their elements are in general complex 
being set aside, are positive definite, which according to Hamburger’s Theorem 
is necessary for the Hamburger power moment problem to be solvable. 

We conclude that Schrodinger’s appeal to the moment problem in order to 
establish the bijective nature of the mapping M (1.39) is in vain (claim IIIA). 
Consequently, concluding that matrix mechanics and wave mechanics are S- 
equivalent is a non sequitur. 

(b) Let us drop Schriidinger’s restriction of Uj to real, positive, twice dif- 
ferentiable wave-functions and return to L2(IR) and forget about the moment 
problem. We next show that the mapping M : @WV - {CC:,)} (1.39) is bijective 
(up to Lebesgue-equivalence). This is Claim IIIB. We surreptitiously enter von 
Neumann’s (1932) edifice so that we feel free to appeal to Hilbert space; and we 
confine ourselves again to the case N = 1 and n = 1. 

Proof. Theorem: all bases of a Hilbert space are related by a unitary 
transformation; and conversely each unitary transformation turns a basis into 
a basis (Prugovecki, 1981, p. 215, Theorem 4.4). So &, is equinumerous (of 
equal cardinality) to the set U[L*(lR)] of all unitary wave-operators. Consider 
a canonical pair of Hermitian matrices (P, Q). The set of all such pairs 
is obviously equipollent to { (Ck,)}. Born and Jordan showed lg that every 
unitarily transformed canonical pair of Hermitian matrices is a canonical pair 
of Hermitian matrices too (elementary exercise). Enter von Neumann, for the 
converse (not a particularly elementary exercise) is precisely the content of his 
unitary-uniqueness theorem, which states, formulated in all generality, that all 
irreducible solutions of the canonical commutation relations for linear, self- 
adjoint Hilbert-space operators are related by a unitary transformation [von 
Neumann (193 1); see also Prugovecki (198 1, pp. 3422347), Emch (1983, pp. 336- 
337)]. ‘O So {CC:,)} is equip ollent to the set ‘U,, of all unitary matrices- 
conceived as sequence-operators, to anticipate the next Section. Thus it is 
sufficient to prove that the set ‘If[L2(R)] of all unitary wave-operators is 
equipollent to the set ‘I&,, of all unitary matrices. 

Consider the Schrodinger-Eckart mapping f+ (1.25), but now U[L2(IR)] - 
‘u,, (any choice for the basis I$,} will do, since unitary wave-operators are 
bounded). For each unitary wave-operator U E ‘U[L* (R)], there is one matrix 
f+ (ZJ) E ‘Zf,, (up to Lebesgue-equivalence) which is provably unitary. So we 
only have to show now that, conversely, for each unitary matrix U E urnx there 
exists one unitary wave-operator I? E ‘If[~2(R)]. The existence is guaranteed 
by the inverse of the Schrbdinger-Eckart mapping fp( U) (1.30) whenever in- 

lg Section 3, consequence (m4). 
*O Since the theorem shows there are just as many solutions of the canonical commutation relations 

as there are real numbers, the author finds the standard name ‘uniqueness theorem’ misleading. 
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equality (1.32) holds for all Schmidt-sequences. The question whether inequality 
(1.32) holds is the same as asking whether IIlJcll < co, where c is an arbitrary 
Schmidt-sequence. The answer is in the affirmative because multiplication by 
a unitary matrix preserves the norm: /IUcll = llcll < co. The obtained wave- 
operator .$‘“(U) is unitary. Hence ‘ZJ mx and UIL2(R)] are equipollent. QED 

4. Matrices as Operations 

In our analysis of SchrGdinger’s equivalence proof (Part I, Section 5) we 
have encountered two major mathematical problems concerning the canonical 
matrices: what conditions they have to obey for corresponding wave-operators 
to exist (Problem 1); and what conditions they have to obey in order to generate 
an algebra (Problem 2). 

