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Problem 1. Graph Coloring:

1. (4 pts) Show that any graph with maximum degree d can be colored with d + 1 colors.

Solution: We do induction on the number of nodes. If n ≤ d + 1, this is trivial. Suppose the
result holds for all graphs with ≤ n vertices. Then given a graph G on n + 1 vertices and
maximum degree d, remove some vertex v to obtain G′. G′ has n vertices, and maximum
degree at most d, and thus has a d+ 1 coloring by our hypothesis. Now simply assign v some
color that is not used by its neighbors (such a color exists as deg(v) ≤ d).

2. (1 pt) Can you also color the graph with d + 1 colors, if the average degree is at most d?

Solution: No. Consider Kd+2 plus many isolated vertices.

3. (2 pt) Suppose we wish to color the edges of a graph such that any two edges sharing a vertex
are colored differently (this is called edge coloring). For a graph with maximum degree d,
show that part 1 implies an edge coloring using 2d + 1 colors.

Solution: Note that each edge e “conflicts” with at most 2(d−1) other edges (those that share
a vertex with e). So by the previous part, we can color using 2(d− 1) + 1 = 2d− 1 ≤ 2d + 1
colors.

4. (4 pts) Give an efficient algorithm to determine whether a graph can be colored using two
colors. Your algorithm should also find the 2-coloring (if the graph is 2-colorable).

Solution: Recall that a graph is bipartite if and only if it has no odd cycles. Assume that the
graph is connected, otherwise we consider each component separately. Pick a vertex v and
do a breadth first search. Note that there are no edges between vertices at the same depth
(otherwise this would give an odd cycle). So we can color the vertices in the odd layers as 1,
and the even layers as 2.

5. (8 pts) It turns out that the problem of determining whether a graph is 3-colorable or not is
NP-complete. Given a 3-colorable graph G, design a polynomial time algorithm to color G
using O(

√
n) colors.

Solution: We repeat the following until there are no vertices of degree more than
√
n left.

Pick a vertex v with deg(v) >
√
n. Since the graph is 3-colorable, its neighborhood N(v)

must be 2-colorable (as v must be assigned a different color from every vertex in N(v)). So,
we color v with a brand new color and N(v) with 2 other new colors. Remove v and its
neighborhood from G.

Now at every iteration of this step we use 3 new colors, and at least
√
n vertices. So, we

cannot use more than 3
√
n colors in total. Now we are left with a graph with maximum

degree ≤
√
n, and we can color it using another

√
n + 1 brand new colors.



6. (1pt) Show that any k-colorable graph has an independent set of size at least n/k.

Solution: In any valid coloring, vertices of the same color form an independent set. As there
are k colors, some color is used for n/k vertices or more.

7. (5 pts) Suppose we are given an algorithm which, given any 3-colorable graph G, finds an
independent set of G of size (say) n/1000. Show that this algorithm can be used to color G
using O(log n) colors.

Solution: We repeatedly find an independent set using this algorithm, give it a new color
and remove these vertices (this can be done repeatedly since the resulting graph remains
3-colorable). The size of the graph shrinks by a factor of 1− 1/1000 at each step, and hence
after i steps the number of vertices left is at most n(1−1/1000)i. So the procedure terminates
in O(log1000/999 n) = O(log n) steps.

Problem 2. Graph Planarity:

1. (5 pts) Show that any planar graph with n ≥ 3 vertices can have at most 3n− 6 edges.

Solution: Each face has at least 3 edges and each edge is shared by at most two faces, so
2m ≥ 3f . By Euler’s formula, we also have that f = m−n+ 2 and hence m−n+ 2 ≥ 2m/3,
which gives the result.

2. (1 pt) Using the above, show that a planar graph is always 6-colorable.

Solution: We use induction on n. As there are 3n− 6 edges, the average degree is less than 6
and hence there is a vertex of degree 5 or less. Remove it, color the smaller graph, and put
this vertex back and give it a color that is not used by its neighbors.

3. (2 pts) Show that a bipartite planar graph can have at most 2n− 4 edges.

Solution: Since there are no odd cycles, each face has 4 or more edges. So, in the previous
argument we have 2m ≥ 4f and f = m− n + 2. These together give the result.

