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DISCUSSION:

IS ALGEBRAIC LORENTZ-COVARIANT QUANTUM FIELD
THEORY STOCHASTIC EINSTEIN LOCAL?*

F. A. MULLERT%

Faculty of Physics and Astronomy
Utrecht University

AND

JEREMY BUTTERFIELD

Faculty of Philosophy
Cambridge University

The general context of this paper is the locality problem in quantum theory.
In a recent issue of this journal, Rédei (1991) offered a proof of the proposition
that algebraic Lorentz-covariant quantum field theory is past stochastic Einstein
local. We show that Rédei’s proof is either spurious or circular, and that it
contains two deductive fallacies. Furthermore, we prove that the mentioned the-
ory meets the stronger condition of stochastic Haag locality.

1. Introduction. The formal notion of past stochastic Einstein locality
(SEL") was introduced by Hellman (1982b) to close the gap between the
physical requirements of special relativity, especially the requirement of
no superluminal action, and the idea of Bell locality, which is the notion
that (the probability of) any measurement outcome does not depend on
something outside the backward light cone of the measurement event. In
discussing the problem of hidden variables for algebraic Lorentz-covariant
quantum field theory (AQT) and its relation to a recently proven violation
of Bell’s inequalities in AQT, Rédei (1991) purported to prove that AQT
is a past stochastic Einstein local theory. In our view Rédei failed to do
just that.

AQT, founded essentially by R. Haag in the late 1950s and the 1960s,
is a heroic attempt to turn Lorentz-covariant quantum field “theory” into
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458 F. A. MULLER AND JEREMY BUTTERFIELD

a mathematically rigorous, axiomatized theory like quantum mechanics.
Since quantum field “theory” is at present the best we have about the
ultimate constituents of the physical world, Haag’s and his followers’
endeavor is one of the most profound intellectual enterprises of our age.
After some introductory remarks to give some idea of what AQT is about
(sec. 2), we present an improved formulation of SEL for AQT and ex-
plicate Rédei’s proof of the Proposition that AQT is past stochastic Ein-
stein local (sec. 3). Our explication is far more detailed than Rédei’s
original proof, not because we love to dwell in an orgy of mathematical
and logical “technicalities”, but because only if the details that Rédei
glosses over are put on the stage is it possible to point out the deficiencies
of the proof rigorously, hence convincingly. We show that Rédei’s proof
is either spurious or circular, or else commits a deductive fallacy; that
the proof method is incorrect if the spacetime transformation applied in
the proof is active, which is an obvious reading of the proof; and that it
becomes especially spurious if the spacetime transformation is passive,
which is a less obvious reading of the proof (sec. 4). Subsequently, we
offer a simple and straightforward proof that AQT obeys what we call
stochastic Haag locality (sec. 5). This result yields an affirmative answer
to the question in the title of this paper, because this latter locality con-
dition entails SEL.

2. Algebraic Lorentz-Covariant Quantum Field Theory. These intro-
ductory remarks on AQT are based on Horuzhy (1990, chap. 1) and Haag
(1992). AQT comes in two garden-variety types: an abstract one and a
concrete one. In abstract AQT one starts with the fundamental mapping
O — U(0), where spacetime region O € B(M), where B(M) is the set
of all open-bounded subsets of the Minkowski spacetime manifold J from
special relativity, and where U(O) is an abstract C*-algebra of local ob-
servables on O. All local algebras are contained in a gquasi-local net U,
whose properties are specified by the axioms of AQT. Any physical mag-
nitude that is measurable inside spacetime region O is represented by a
local observable in the algebra U(O). Let W be the set of states; a state
¢ € W is defined as a normalized, continuous, positive, linear functional
on any local algebra, mapping observables to complex numbers (¢ : U(O)
— C). The complex number y(A) is the expectation value of observable
A € U(0) of a system in state . This is the main correspondence rule
between the formalism of AQT and measurement results, which is anal-
ogous to the Born Rule in Galilean-covariant quantum mechanics. (Given
the usual but unnecessary restriction to the self-adjoint part of U, the
expectation values are real.) (In concrete AQT the abstract C*-algebra
AU(0) is replaced by a von Neumann-algebra R(0O) of operators acting in
a Hilbert space and the quasi-local net U by a global net R.) To present
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and assess Rédei’s proof, and to give our proof, we especially need the
following three points of abstract AQT, which is the type considered by
Rédei.

First, the probability of finding a value in the Borel set a € B(R) when
measuring any local observable A € U(O) of a system in state y € ¥
equals the expectation value of a projector local observable P, € U(O)
in state i

Prob([A]Y € a) = ¢(P,), (1

where [A]” denotes the measured value of local observable A of a system
in state .