In Part I, Section 1 we mentioned two sacred texts of quantum mechanics, 
one by Dirac (1930) and the other by von Neumann (1932); both promulgated 
the state-observable characterisation of quantum mechanics despite their re- 
markable differences. Spelling out the precise relation of matrix mechanics and 
wave mechanics to Dirac’s quantum mechanics would be a project on its own. 
The difficulties of formulating a mathematically tractable version of Dirac’s 
quantum mechanics that does justice to all its aspects are quite formidable; 
contra popular belief, the introduction of Laurent Schwartz’s concept of a 
distribution in 1949 to define Dirac’s ‘improper &function properly, and the 
rigging of Hilbert space to provide plane waves with a quantum-mechanical 
passport, do not resolve all difficulties. They resolve a number of them but 
leave others unresolved, e.g. how to define (6,16h), where 6, is Dirac’s delta 
distribution. The most penetrating mathematical exploration to date into Dirdc’s 
quantum mechanics is the monograph A Mathematical Introduction to Dirac’&s 

Formalism by Eijndhoven and De Graaf (1986). The lesson to be drawn from 
this monograph is that a mathematically decent version of Dirac’s quantum 
mechanics is far more intricate than von Neumann’s edifice, a fact that is veiled 
superbly by Dirac’s elegant notation. Into von Neumann’s edifice we now stride. 

The shift in mathematical perspective we have alluded to a few times, consists 
in seeing an infinite matrix as a partial specification of a linear operator acting 
in the Hilbert space 12(N) of Schmidt-sequences. In Part I, Section 5 we 
mentioned that in 1925 Kornel Lanczos made the first attempt to connect matrix 
mechanics to Hilbert’s theory of quadratic forms and integral equations (cf. 
Lanczos, 1926; Van der Waerden, 1973), and Born and Wiener made the first 
attempt to carry over the view of matrices as operations from pure mathematics 
to matrix mechanics (Born and Wiener, 1926). By and large these attempts 
failed, mainly because there was still no appropriate theory of unbounded ma- 
trices. Leon Lichtenstein, Professor of Mathematics at Leipzig University, who 
commissioned the young Aurel Wintner to write a state-of-the-art monograph 
on infinite matrices, wrote in the Introduction to Wintner’s Spekrraltheorie 
der Unendlichen Matrizen. Einfiihrung in den analytischen Apparat deter Quan- 
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tenmechanik: ‘A flawless, mathematically satisfactory theory of the quantum- 
theoretical matrices is at present still a desideratum’ (Wintner, 1929, p. VII, my 
translation). Then von Neumann arrived on the scene. 21 The rest, as the saying 
goes, is history. 

In an opening lecture on Functional Analysis the following symbolical slogan 
might be written on the blackboard: 

The domain co-determines the properties of the operator. To look upon matrices 
as multiplicators of a Schmidt-sequence is particular to matrix mechanics. This 
is a consequence of the fact that the Hilbert space of (thefinal version of) matrix 
mechanics contains Schmidt-sequences: Qs E Z*(N) for all s E D(Q), where 
D(Q) c 1* (IV) is a set of appropriate Schmidt-sequences. The matrix Q captures 
the ‘operation’ of a sequence-operator $I it tells us what to do with an appropriate 
Schmidt-sequence s to obtain its image: g : s - q^s := Qs E Z’(N). The matrix Q 
does not contain any information about the domain of this i. Set-theoretically 
speaking, @ is a non-denumerable set of ordered pairs: 

(s, +s, E 4^ c 12(N) x 12(N). (32) 

The vector space obtained by lumping together all first elements of these ordered 
pairs is by definition the domain of q, denoted by D(t). Then D(q^) = D(Q). 
So @trivially contains all information about ‘its’ domain D(t). Changing D(q^) 
will result in an operator 4’ which is different from @ but will not result in a 
different matrix: 

(bil&) = (hiI?&) = bjQ&, (33) 

for all bases { bk} c D(q^) n D(? 1. So much for matrices as sequence-operations. 
We turn to Problems 1 and 2, defined in the opening paragraph of this Section. 

