Extra Practice Exercises

Excercise 1. Given undirected graph G = (V, E), find a pair $u, v \in V$ with $u \neq v$ maximizing $N(u) \cap N(v)$ in $O(n^{\omega})$ time, where ω is the matrix multiplication constant.

Excercise 2.

- Give an algorithm taking as input an undirected graph G and a Feedback Vertex Set (FVS) F of G, and outputs a tree decomposition of G of width |F| + O(1) in polynomial time.
- Suppose you have an algorithm fvstw(G, (X, T)) that given an undirected graph G and a tree decomposition (X, T) of G of width w, computes a minimum size FVS in time $O^*(3^w)$. Give an algorithm that uses fvstw(G, (X, T)) as a blackbox, takes as input a graph G and integer k, and determines whether G has a FVS of size at most k in $O^*(3^k)$. Hint: use iterative compression.

Excercise 3. A connected vertex cover (CVC) of a graph G = (V, E) is a vertex cover $X \subseteq V$ such that G[X] is connected. Give an algorithm that takes as input a graph G = (V, E) and integer k and determines in $O^*(c^k)$ time whether G has a connected vertex cover of size at most k, for some constant c. You may use as blackbox an algorithm $\mathsf{st}(G = (V, E), T, l)$ that solves the Steiner Tree problem in $O^*(2^{|T|})$ time, i.e. it determines whether there exists $T \subseteq Y \subseteq V$ with $|Y| \leq l$ with G[Y] connected.

Excercise 4. Give a quadratic time algorithm that takes as input three matrices $A, B, C \in \mathbb{Z}_2^{n \times n}$ with the following properties:

- If AB = C, i.e. $\forall i, j : c_{ij} \equiv_2 \sum_k a_{ik} b_{kj}$, the algorithm always outputs **true**,
- If $AB \neq C$, the algorithm outputs false with constant probability.

Hint: Pick $x \in \mathbb{Z}_2^n$ uniformly at random and study Cx and ABx, use the rank-nullity theorem to bound the probability of false positives.