The second point concerns the axiom of Lorentz-covariance of AQT.
The Poincaré, or Inhomogeneous Lorentz group &% is the spacetime sym-
metry group of AQT (actually the covering group % in order to deal with
spin—we gloss over this point), which is implemented as follows: To
each Poincaré transformation g := (A, b), where A denotes a Lorentz
boost and b a spacetime translation, there corresponds an automorphism
a, on the net U and vice versa:

AQT FU(0) — WU(g(0)) = a,U(O). 2)

This automorphism means that the local algebra U(O) of spacetime region
O is mapped to the local algebra of the Poincaré transformed spacetime
region O — g(0) in such a way that all algebraic relations between the
observables are conserved (form-invariance) (see Horuzhy 1990, 16, and
Haag 1992, 110). The states and observables in AQT transform by g €
% as follows (the existence of inverse transformations is a group prop-
erty):

b= =¢oaandA—A" =, 0A0g". 3)

These spacetime transformations (3) of AQT leave scalar quantities in-
variant, such as expectation values: Y(A(O)) = ¢'(A'(g(0))).

The third point is that we should mention the other axioms of AQT for
use in the subsequent sections. The isotony axiom states that the local
algebra on a spacetime region is a subalgebra of the local algebra on any
superregion:

AQT F O, C 0, = U(O,) C U(O,). 4)

The axiom of local commutativity states that the algebras of two spacelike
separated spacetime regions elementwise commute. The diamond axiom
states that the algebra of observables on the domain of dependence of a
spacetime region O, denoted by D(0O), is identical to the algebra of ob-
servables on O:

AQT FU(0) = WD(0)). 5)
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Here the domain of dependence of the spacetime region O is defined as
D(0) := D™(0) U D"(0), where the future domain of dependence of O,
denoted by D*(0), is defined as a spacetime region consisting of all points
x such that any smooth past inextendible nonspacelike curve that goes
through x, intersects O; and mutatis mutandis for the past domain of de-
pendence of O, denoted by D™ (0). The additivity axiom states that the
algebra of observables U(O, U O,) on the union of the two distinct space-
time regions O, and O, is generated by the algebras U(O,) and AU(O,) on
these spacetime regions. The final axiom of AQT is the spectral axiom,
which states that the energy-momentum spectrum is positive.

The axioms of abstract AQT are provably independent and consistent
(see Horuzhy 1990, 20). There is little doubt that the field observables
of all observationally adequate quantum field theories, like quantum elec-
trodynamics and quantum chromodynamics, obey these axioms (see Haag
1992, sec. 3.1). (The axioms of concrete AQT are completely analogous
to the ones stated above.)

3. Stochastic Einstein Locality and Rédei’s Proof. The definition of
stochastic Einstein locality (SEL) is intended to capture the idea of lo-
cality for stochastic theories, meaning theories that in general do not as-
cribe values to physical magnitudes but give probabilities for having val-
ues or finding values upon measurement. SEL. demands of a stochastic
theory that the probabilities for finding the value for any physical mag-
nitude pertaining to a spacetime region G in some Borel set of the reals
(R) are determined by everything inside the light cone of G. The defi-
nition of SEL in the context of AQT is as follows:

DEFINITION 3.1. AQT is stochastic Einstein local (SEL) iff the following
holds: For any two models of AQT, for any spacetime region G, if
the models agree inside the light cone of G, then they agree on all
the probabilities for each local observable on G under two provisos.

We first have to explain what the definiens means formally.

Hellman (1982a, 448—-449) and Rédei (1991, 632) adhere to the tra-
ditional, so-called syntactical view of scientific theories according to which
AQT is characterized as a subset of sentences of a formal language &
(predicate logic) closed under derivation. We call M := (M, U, ) a
model of AQT, where we have suppressed the interpretation of the terms
of the formal language, which is “generated” by the structure (see, e.g.,
van Dalen 1989, sec. 2.3); the valuation (E) of the sentences, in order
to keep notations simple: all sentences derivable from AQT are satisfied
(F) by any model of AQT (soundness—see, €.g., van Dalen ibid., 72);
and the field of complex numbers. Hellman (1982a) assumes that the
theory under consideration “specifies a background ontology of Min-
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kowski space-time: every model M of [the theory] . . . contains a man-
ifold M of ‘events’ ” (p. 448; our notation). This is true for AQT, though
regions replace points. The notion of matching between models is con-
strued linguistically: as giving the same valuations to all sentences of the
language of the models. This leads to the formal definition of SEL below,
where Gy, . . ., G, is a k-tuple of open-bounded spacetime regions in
B(M). Pred(¥) := U,Pred(£, n) where the latter is the set of n-ary pred-
icates of &£ naming the n-ary relations R" and the (n — 1)-ary functions
f"". Let LC(O) denote the light cone of O: LC(0) := U,o,LC(x)\O where
LC(x) := {y € M|d(x, y) = 0}, where d(x, y) is the spatiotemporal dis-
tance between x and y in M. The backward and forward light cone of a
spacetime region O are denoted by LC™(0) and LC™(0), respectively; of
course LC(0O) = LC™(0) U LC*(0).