Let T+, which we shall refer to as a Riesz-Fischer mapping, map each wave- 
function (1/ E L*(R) to the Schmidt-sequence consisting of the expansion 
coefficients of cc/ in the basis { & ) : 

r, : L*(R) - 12(IV, q - &,(ly) := c, where c, := (&I+). (34) 

Notice that T+(+,) = e”: the basis {+,I is mapped onto the natural basis 
{e”}. The Riesz-Fischer mapping I+ (34) is an isomorphism (up to Lebesgue 
equivalence). ** 

Let S(IK) be the Schwartz space of all rapidly decreasing C03-functions, which 
is a dense domain of the canonical wave-operator algebra (C,,) c D[L2(R)], 
where the latter is the set of all densely-defined wave-operators. The solutions of 
the harmonic oscillator problem are such functions and form a basis for L* (IK): 
p,,(x) := exp[-x2/21H,(x), where H,, are appropriately normalised Hermite 
polynomials. Because the Riesz-Fischer mapping I, (34) is an isomorphism, 

&,[S(R)] is a dense subset of 1*(N). 

*I Specifically von Neumann (1929a; 1929b; 1932). 
22A deep theorem and one of the pillars of von Neumann’s edifice; cf. Section 5. 
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With these mathematical facts in position, we leave it as an exercise for the 
reader to verify that Problem 1 is solved by requiring the canonical matrices 
to be Schrodinger-Eckart matrices 23 (CL, c 3\/Is~), in which case the inverse 
Schrbdinger-Eckart mapping y$ : Ci, - C,, (1.25) guarantees the unique 

existence (up to Lebesgue-equivalence) of wave-operators @‘(a) and f&(P) 
with dense domains Tp[D(Q)l and Tp[D(P)], respectively. Problem 2 is solved 
by T,[S(R)], which is a common dense domain of the canonical matrices that 
are constructed by the Schrodinger-Eckart mapping fp, : C,, - CL, (1.25). 
The fact that Problems 1 and 2 are solved by conceiving an infinite matrix as a 
partial specification of a sequence-operator is the content of Claim IV-which 
is of course old news. 

Corollary The canonical wave-operator algebra (C,,) c cEI[L~(IR)] and the 
canonical matrix algebra CC!,) c n/r sr, conceived as operations of sequence- 
operators, having equinumerous generator sets C,, and CL, are isomorphic. 

5. Equivalence Salvaged 

Gently twisting a famous saying of Otto Neurath, we say that constructing a 
scientific theory is like building a fleet of structures in the open sea. No wonder 
that the very first attempts of Schrodinger (and Eckart) to prove equivalence 
were not successful, notwithstanding all the stories of their success. These 
stories were told over and over again and created the Equivalence Myth. In 
the meantime work progressed in the open sea at an astounding pace [Mehra 
and Rechenberg (1982, pp. 196301); (1987, pp. 686771); and Jammer ( 1966, 
pp. 299-335)]. In this final Section we jump from 1926 to 1932, when von 
Neumann took control of the fleet and designed new ships. We leave the spelling 
out of the Postulates of the legitimate successors of matrix mechanics and wave 
mechanics as an exercise for the reader ” . but in (a) we submit two families of , 

structures of quantum mechanics as the legitimate successors of the structure 
families MM’ (11) and MW’ (12). In (b) we salvage the mathematical and 
empirical equivalence in the form of an Equivalence Theorem, which is the 
content of Claim V. Finally we indicate in (c) the position of the successor 
structures in the wider class of structures that defines orthodox quantum particle 
mechanics. 