4. (7 pts) A subset of vertices S is called a balanced separator if removing these vertices decom-
poses the graph into connected components of size at most 2n/3. Show that this can be used
to find a maximum size independent set in a planar graph in time 2O(

√
n), using divide and

conquer strategy.

Solution: Consider the set S, and consider all possible subsets of S that could form an
independent set. There are at most 2|S| = 2c

√
n of them. For each such valid choice X ⊂ S,

recursively find the maximum independent set in the components C1, . . . , Ck that result upon
removing S (subject to the constraint that X is already picked). That is, when considering
the independent sets in Ci, discard all the neighbors of X in Ci.

To analyze the running time, we can actually afford ourselves a lot of slack. Let T (n) denote
the running time for a graph on n vertices. Even if we assume that we get n components,
each of which has size 2n/3. The running time can be bounded as

T (n) ≤ 2c
√
n · n · T (2n/3) + nO(1) · 2c

√
n



where the latter nO(1) ·2c
√
n term is the time for finding a separator plus the overhead incurred

(to remove neighbors of X in Ci’s ) while considering each choice of X.

As 2c
√
n ≥ nO(1) for all large enough n, we can write this as T (n) ≤ 22c

√
nT (2n/3) and hence

T (n) ≤ 22c
√
n+
√

2n/3+
√

4n/9... = 2O(
√
n).

Problem 3. Girth versus Degree. The girth of a graph is defined the length of the smallest cycle.

1. (4 pts) Show that any graph with minimum degree d, where d > 2, has girth at most 1 +
2 logd−1 n (i.e. has some cycle of length ≤ 1 + 2 logd−1 n).

Solution: Let ` = logd−1 n. For the sake of contradiction, suppose the minimum length cycle
C has length at least ≥ 2` + 2. Let v be any vertex on C. Consider all the nodes at distance
` or less from v. They must form a tree, otherwise we have a cycle of length ≤ 2` + 1,
contradicting our assumption. But since the minimum degree is d, the number of leaves in
this tree is at least d(d− 1)`−1 > d− 1` = n which is not possible.

2. (4 pts) Show that a graph with average degree d has girth at most 1 + 2 logbd/4c n.

Solution: Repeatedly remove the vertices of degree d/4 or less. Note that removing a vertex
cannot decrease the girth as we do not add any new cycles. This removes at most nd/4 edges.
The graph had nd/2 edges initially as the average degree was d. So in the resulting graph
there are still nd/4 edges left (so it is non-empty) and the minimum degree is at least d/4.
We now use the first part.

3. (1 pt) Show that a graph with girth log n or more can have at most O(n) edges.

Solution: By the previous part, the girth g ≤ 1 + 2 logd/4 n and hence (d/4)(g−1)/2 ≤ n which

implies that d ≤ 4n2/(g−1). Thus if g = log n, then the average degree d = O(1).

4. (1pt) Given an example of a graph that has girth 4, and Ω(n2) edges.

Solution: Complete bipartite Graph.

Problem 4. Kneser Graphs: Given integers p and k, consider the graph on n =
(
p
k

)
vertices, where

each vertex corresponds to a k-element subset of {1, . . . , p}. There is an edge (v, w) between two
vertices v and w if and only if the subsets corresponding to v and w are disjoint.

1. (2 pt) Show that the maximum clique in this graph has size at most bp/kc.
Solution: In a clique all the corresponding sets of the vertices must be pairwise disjoint. Since
each set has size k, there cannot be more than p/k such sets.

2. (2 pt) Can you find a coloring using p colors.

Solution: For a set S, color it by the smallest element contained in S. This is a valid coloring
because if there is an edge between two sets, they are disjoint, and hence the smallest element
in them is different.



3. (6 pts) Can you improve this to obtain a coloring using p− 2k + 2 colors.

Solution: Consider the sets that lie completely in {1, . . . , 2k − 1}. They must form an inde-
pendent set since no two such sets can be disjoint. So, we use one color to color all such sets.
For the remaining sets (these contain at least one element ≥ 2k), give each set S the color of
the smallest element ≥ 2k contained in it. Note that this gives a valid coloring, and that the
number of colors used is 1 + (p− 2k + 1) = p− 2k + 2.