ForMAL DEFINITION 3.1. AQT is past stochastic Einstein local (SEL™)
in G € B(M) iff for any two models M; = (M;, W;, ) (j = 1, 2)

of AQT, ifVKkEN, YG,, ..., G, CLC(G)C M, VR Vfre
Pred(¥), Vr € R:

M, ER(G, ....G) eMERG,....G) N

M, Ef G, ... .G)=reMEfNG, ...,G)=r,

then YV A € U(G), YV a € BR), Vp € [0, I]:
M, E Prob([A]” € a) = p < M, = Prob([A]1”> €a) = p
under two provisos.

Apart from two additions and one change, this definition of SEL™ in the
context of AQT is identical to Rédei’s definition. (Rédei has agreed with
these changes in personal correspondence; they will have no bearing on
the contents of Rédei’s proof in the sense that in criticizing his proof we
do not commit the fallacy of equivocation concerning SEL™.) (i) Rédei
forgets to mention the two provisos, which should be reformulated in the
context of AQT; they are intended to rule out spurious locality violations.
An example that apparently turns quantum mechanics into a theory vio-
lating SEL™ if provisos are not included is Einstein’s remark at the Solvay
Conference of 1927 that if one free particle is detected somewhere, then
the probability of finding it somewhere else drops instantaneously to zero.
However, as Hellman submits, “there is no basis . . . for inferring that
some energy or force has propagated faster than light” (1982b, 467). So
one of his two provisos renders spurious a violation of SEL due to the
instantaneous collapse of the wave function in quantum mechanics. Be-
cause the two provisos do not come into play in Rédei’s proof, we do
not give a formal account of them; we refer to Hellman (ibid., 467-478)
and Butterfield (1994, secs. 6, 7) for a discussion of these provisos. (ii)
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We changed f"(Gl, ..., Gy into f"(Gl, ..., G = r, which is more
appropriate for functions. (iii) Rédei omits the states ¢, ¥, € W. But
they must be added because the probability of finding a value for an
observable depends on the state.

AQT is SEL™ iff it is SEL™ in all G € %B(M). The formal definition
of future stochastic Einstein locality (SEL") is obtained by replacing the
backward light cone of G by the forward light cone of G in the formal
definition of SEL"; and the definition of stochastic Einstein locality (SEL)
is obtained by replacing the backward light cone of G by the entire light
cone of G. The logical relation between these three locality conditions is
that each of SEL™ and SEL" is a sufficient condition for SEL because
both are stronger locality conditions (the same is determined by less), but
neither SEL™ nor SEL" is a necessary one. (Thus we distinguish between
past and future versions of SEL, though Hellman and Rédei do not. We
are motivated to do so by our preference for time symmetry: So long as
the spacetime region determining the probabilities in G lies inside, or
coincides with, the light cone of G, we refuse to speak of a violation of
locality simpliciter (SEL). Specifically, if in addition to the backward
light cone of G some spacetime region in the forward light cone of G
contributes to the determination of the probabilities in G, but no space-
time region outside the light cone of G does so, we speak of a violation
of past locality (SEL™), not of a violation of locality simpliciter (SEL),
as Hellman and Rédei are prepared to do. For us, to speak of a violation
of locality simpliciter (SEL), some region spacelike separated from G
must contribute to the determination of the probabilities in G. This dif-
ference from Hellman and Rédei will not prejudge any issues between us
and Rédei; our critique could be presented wholly in terms of SEL™.)

We now turn to Rédei’s claim to prove his paper’s central proposition:

PROPOSITION. Algebraic Lorentz-covariant quantum field theory is a
past stochastic Einstein local theory.