(a) The new type of matrix-mechanical structure for a physical system of 
N E lY particles in d E N-, spatial dimensions is: 

9%~ := (P12(N), CCL,), Gmx, lk T(CQ, a,,, Km,, Prop). (35) 

The new type of wave-mechanical structure for the same physical system is: 

(%.N := (pr2(IWNd), (C,,). Gwy, Pv, Y(C,,), a,,, -X,,, Prop). (36) 

The classes of all these structures, for all N E N, all d E NJ~, all Hamiltonians, etc. 
and their empirical and ontological substructures, constitute the final versions 

‘3As defined in Part I, Section 2. 
2-1 See Prugovecki (1981, pp. 348-351) for the postulates of wave mechanics. 
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of matrix mechanics (MM) and wave mechanics (WM), respectively. A set Const 
of physical constants and parameters is identical for both structure families and 
is left implicit. The set Prop E JR2N+2 contains the masses and charges of the N 
particles and the total mass and charge of the composite N-particle system (their 
Properties), whose instantiation means that N microphysical entities (‘point-like 
material particles’), having the properties mass mj and charge qi, really exist. 

Both structures contain state spaces; the matrix-mechanical structure con- 
tains the projective Hilbert space P12(N) of Weyl-equivalence classes (rays) of 
Schmidt-sequences, and the wave-mechanical structure contains the projective 
Hilbert space pL2(RNd) of rays of Lebesgue-equivalent wave-functions. von 
Neumann showed that the Riesz-Fischer mapping (34) is a bijective morphism 
(up to Lebesgue-equivalence) (von Neumann, 1932, p. 58). 25 which immediately 
entails the isomorphism of the state spaces: PL2(IWNd) N P12(N). 

In the so-called ‘Schrodinger picture’ the history of a physical system is 
described by the time-dependent Schriidinger equation. 26 Define CCI as the 
solution of the time-dependent Schrodinger equation, whenever it exists; q c 
RxL2(IRWNd) isawave-function-valuedfunctiononIW: IJJ : t - q(t) = 6(t)q(O), 
where 6(t) is a unitary wave-operator. The function r/~ determines a continuous 
path in L2(R) (if no measurements are performed). The ensuing set Ply of rays 
occurs in Gd,v (36). Von Neumann showed that the unitary operators form a Lie 

group Gw_o f bounded operators. Each time-independent Hamiltonian wave- 
operator H, by assumption linear and self-adjoint, corresponds)tniquely to a 
unitary group (Stone’s Theorem), by means of UK) = exp[-itH/E] E Cjwv. 
For a time-dependent Hamiltonian wave-operator, H (t ) is related to U (t ) by an 
integral equation. Mutatis mutandis for the Hamiltonian matrix H(t) E %!~a, 
Schmidt-sequence-valued function s c R x 12(N), ensuing set of rays Ps, and 
Lie group of unitary tEttriCeS Grnx C %&d. The isomorphism 6&-,x = C& is 
again established by a Schrodinger-Eckart mapping f+ (1.25). The isomorphism 
between P+ and IPs is a composition of the identity on Iw and the Riesz-Fischer 
mapping: I 0 I& 27 

25 The isomorphism of the Schmidt-sequence space and the wave-function space is often (but not 

entirely appropriately) designated as the Riesz-Fischer Theorem, because an important ingredient 

of this isomorphism proof was discovered independently by the Hungarian mathematician Frederic 

Riesz and the German mathematician Ernst Fischer, namely that the mapping (34), having domain 

L* [a, b], is bijective; cf. Jammer (1966, p. 330). In their chapters devoted to the equivalence of 

matrix mechanics and wave mechanics, both Mehra and Rechenberg (1982, pp. 636-684) and 
Hanson (1963, pp. 113-134)do not evenmention the Riesz-Fischer Theorem. Both von Neumann 

himself (1932, p. 29), asserting a close connection between ‘Schriidinger’s original equivalence 

proof’ and the present isomorphism, and Hughes (1989, p. 45), asserting that Schrodinger 

established equivalence ‘by virtue of this isomorphism’, could not, historically speaking, be more 
off target. 

