
Graphs and Algorithms 2016 



Teachers:  Nikhil Bansal  and Jesper Nederlof 
TA:  Shashwat Garg    (Office Hours: Thursday:  Pick??) 
 
Webpage:   www.win.tue.nl/~nikhil/courses/2WO08   
(for up to date information,  links to reading material) 
 
Goal:  Learn discrete mathematics  
Beautiful ideas in Graph Theory   
Connections to probability, algebra, …  
Various Algorithmic Ideas 
(polynomial time,  approximation, exponential time, …) 
 
Sometimes see results obtained in  last 2-3 years! 
 
Most of all:  Learn how to think and solve problems 
 
 
 
 

http://www.win.tue.nl/~nikhil/courses/2WO08


Administrative Stuff 

Lectures +  exercise sessions 
(Friday schedule: ?? Preference) 
 
Final 50% 
Mid-term 30% 
(can bring 1 sheet of paper with things written on it) 
 
3-4 Homeworks 20%    (teams of up to 2 students) 
 
Homework: Fine to discuss with other students, but acknowledge their 
names (and write proof in your own words) 
 
Homework solutions must be in Latex, and be clear to understand. 
 
 
 
 
 
 
 



Basic Concepts 

Graph:  Vertices, Edges 
 
Notions: Degree, connectedness, regular, path v.s. walk, 
cycle v.s. tour 
 
Types of graphs: 
Complete graphs 
Trees 
Bipartite graphs:   Two vertex sets X,Y  edges from X to Y.     
Planar graphs 
… 



Basic concepts 

• Independent set, Clique: max indep set 𝛼 𝐺  
     (S independent if no edge contained in S) 
• Coloring number:   𝜒 𝐺         
     (each color class is an independent set) 
  
• Hamiltonian Cycle: Visits each vertex exactly once 
• Eulerian Tour: Visits each edge exactly once 
 
• Matching: Collection of edges, with no common vertex. 
 
• Vertex Cover:  Set of vertices S, so that each edge has at least 

one endpoint in S.  min vertex cover  v(G) 

 
 



Basic Results 

Q:  If maximum degree is d,  there is always an independent set of size 
>=  n/(d+1).   Is this bound tight? 
 
Q:  If max. degree = d,   then (d+1)-colorable 
 
Q: Tree has exactly n-1 edges  
 
Q: G is bipartite  if and only if it has no odd cycles 
 
Q: Give efficient algorithm to detect bipartiteness? 
 
Q:  For any graph G,  v(G) + 𝛼(G)  = n.  
      (S  in an independent set iff  V\S  is a vertex cover) 
 



Finding maximum independent sets 

Q: Can you find max. independent set in G. 

 

Of course in  2𝑛 time.   What about poly(n) time?  

 

Tree: Yes. How? 

 

Bipartite: Yes.  

Planar graphs:  NP-Hard, but can do in 2𝑂 𝑛   time.   

 

Will see later:  For general graphs  2𝑜(𝑛) time is unlikely. 

 

 



Max independent set 

How about approximate solution? 
 
Alg has Approximation ratio c  if    c = max_G  OPT(G)/Alg(G) 
(i.e. within factor c for every instance) 
 
n approximation is trivial  
 
Thm (1997): A 𝑛0.999…  ( 𝑛1−𝜖  for any 𝜖 > 0 ) approximation 
would imply P=NP. 
(will see a weaker result later) 
 
Thm (80’s): For planar graphs,  can find a 1 + 𝜖  approximation 

for any 𝜖 > 0   in  2𝑂(
1

𝜖
)  poly(n) time. 

 



Basic results 
Q:  Planar graph has  <=  3n-6 edges 
 

Q: Planar graph is 6-colorable 
 

Q: Planar graph is 5-colorable    (Hint: Try swapping a,c or b,d) 
 

Thm (76): Every planar graph is 4-colorable  
 
Thm (1920’s Kuratowski): Graph is planar iff no 𝐾5 or 𝐾3,3  are  
“minors”. 
 
(Minor: Edge/vertex  deletions + contractions) 
 
Will see an efficient algorithm for  planarity testing. 