Rédei’s proof (1991, 633—634) is a reductio ad absurdum argument.
Assume AQT and that AQT violates SEL™. Then there exists a pair
of models M, and M, of AQT and a spacetime region G for which
the antecedent of SEL ™ is true and the consequent false. We start by
clarifying the latter. Rédei implicitly adopts what we call algebra-
matching on G, which means that the local algebras on G in M, and
M, are the same:

WU(G) = UAG). (6)

Rédei even implicitly adopts the stronger matching of the two entire
nets of observables of the two models. But that supposition, to be
referred to as net-matching, is unnecessarily strong. In section 5 we
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deduce algebra-matching on G; for now we treat Rédei charitably by
granting him algebra-matching on G. The consequent of SEL™ is
assumed to be false. Since Rédei ignored the provisos, we interpret
him as assuming, for reductio, that a genuine violation of SEL™ oc-
curs. In other words, again we interpret Rédei charitably so that merely
spurious violations are not at issue in his proof. We continue with
the following reductio assumption: There is a local observable A(G)
€ AU(G) and a Borel set a € B(R) such that the consequent of SEL™
is false for some p € [0, 1]. Rédei implicitly supposes, presumably
for simplicity, that the observable A € U(G) pertains to the entire
spacetime region G (like the total energy in G) in order to justify
writing A(G). To see that this supposition is not compulsory, notice
that every observable pertaining to a subregion of G (like the total
energy of some region O C G), is also contained in U(G) due to the
isotony axiom (4), in which case writing A(G) would be mislead-
ing—one would write A(O). So by giving Rédei this implicit sup-
position, we again interpret him charitably. The negation of the con-
sequent of SEL"™ is true ex hypothesi, which yields in combination
with (1) that for some projector P, € U(G) there is a p € [0, 1]
such that:

M, = 4(PAG) = p N M, E §(PG)) # p. (N

Define the real scalar function &; := ; O P, (j = 1, 2), so that /;(G)
= (P ,(G)); rewriting (7) in these terms yields (a implicit in A;):

M Eh(G)=p N\ M, E hy(G) # p. (8)

This is the final form of the reductio assumption. Now the proof can
really commence.

Let b* € R* be a timelike vector pointing backwards; choose ||
sufficiently large so that it points from G to a similar disjoint space-
time region oG in its own backward light cone. The second bicon-
ditional of the antecedent of SEL™ holds ex hypothesi for the special
case G;:= bG C LC (G) (k = 1) for all real scalar functions f of
the theory (r € R):

M, E f(bG) =r < M, E f(bG) =r. C))

Now Rédei performs the (active) spacetime translation b € P to the
situation. Spacetime region G is shifted (actively) onto the spacetime
region bG C LC™(G); so the image region of G under the Poincaré
map b, denoted by b(G), and the spacetime region 4G of the same
form as G lying inside LC ™ (G) are identified (see figure 3.1a):

b(G) = bG. (10)
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model M M

G
'///////

bG

-

a
incorrectly translated model: correctly translated model M’
M=M, M=M M
N L
\\ R b(G) = bG
\\\\\ B(bG)N \\
b 7 c

Figure 3.1

At least, that is how we interpret the role of b; that the transformation
b is active in contrast to passive (coordinate transformation) is strongly
suggested by Rédei’s coordinate-free description—for further elab-
oration of this point, see section 4, parts (c) and (d). Observable
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P,(G) and state ; transform according to (3) with g = b. As can be
easily checked by using (3), h; transforms to i/ := ¢/ O P, = h; O
b™ where P, € U(b(G)). So we obtain from (8) and (10):

M, & hj(bG) = p /\ M, E hy(bG) # p. (11)

Next Rédei implicitly adopts what we call state-matching on b(G),
which means that VB € W(b(G)): y;(B) = y5(B). Such state-matching
on b(G) is usually denoted by:

P WD(G)) = PUB(G)). (12)
This yields for (11) because P, € U(b(G)):
M, ERh®BG)=p/\M,E hG)#p (13)

where A’ := hj = h} and for which we have used (10) in (12). On
the other hand, since (9) holds for all real scalar functions, one is
allowed to choose the special case f = h'; so Vr € R:

M, E W ®BG)=r/\M,E hObG) =r. (14)

Whatever the value of p—introduced by existential quantification in
the negation of the consequent of SEL : (7)—that is, whether p =
ror p # r, statement (13) contradicts (14). To avoid this absurdity,
Rédei concludes that AQT obeys SEL™. QED

Rédei’s own version of this proof is far more concise than ours; for
instance, Rédei does not explicitly mention algebra-matching on G, net-
matching, or state-matching on (G). The more detailed exposition above
will pay off considerably in section 4 where the ramifications of these
matching assumptions will be discussed without mercy and the deductive
fallacies will be exposed.

4. Refutation of Rédei’s Proof. First, Rédei’s proof uses only the sym-
metry of the group of spacetime translations, which is a proper subgroup
of the Poincaré group %. So the proof holds too for an algebraic field
theory having the Galilei group as its spacetime symmetry group. But
surely a Galilean-covariant field theory need not obey SEL ™. Crucial in-
gredients one expects to appear in the proof are the axiom of local com-
mutativity or the diamond axiom (5). But these axioms are absent from
the proof. This indicates an error within the proof.