x Schrijdinger (1926e; 1927, p. 104), final founding paper. 
“The relation between the ‘Heisenberg picture’ and the Schrodinger picture is spelled out, 

for example, by Ludwig (1968, pp. 6669) and Prugovecki (1981, pp. 293-298). Both pictures 

give rise to identical empirical substructures (vide infra). Prugovecki (1981, p. 296) asserts that 
Schriidinger’s equivalence proof establishes the empirical equivalence of the Heisenberg picture 

and the Schrodinger picture. There is alas nothing of the kind in Schriidinger’s equivalence 
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The isomorphism CC:,) = (C,,) between the canonical algebras of (time- 
independent) matrices and wave-operators was addressed in Section 4. One 
of von Neumann’s many achievements was his generalised formulation of the 
eigenvalue problem in Hilbert space and another deep theorem: the spectral res- 
olution theorem for unbounded self-adjoint operators, which entailed the unique 
solvability of the generalised eigenvalue problem. 28 The spectral resolution 
theorem states that each linear self-adjoint operator corresponds uniquely to a 
spectral family of projector-valued Bore1 functions on B(IR”). 2g A useful charm 
of a spectral family is the possibility of defining any Bore1 function of operators; 

the function f‘(G) has in general a spectrum different from a(c) but does not 
have a different spectral family. 3o The sets _F(C,,) E %G.N and 3’(&) E (%i..j 
contain all the Bore1 functions of the canonical elements that the physicist wishes 
to consider; they stand by construction in one-to-one correspondence by means 
of the Schriidinger-Eckart mapping f (1.25) up to Lebesgue-equivalence. 

The sets (T,, and a,, contain the spectra of all matrices in y(C&) and wave- 

operators in JF(CwV), respectively; one proves that a,, = uw\, that is CS~ = GA, 
where A = &,(A^), for all A E FCC:,) and all A^ E y(C,,). 

(b) The story of the inception of the Born-Pauli probability measure has 
been told by others in detail (Wessels, 1981; Beller, 1990). Succinctly, Born 
and Pauli deleted Prop,,, the set of all charge and matter densities, from the 
wave-mechanical structure G’ d,N (5), retained the Euclidean structure IS’, added 

a probability measure over B(lR3), dejned II)(Q) I2 as a position probability- 
density and de$ned Ic,12, where c, E c is the expansion coefficient of rc/ in the 
energy basis, as the probability of finding the energy value E,,. The standard gloss 
of saying that Born, together with Pauli, provided a ‘different interpretation 
of the same formalism’, is an awkward and misleading way of formulating the 
matter at hand (cf. Section 6). It seems better to say that the expansion of the 
wave-mechanical structure with a set of Kolmogorovian probability structures: 

X WV := I(R”, B(R”), P,) I n E Nl, (37) 

where P,, is a Kolmogorovian probability measure defined by a wave function 
and n commuting wave-operators, defined in the usual way, constitutes a 
radical change in the mathematical structure of wave mechanics, and therefore, 
according to the structural view of scientific theories, a radical change in wave 
mechanics itself. 31 Despite the mathematical fact that any X,, is explicitly 
definable from the other mathematical entities of wave mechanics, the change 

proof, if only because the wave-mechanical evolution equation (the time-dependent Schriidinger 

equation) had yet to be discovered. 

JR Hanson’s claim that equivalence only holds for bounded operators (1961, p. 417) is one of his 

many mistakes; this particular one is based on confusing the boundedness of operators with the 

separability of Hilbert space. 
zgVon Neumann (1929a; 1929b); cf. Prugovecki (1981, p. 250) Theorem 6.3 for a modern 

exposition. 
3o Cf. Prugovecki (198 1, pp. 270-284); even extensions to functions of non-commutative operators 

are possible. 
Is1 In full concurrence with Hanson (1961, p. 421). But then Hanson goes on to claim (1961, 

p. 42 1) that Born showed the equivalence of matrix mechanics and wave mechanics and therefore 
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in mathematical structure counts as radical, for it would ultimately codify the 
transition from a deterministic to an indeterministic view of microphysical 
reality And mutatis mutandis with regard to -X,, E ?X~,N. Von Neumann 
defined the probability measure PA : B(R) - [O, 11, where PA(A) is the 
probability of finding a value in Bore1 set A of one physical magnitude A, as 
the expectation-value ( IC, I &” (A)(cl) of the spectral family member ,@A (A) (von 
Neumann, 1932, pp. 200-201). All matrix-mechanical probability measures and 
wave-mechanical probability measures pertaining to the same II magnitudes 
provably coincide as a consequence of the isomorphism between the state spaces 
and the operator algebras. 