Eulerian graphs 

Eulerian: Connected + a closed tour that visits each 
edge exactly once. 
 
Q: A connected graph G is Eulerian if and only if 
 each degree is even. 
Hint: Induction;  find cycle; patch up pieces 
 
Later see a polynomial time algorithm for Chinese 
postman problem. 
(related TSP problem is NP Hard) 



Basic Algorithms 

Shortest Paths:  Dynamic Programming  (Bellman-Ford) 

Will see idea in exercise session 

(Floyd-Warshall: also with negative costs,  unless negative 
cycles) 

 

Minimum Spanning Tree: Order edges by increasing cost. 
Pick greedily.    

Kruskal’s agorithm   (wikipedia proof);  Prim, Boruvka, …   

  

Maximum Bipartite Matching: Will see soon 



Philosophical Interlude: NP and co-NP 

Yes/No versions  (can optimize via binary search) 
 
Shortest Path:  Is there a path of length <= D?  
 
Is there a perfect (bipartite) matching? 
 
Is the graph planar?  
 
If answer = NO, how can the algorithm know? 
There must an underlying polynomial size “certificate”/ 
“witness”  



Bipartite-Matching 

Bipartite graph V=(X,Y) 

 X saturated matching: every vertex in X is matched 

 

Perfect matching if both X,Y saturated  

(note |X| must be equal to |Y|) 

 

Hall’s theorem: X saturated matching if and only if  

For all S ⊂ X,     |N(S)| ≥  |S| 



Hall’s theorem Proof 

Hint:  Induction 

 

 

Proof: If |N(S)| > |S|  for each S, ok by induction (just 
match one vertex arbitrarily and apply induction) 

 

Else some subset |S| is tight, with |N(S)| = |S|. 

Consider subsets T in X\S.  

Claim:  |(N(T) ∩ (Y\N(S))|  >=  |T|   (why?) 

Apply induction on graph (X\S,  Y\N(S)) 

 

 

 

 

 

 

 



Applications of Hall’s theorem 

Show that a d-regular graph has a perfect matching. 
 
Show that a d-regular graph can be decomposed 
into d edge disjoint perfect matchings. 
 
Suppose we arbitrarily divide deck of cards in 13 
pieces of 4 cards each. 
Show that, one can always pick one card from each 
piece so that you have one of each A,2,…,10,J,Q,K 
 



Halls theorem for X-saturated 
matchings 

If the vertex sets X and Y are not equal, and say |X|<|Y|, Hall’s 
theorem for X-saturated matching is the following: 
 
An saturated matching exists iff for each subset S of X,  |N(S)| >= |S| 
[Prove that the previous proof also works here] 
 
Yet another generalization. 
Suppose  |X| <= |Y|. 
There is  a matching of size |X|-t  if and only if  for each subset S of X, 
|N(S)| >=  |S|-t 
 
 
Hint: Can you modify the graph and reduce this to previous case?  



How to algorithmically find max X-
saturated matching 

 
At each step try to increase size of matching. 
(they are called augmentation steps) 
 
Pick an unmatched vertex on left side, and try to 
find an “alternating path” ending at an unmatched 
vertex on right. 
 
Why does such an alternating path exist? 
Do you see where Hall’s condition comes in? 



More general variants of matching that 
can be solved efficiently  

Suppose you also have a non-negative cost on the edges, 
and a bound k on the required cardinality of the 
matching. 
 
1) Min-cost (left) perfect matching 
 
2) Min-cost matching of cardinality k. 
 
3) Maximum cardinality matching in general graphs 
 
4) Min-cost size k matching in general graphs 
 
 



Max-cardinality non-bipartite matching 

There is a clever algorithm  (Edmond’s algorithm) 
Explore augmenting paths, but get in trouble if encounter odd-cycle.  
Shrink it and proceed 
(need to show nothing goes wrong) 
 
What is the certificate for no perfect matching? 
 
Tutte’s Theorem:  G has a perfect matching iff 
For every 𝑆 ⊂ 𝑉,   o(G\S) ≤|S| 
where o(G\S) is the number of components of G\S with an odd 
number of vertices. 
 
Necessity is easy to see.   Sufficiency is harder 



Applications 

Several in exercise sheet 