Second, from a logical point of view, Rédei’s proof would be conclu-
sive iff algebra-matching (6) on G and state-matching (12) on b(G) were
derived from the premise AQT or from the reductio assumption 71ISEL",
because the reductio argument establishes only that AQT, SEL™ and
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the two matching assumptions (6) and (12) form an inconsistent set of
premises. Since algebra-matching on G and state-matching on b(G) are
not deduced from the other two premises but tacitly assumed, the proof
is inconclusive—even if the reasoning were valid. In section 5 we deduce
algebra-matching (6) on G; in what follows we therefore embrace (6).
We treat Rédei even more charitably by giving him net-matching, too.
Rédei offers no argument in favor of net-matching, though there is a good
physical motivation for adopting it. The net of observables supposedly
characterizes a physical system. Without net-matching, one would be
comparing models which pertain to different physical systems; in other
words, one would be comparing eggs and apples. So even if such a com-
parison were to give rise to a violation of SEL, it would not be genuine.
This consideration would lead to an extra proviso in SEL, restricting the
choice of a pair of models to pairs having identical nets. Despite this
physical plausibility argument, in section 5 we do not need such restric-
tions in our theorem.

In this section we endeavor to show that (a) without state-matching on
bG, the proof contains a non sequitur; (b) with state-matching on bG, the
proof is either circular or spurious; (c) the proof method is fallacious if
we take the employed spacetime transformation to be active; and (d) the
proof is especially spurious if we take the employed spacetime transfor-
mation to be passive.

(a) If one does not assume algebra-matching (6) on G and state-matching
(12) on b(G), then there is no reason to identify the functions hj:=
Y} O P, and h; := 5, O P,. Whence the inference of statement (13) from
(11) in Rédei’s proof is a non sequitur.

(b) Recall that we granted Rédei algebra-matching (6) on G. On the
other hand, if we also assume state-matching (12) on b(G), then statement
(13) does indeed follow from (11), given the identification (10) of space-
time regions b(G) and bG; therefore, conditional on the reductio as-
sumption (8), we endorse (13). So on these assumptions is Rédei home?

Rédei never left home, really. Let us assume algebra-matching (6) on
G, which is, due to (2), equivalent to assuming algebra-matching on b(G).
Let us recall that due to (3) and to the Lorentz covariance axiom (2):

AQT F Y| UWDB(G)) = Y| UWDB(G)) < ¢ |UG) = | U(G). (15)

Assuming also state-matching (12) on b(G) is, due to (15), equivalent to
assuming algebra-matching on G, that is, VA € AU(G), Vz € R:

M, E §(A) =z < My E §h(A) = z. (16)

By invoking (1) we see that on the matching assumptions (6) and (12),
one is assuming in one majestic sweep that the models also match on
their probabilities of finding any value for any local observable on G,
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which is precisely the consequent of SEL™. If on these matching as-

sumptions one tries to deduce the consequent of SEL~ directly, then the

proof is bound to be a petitio principii because the consequent of SEL™

is already assumed. In this case Rédei’s coming home with a conclusion

is a hoax, for he stuck the conclusion in his pocket when he left home.
(One might reply that if

(6), (12) F consequent of SEL.~

is proven, it follows trivially by the principle of weakening the premises
that

(6), (12), antecedent of SEL™ | consequent of SEL"™.

That is of course perfectly true. However, our point is not that the proof
based on the matching assumptions (6) and (12) is fallacious, but that it
is spurious because the antecedent of SEL™ is on this account nowhere
used in the proof. Put differently, it also follows by the principle of weak-
ening the premises that

(6), (12), (antecedent of SEL.") F consequent of SEL ™.

That is, if a proof based on the matching assumptions (6) and (12) were
accepted as a genuine proof, one would also have “proven” the following:
Two models that do not match on the backward light cone of G (T(an-
tecedent of SEL.7)) do, nonetheless, match on all their probabilities in G.
This is, we feel, somewhat contrary to what Rédei intends to prove.)

If, on the other hand, one tries to prove SEL™~ by a reductio argument
starting from the matching assumptions (6) and (12), that is, by assuming
matching on LC (G) U G, then the reductio assumption (7), asserting a
difference in valuation of some sentence referring to the subset G C LC™(G)
U G, is already in blatant contradiction to the assumed state- and algebra-
matching on LC (G) U G. There is no proof in this case, only the blunt
assertion of premises that are virtually each other’s logical negations. Having
hardly opened door (8) to leave home, Rédei stumbles upon an absurdity
in the doorway. So there is no point in dancing around the house with
the spacetime translation b € P, which is the purported content of the
proof.

Obviously state-matching on 5(G) has to be rejected as a premise. One
should try to deduce (12), or equivalently, (16), from the antecedent of
SEL"~. We conclude that Rédei’s proof either (a) contains a fallacious
move or else (b) is either circular or spurious.