Hence the empirical substructures of !J&N and G~,N, defined as 

[‘9&,~1~~~ := Prop, cmx, X,,) and [~%,NL,~ := (Prop, G, K,,), (38) 

respectively, are identical. This demonstrates the empirical equivalence of MM 
and WM. 

We state the content of Claim V in the form of an Equivalence Theorem in 
the following concise way, which summarises parts (a) and (b) of the present 
section: s2 

9-J& = ed,N and [~d,Nlemp = [f%f,Nlemp. (39) 

We emphasise that only with the spectral families of the canonical matrices, 
conceived as sequence-operators, is it possible to express the position and the 
momentum probabilities in matrix language. That is why the mathematical 
and the empirical equivalence of matrix mechanics and wave mechanics, even 
expanded with the sets of Kolmogorovian probability structures -X,, and X,,, 
could not have been proven in March 1926, three years befbre von Neumann 
developed his spectral theory of unbounded self-adjoint operators. Furthermore, 
the proved mathematical equivalence between the structures md,N and ed,N 
entails that (almost) any sentence is expressible and satisfied in the formal 
language of the matrix-mechanical structures iff it is expressible and satisfied 
in the formal language of the wave-mechanical structures. s3 For example, 
sentence (24) is expressed in matrix-mechanical language as (symbolically): 

‘(si EQ(A)s) = 0.35’, (40) 

where EQ(A) E .%&,d is the appropriate projective matrix from the spectral 
family of Q. 

deserves the credit, whereas in fact Born widened the gulf! It was von Neumann who then showed 

how to bridge the widened gulf as, infra, e.g. (40). 
32 Hill (1961, p. 427) one of the early advocators of distribution theory for quantum theory, 

makes the point that wave mechanics extended by distribution theory is not equivalent to matrix 

mechanics. (Exercise: find the inconsistency in the last but one paragraph of Hill (1961, pp. 4277 

428). Hill’s denial of the equivalence of matrix mechanics and wave mechanics ‘even within the 

bounds of von Neumann’s formulation’ is a howler.) 

33 We say ‘almost’, because a wave-mechanical sentence like ‘the value of the wave function cc, at 
a point rE W3 is 0.24 + 0.1 Ii’, or like Tomonaga’s locution (23) is not translatable into a matrix- 

mechanical language. This derives from the fact that the Hilbert spaces of the wave-functions and 

the Schmidt-sequences have quite distinct elements, which live on different floors of the Cantor 

hierarchy, notwithstanding the isomorphism of the structures they form (Hilbert space). 
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(c) Let orthodox quantum particle mechanics (QM) be the family of mathemat- 
ical structures satisfying von Neumann’s postulates. QM is far from exhausted 
by the structure families MM and WM just discussed. Let Q,v denote an 
element of QM for a system of N E IY particles, the empirical and ontological 
substructures being set aside for the moment. We confine ourselves to an outline 
of what UN looks like. Structure QN results when the slots in !.?_Jld,~ or Cjd,~ are 
replaced with more abstract, encompassing mathematical objects that have the 
slots of M~,N and of G~,N as instances. This spells out the precise relation of 
the final versions of matrix mechanics and wave mechanics to von Neumann’s 
axiomatised orthodox quantum particle mechanics. 

The state space becomes the convex set S(H) of von Neumann’s state 
operators, acting on any Hilbert-space ti. 34 So mixed states are allowed. 
von Neumann defined the concomitant probability PA(A) for a mixed state 

@ E S(H) as Tr(@A^). Finite-dimensional Hilbert spaces are allowed, like 
the two-dimensional spin space C x @ of two-element sequences; Pauli’s spinor- 
space, e.g. L2(Iw3) @ C2 for a one particle system; and quaternion Hilbert space 
is still another example. The path in a Hilbert sp?ce becomes a path in S($I, 
defined by the state operator-valued function W : IR - S(H), t - W(t), 
defined as the solution of von Neumann’s generalisation of the time-dependent 
Schrodinger equation [Neumann (1932, p. 350) Prugovecki (1981, p. 396)]. 
And instead of the canonical physical magnitudes position and momentum 
and functions of these, other magnitudes are allowed that are not functions 
of the canonical magnitudes, e.g. spin, the quantum-mechanical magnitude 
par excellence-remember that most Hamiltonians, pertaining to microphysical 
systems, actually employed by physicists contain spin-dependent terms. As to 
magnitudes, any set O(3f) of densely-defined, linear, self-adjoint operators 
suffices; O(3fj may be, but need not be, an algebra. Taking stock we obtain: 

QN := (S(30,0(30, G, @. (T, Xx, Prop). (41) 

where cr is the set of all spectra ~(2) of operators A^ E O(ti) and 3C a set of 
Kolmogorov probability structures of interest concerning operators from 0 (31). 
As the empirical substructure one takes standardly: 35 

[t2Nlemp := (Prop, u, Xx). (d-2) 

To summarise part (c): 

MMcQMxWM, MMnWM=0, MMuWMcQM. (43) 

Figure 1 depicts Theorem (90) in a Venn-diagram. 
Which substructure of Qv should be deemed the ontological substructure 

[Dlylont depends heavily on one’s philosophical view of science. A ‘structural 
realist’ tends to include as much as possible in [&lont; an ‘entity realist’ 

3”Neumann (1932, p. 316), where they are called ‘statistical operators’; ‘density operator’ is 

another (less appropriate but omnipresent) name. 
35 More elegantly, the properties mass, charge, etc. can be subsumed in (T by means of introducing 

super-selection rules; 3f then becomes a super-selected sector of some gigantic Hilbert-space. 
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Fig. 1. Venn diagram of Theorem (44). 

will include Prop in [QN I ant, whose instantiation is then taken to mean 
that microphysical entities and their (superselected) properties really exist; a 
‘positivist’ tends to exclude as much as possible from [L!N&; and an ‘idealist’, 
or even a ‘solipsist’ can be a physicist by putting [&lont = 0 and taking 

[QNlUllp as an experiential substructure. The general element of QM is of the 

type 

KZN, K2N1enlp, [fhlont). (44) 

6. Aftermath: Formalism and Interpretation 

The conclusions of this investigation are in fact the five claims summarised in 
Part I, Section 1. The author is sceptical about making inductive inferences to 
conclusions of a more general nature from these claims, which pertain to one 
case study. We end by a remark on the formalism/interpretation distinction. 

After wave mechanics appeared on the scene Heisenberg surreptitiously intro- 
duced the well-known formalism/interpretation distinction to physics [Heisen- 
berg (1926, p. 994); (1929, pp. 493, 495)]. His reason for the introduction of 
this distinction, or so we speculate, was to resolve a dilemma: on the one hand 
he wrote that he loathed anschauliche wave mechanics and thought of it as 
‘Mist’, 36 whereas on the other hand Heisenberg, ardent problem-solver that he 
was (Cassidy, 1992) immediately recognised the advantages of solving a linear 
partial differential equation over diagonalising an infinite unbounded matrix. 
This dilemma was not particular to Heisenberg; all the matrix mechanics (Born, 
Jordan, Dirac, Pauli) were seduced by Schrodinger’s differential equation-and 
all would succumb. To accept or not to accept wave mechanics, that was the 

36Moore (1989, p. 221) translates ‘Mist’ as ‘bullshit’, Cassidy (1992, p. 215) as ‘crap’, and 