(c) A global coordinate frame of a spacetime manifold is a smooth one-
to-one mapping F : M — R*. A passive spacetime transformation is a
smooth one-to-one mapping from one coordinate frame to another of the
same manifold: F[M] — F'[M]. An active spacetime transformation is a
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smooth one-to-one mapping from one manifold to itself or to another
manifold: g : Ml — M’. To every active transformation from one manifold
to itself (M = M) corresponds a passive one, and vice versa, by means
of x* (g(p)) = x'*(p)—the coordinates of the (actively) transformed point
equal the (passively) transformed coordinates of the original point. A pas-
sive transformation is just a relabeling of the spacetime points of the man-
ifold, whereas an active transformation means going to another manifold
or “moving around” in one manifold. Manifolds M and M’ do not nec-
essarily coincide; they may even have disjoint base sets, in which case
the manifolds have no spacetime points in common. The Poincaré sym-
metry of AQT can be expressed beautifully in active language as follows:
If M = (M, U, ¢) is a model of AQT, then every actively Poincaré trans-
formed model M’ = (M, a U, ') is also a model of AQT.

To avoid muddles, one must distinguish the original model M from an
actively transformed model M'; one should also distinguish the manifold
M of M from the manifold M" of M’, which may be called each other’s
counterparts. The first distinction is compulsory; the latter is not, but we
recommend it for clarity.

The method of Rédei’s proof is the following. Assume matching be-
tween the two models inside the backward light cone of spacetime region
G, but no-matching on G. Transform spacetime region G by translating
it onto spacetime region bG inside its own backward light cone. Due to
the Poincaré symmetry, spacetime region b(G) = bG is a no-matching
spacetime region inside the backward light cone of G (see figures 3.1a
and 3.1b). But inside the light cone of G, matching was assumed. Con-
tradiction.

This method is hopelessly wrong because after the translation b € %
has been performed, the matching region is no longer the backward light
cone of G: b(LC (G)) # LC (G), but the backward light cone of b(G):
b(LC ™ (G)) = LC (b(G))—see figure 3.1c. Rédei translates only the no-
matching region G but forgets to translate the matching region LC™ (G).
In other words, Rédei forgets to translate everything relevant to the sit-
uation under consideration, which consists according to the antecedent
of SEL™ of all functions and relations in the entire backward light cone
of G. Forgetting to translate the backward light cone of G leads Rédei to
contradictory statements about whether oG is a matching region or not
after the translation (no-matching according to (13)) and before the trans-
lation (matching according to (14)), whereas according to logic there is
before and after either matching or no-matching between the models in
a spacetime region bG. After the translation has been performed, there
should not be matching inside the backward light cone of the original
spacetime region G, but inside the backward light cone of the translated
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spacetime region b(G). So if cognizance is taken of everything relevant
to the situation under consideration, no contradictions arise.

We can actually pinpoint the deductive fallacy by distinguishing the
models (M; # M) and, just for clarity, their manifolds too. Then b(G)
# bG, which invalidates the identification (10) of these spacetime regions
because they are now counterpart regions belonging to distinct manifolds:
G, bG C M; whereas bG' := b(G) C M; (j = 1, 2; see figure 3.1).
Applying the translation b € P on the reductio assumption (8) yields:

M E h{(bG") = p N\ M} E hy(bG') # p. a7

Rédei’s inference of (11) from (8) by applying b € P comes from the
implicit but illicit identification of the models: M; = M/, and of the man-
ifolds: M; = M;, and in particular of the counterpart regions: bG' = bG,
which is (10). Not (11), but (17) follows from (8). And from (17) and
(14) clearly no absurdities emerge.

(d) In our discussion of Rédei’s proof in section 3 onwards, we have
interpreted Rédei as applying an active spacetime translation to the pair
of models. On that natural interpretation, the inference of (11) from (8)
is fallacious, as we have just shown in part (c). But perhaps we have
misread Rédei’s proof; perhaps Rédei never intended to perform an active
translation. After all, he never says that b is playing the role of an active
translation. On the other hand, Rédei often does not mention suppositions
and assumptions that are germane to his proof; so his silence is hardly
evidence for a misreading. Nonetheless, in this section we now investi-
gate briefly the possibility of interpreting the proof without any appeal to
active transformations and, in particular, thereby retaining only one pair
of models instead of two. We point out that such an investigation can at
most circumvent the deductive fallacy (11) from (8), but cannot circum-
vent the criticisms of parts (a) and (b), which are independent of whether
or not active translations are involved in the proof. So a vindication of
the entire proof is ruled out beforehand.