Beller (1996, p. 549) as ‘rubbish’; cf. Belier (1983, p, 489) and (1990, p. 574) 
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question. Heisenberg’s resolution of this dilemma was to slice away everything 
from the wave-mechanical structure 6’ d N (5) that was not necessary to calculate 
the frequencies and intensities, and call it ‘interpretation’, and call the contracted 

structure 37 ‘formalism’. When Born and the other founding fathers of matrix 
mechanics expanded the wave-mechanical structure by Kolmogorovian measure 
structures, and changed its empirical substructure, the entire matrix division sung 
in close harmony that these moves accomplished merely a different ‘interpreta- 
tion’ of wave mechanics, leaving its ‘formalism’ unaltered. So when Heisenberg 
declared publicly that he accepted the ‘formalism’, repudiated ‘Schriidinger’s 

interpretation’ and adopted ‘Born’s interpretation’, he turned everything upside 
down, according to the structural view. What Heisenberg really had been 
doing, or so it seems, without even a whisper of protest from his matrix allies, 
presumably because their conceptual faculties were clouded by their desire for 
Schrodinger’s differential equation, was to baptise as ‘formalism’ what the matrix 
mechanics accepted of G&,, (5), to baptise as ‘Schrddinger’s interpretation’ what 
they amputated and to baptise as ‘Born’s interpretation’ what they sewed on. 
These were the Procrustean methods of Heisenberg cum suis, viewed through 
Suppesian spectacles. 

Heisenberg’s surreptitious introduction of the formalism/interpretation dis- 
tinction carried the day and has nestled itself in the standard vocabulary of 
the working physicist. How this distinction is to be understood exactly is not 
clear. (Did Heisenberg pick up a tan from the philosophical Sun of Logical 
Positivism that was rising above the Weimar Republic and whence the distinc- 
tion springs?) But then again, the meaning of many concepts of the working 
physicist’s standard vocabulary is not clear (examples: causality, explanation, 
theory, evidence, measurement, observation). The variety of ways in which the 
word ‘interpretation’ is currently used, the practice of ‘interpreters’ of quantum 
mechanics included, is bewildering to a mind that craves for clarity. 

The formalism/interpretation distinction should of course ultimately be un- 
derstood as a way of encoding the philosophically problematical relation be- 
tween what we internally construct, in our minds or on paper, and the external 
world, which in some sense exists independently of us. Now let T be a physical 
theory and S a physical system. In the structural framework ‘formalism of T’ 
can be identified, if one insists of having this particular notion, with the entire 
structure U E T, which is regarded as ‘a model of S’, and ‘interpretation of 
T’ can be identified with the juxtaposition of: (i) the embeddability relation 
between the empirical substructures [U],,, of U and the data structures obtained 
in experiments pertaining to S; and (ii) the relation between these quantitative 
data structures and our qualitative sense impressions as expounded in Suppes’ 
measurement theory; and (iii) the inscrutable relation between the ontological 
substructure [Ulont of LL and S. On the basis of this construal of the formal- 
ism/interpretation distinction, our conclusion, argued for sup-a, of Heisenberg 
c. .F. using Procrustean methods follows: they did not leave the formalism of 

j7 For the meaning of ‘contraction’ and ‘expansion’ see footnote 3 
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wave mechanics unaltered and merely change its interpretation. Rather, they 
changed the formalism and its interpretation. 

We do not wish to defend that no construal of the notion ‘formalism’ is 
possible which justifies Heisenberg’s way of putting things. Perhaps a wider 
notion than the evident one we explicitly used supru will accomplish this, like 
one including everything which is, in an appropriate sense, ‘implicitly definable’ 
in terms of a few ‘basic’ structures. But we do wish to emphasise that in the 
structural framework the notions ‘formalism’ and ‘interpretation’ are redundant. 
The relations between what we internally construct (theory T) and what exists 
‘independent’ of our constructions (physical system S) and what we experience 
(our observations), are in the structural framework delicately taken care of, 
employing purely standard set-theoretical nomenclature, by the points (i), (ii) 
and (iii) mentioned above. The notions ‘formalism’ and ‘interpretation’ arguably 
are conceptual zombies that escaped with Heisenberg’s diabolical help the coffin 
of Logical Positivism. Even brandishing Occam’s razor suffices to chase them 
away from the structural framework. 

Formalism/interpretation distinction, rest in peace. 
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