We proceed as in our exposition of Rédei’s reductio proof in section
3: We assume algebra-matching (6) on G and equivocate between bG and
b(G) since these expressions are now taken to refer to one spacetime
region in one manifold; the identification (10) is on this account a triv-
iality. The observables on G and bG are then related by an automorphism
«a, according to (2), where b € P is the transformation linking G to bG.
This transformation is now taken to “compare situations in different
spacetime regions of one manifold”. From the antecedent of SEL~ one
has algebra-matching on b6G C LC (G): U, (bG) = U,(bG). (For an ex-
plication of why this follows from the antecedent of SEL™, we refer to
the proof in sec. 5.) Consider the restrictions of the state of the models
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to the algebra U(HG) := U,(bG); their matching is also a consequence
of the antecedent of SEL:

U WBG) = Y| UDG). (18)

Next consider the restrictions of the state to the algebra AU(G), which are,
according to the reductio assumption (7), different:

| U(G) # 4| U(G).
Invoking (15) it follows immediately that
Y UDbG) # YUBG). (19)

To obtain a contradiction between (18) and (19) in a logically impeccable
way, one is forced to assume that (j = 1, 2):

PUBG) = Y |[UDBG).

Since spacetime region G and translation b are arbitrary, this assumption
means that ; is a translational invariant state; that is, y; is the vacuum
state { € W. But a proof of SEL™ for AQT which is restricted to pairs
of models both in the vacuum state yields, we submit, a vacuous proof.
Furthermore, if both models have the same state {), one assumes state
matching (12) on 5(G) = bG, which yields, as we have shown in part
(b), a spurious proof.

Hence we conclude that if we interpret Rédei’s proof as not performing
an active translation so as to retain one pair of models, we end up with
an especially spurious proof.

5. Proof of Stochastic Haag Locality. Having in previous sections re-
butted Rédei’s proof, we turn to the more constructive task of trying to
correctly prove SEL for AQT. Before doing so, we must note the various
mathematically precise locality concepts in the AQT literature (diamond
axiom, local commutativity, split property, Schlieder property, duality,
extended locality, C*-independence, strict locality, and so on; see Horuzhy
1990, 21). There are also various locality concepts in the philosophical
and foundations of physics literature about the threat of a locality vio-
lation, or even of superluminal causation, arising from the violation of
Bell’s inequalities, to which Rédei (1991) also refers. Hellman (1982b)
introduced SEL as such a locality concept. In this section we prove that
AQT satisfies SEL and an even stronger locality notion we call stochastic
Haag locality (SHL).
We first define past stochastic Haag locality.

DEFINITION 5.1. AQT is past stochastic Haag local (SHL™) iff the fol-
lowing holds: For any two models of AQT, for any spacetime region
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/

Figure 5.1

G, if the models match on some slab O lying fully across the back-
ward light cone of G, then they agree on the expectation values of
each local observable on G.

SHL™ differs from SEL™ in two respects. The first is that the determining
spacetime region O is bounded (see figure 5.1), whereas the determining
spacetime region in SEL™, namely, the backward light cone of G, is un-
bounded. So SHL™ is stronger than SEL™: The same is determined by
less. The second difference is the deletion of the two provisos. The reason
is that the consequent of SHL is limited to expectation values, so the
probabilities conditional on measurement results obtained elsewhere-
when, particularly at spacelike separation, are explicitly not included,
which removes the need for provisos; for a discussion of this point, we
refer again to Hellman (1982b, 467—468) and Butterfield (1994, secs. 6,
7).
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Let us call spacetime region O a backward light cone slab of G iff O
C LC™(G) and G C D*(0). See figure 5.1. Let $7(G) C B(M) denote
the set of all backward light cone slabs of spacetime region G.

ForMAL DEFINITION 5.1. AQT is past stochastic Haag local (SHL™) in
G € B(M) iff for any two models M; = (M;, U;, ¥ (j = 1, 2) of
AQT, VY O € 7(G):

IFVKEN, YO, ..., 0,C 0, VRV f*€E Pred(¥),Vr €R:
M, ER (0, ...,0) <MER(O, ... 0
M, Ef0, ...,0)=reMEfO,....0)=r,

thenV A € W(G), Vz€ER:
M, EY(A)=zoME i, (A) =z

AQT is SHL" iff it is SHL™ in all G € B(M). The definition of future
stochastic Haag locality (SHL") is obtained by replacing ¥7(G) by $*(G)
in the definition of SHL™; and the definition of stochastic Haag locality
(SHL) is obtained by replacing ¥*(G) by ¥(G), which is defined as the
set of all backward and forward light cone slabs of G: (G) := ¥ (G)
U 9(G). Hence AQT is stochastic Haag local (SHL) iff it is both SHL~
and SHL™.
We now state our central theorem:

THEOREM. Algebraic Lorentz-covariant quantum field theory is a sto-
chastic Haag local theory.

Proof.In our proof we assume AQT and the antecedent of SHL™ for
an arbitrary spacetime region G € B(Al) and then deduce the con-
sequent of SHL".

Take two models M, = (M, WU,, ¢¥,) and M, = {(M,, U,, ¢,) of
AQT. We assume the models match on a backward light cone slab
O € ¥7(G) (figure 5.1). Any local observable A € U(O) is, logically
speaking, a predicate of a spacetime region because of the funda-
mental mapping O — U(O) of AQT (sec. 2). Spacetime region G
lies by definition in the slab’s future domain of dependence: G C
D*(0) (figure 5.1). Then it follows from the antecedent of SHL™
that the observable algebras on O of the two models match: AU,(0)
= QI,(0). Then according to the diamond axiom (5) we have:

WU(D(0)) = UD(0)). (20)

The isotony axiom (4) yields from (20) that U,(G) C WU(D(O)) and
U,(G) C WD(0)). Now let us assume, in order to prove by means
of a little reductio ad absurdum argument that these subalgebras co-
incide, that they do not coincide: (*) U,(G) # WU,(G). That is, there
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is at least one observable A € U(D(0)) such that A € AU,(G) but A
& U,(G). Then the local observable A pertains in model M, to some
spacetime region G’ C G (A is, say, the total momentum in G'): A
= A(G") € U(G") C U,(G) and, since A € U,(D(ONG), A pertains
in model M, to some spacetime region G” C D(O)\G (A is, say, the
total momentum in G”): A = A(G") € U,(G") C U,(D(ON\G). From
A = A(G') and A = A(G"), it follows that A(G') = A(G"). Since
spacetime regions individuate observables that pertain to the whole
spacetime region, it must be the case that G’ = G”. But by construc-
tion G’ N G" = (J. Contradiction. Hence the reductio assumption
(*) is false. So we have proven algebra-matching on G, which is (6):
WUN(G) = UG).

Next we derive state-matching on G. It follows from the anteced-
ent of SHL™ that the expectation values for each local observable A
€ AU(0) of the two models also match, because the expression for
the expectation value ;(A) is, logically speaking, a function predi-
cate (z € R):

M, E (A) =z M, = §(A) = z. (2D

By virtue of the diamond axiom (5), the variable A in (21) ranges
over U(D(0)). Because G C D(0), it follows from isotony (4) that
the variable A ranges over U(G) C U(D(0)). This means that (21)
also holds for each A € AU(G). Since the state of a system in space-
time region G is uniquely specified in AQT by the expectation values
of all its local observables on G, we have deduced state-matching
(16) on G—as promised in section 4, end of part (b). More impor-
tantly, statement (21) is the consequent of SHL ™. Spacetime region
G is arbitrary, so AQT is SHL"™.

The proof for the statement that AQT is SHL" is virtually iden-
tical; AQT is SHL™ as well as SHL™. Hence AQT is SHL. QED

From the proof that AQT is SHL™ we immediately arrive at the Prop-
osition that Rédei purported to prove, namely, AQT is SEL™ (sec. 3).
(The proof for this Proposition establishes the connection between SEL
and the diamond axiom, to which Rédei has alluded in personal corre-
spondence.) For if two models match in the backward light cone LC ™ (G)
of some spacetime region G, then they match on any subset of LC™(G),
in particular on a backward light cone slab O € ¥7(G) (see figure 5.1).
This is precisely the antecedent of SHL™. (Notice that SEL™ without pro-
visos is a corollary of SHL ™, so surely with provisos it remains a corollary
of SHL™.) Hence AQT is SEL ", which is the desired Proposition, and
therefore SEL. Similarly one derives that AQT is SEL" from the fact that
AQT is SHL". Thus we end with the following:
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SHL* A SHL™ «— SHL
l !

SEL* SEL~
N v
SEL

Figure 5.2

COROLLARY. Algebraic Lorentz-covariant quantum field theory is a past
and future stochastic Einstein local theory.

The logical relations between the different stochastic Einstein and sto-
chastic Haag locality conditions are summarized in the logical diagram
in figure 5.2.

Finally we remark that the light cone and the domain of dependence
of a spacetime region (diamonds) are Lorentz-invariant spacetime re-
gions; therefore, our notion of stochastic Haag locality, and the notion
of stochastic Einstein locality for that matter, are Lorentz invariant no-
tions. (So the proof of our Theorem holds for every pair of models that
is a Poincaré transformed pair of the arbitrary pair in the proof above.)
Hence by using the diamond axiom, our proof contains an extra, dis-
tinctively Lorentz-covariant element that Rédei’s proof lacked.
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