
2MMD30: Graphs and Algorithms Lecture 10 Date: 16/3/2016
Probabilistic Algorithms Instructor: Nikhil Bansal

In this chapter, we will look at some algorithms based on probability.

1 The Drunk Random Walk

The drunk random walk is the following. We start at the origin at time t = 0. At each time t+1, we
move randomly either one step to the right or one step to the left with probability 1/2. Formally,
let Xt denote the (random) position at time t. Then we have

Xt+1 = Xt + 1 with prob. 1/2 or Xt − 1 with prob. 1/2

It is useful to know that after T steps, the expected distance of this walk from the origin is
about T 1/2 (up to constants). That is, E[|XT |] ≈ T 1/2. There are several ways to see this. One
way is to actually calculate the precise probabilities of being at position k after T steps. (Note that
for this to happen there must be exactly (T + k)/2 steps to the right and (T − k)/2 steps to the
left, so the probability is 2−T

(
T

(T+k)/2

)
, and then one can try to approximate these.

A more conceptual way to see this is the following: Consider the random variable Yt = X2
t . Let

us consider how the expectation of Yt evolves over time. Then,

E[Yt] = E[X2
t ] = 1/2(Xt−1 + 1)2 + 1/2(Xt−1 − 1)2 = X2

t−1 + 1 = Yt−1 + 1.

Thus, at each step, Yt is expected to be 1 more than what it was at the previous time step. As
Y0 = 0 at the beginning, the above implies that E[Yt] = E[X2

t ] = t.
From this one can read off several things. For example, the probability that one is more than

10
√
T steps away after time T is at most 1/100. This follows by applying Markov’s inequality. As

Pr[|Xt| ≥ 10
√
t] = Pr[Yt ≥ 100t] = Pr[Yt ≥ 100E[Yt] ≤ 1/100

Let us note the following concrete fact which will be useful for the application later. Consider
the random walk on points 0, . . . , n. If the walk is at position i 6= {0, n} at time t, it randomly
moves to i + 1 or i − 1 with probability 1/2 at time t + 1. If it is at 0, it moves to 1. We are
interested in the following: If we start some position i, i.e. X0 = i, then what is the expected time
until the walk terminates at n.

Theorem 1 Let Ti denote the expected number of time steps for a walk starting at i to terminate
at n. Then Ti = n2 − i2.

Proof: Note that Ti satisfies

Ti = ((1/2)Ti−1 + (1/2)Ti+1) + 1

T0 = 1 + T1

Tn = 0

Now show that Ti = n2− i2 satisfies these conditions. Or you can also determine Ti systematically,
by considering the variables Di = Ti − Ti−1 and expressing the above equations in terms of Di. 2
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2 2-SAT

We now describe a simple randomized algorithm to find a satisfying assignment to a 2-SAT formula,
if one exists. In particular, we wil give an algorithm that runs in time O(n2) and finds an assignment
with probability at least 1/2, if one exists. Note that we can run this algorithm several times and
reduce our chance of not finding a solution to exponentially small.

The algorithm is the following:

1. Pick an arbitrary assignment to the variables xi. If our initial choice satisifes the formula, we
are done.

2. Otherwise, repeat the following for 2n2 steps: Pick an arbitrary unsatisfied clause. Choose
one of the (at most) two variables occurring in it, and flip its value. If this is a satisfying
assignment, return this assignment and exit.

Theorem 2 If the formula is satisfiable, then with probability at least 1/2, the algorithm above
finds a satisfying assignment.

Proof: Since we assume that the formula is satisfiable, there is at least one satisfying assignment
Y = (y1, y2, ..., yn). Let X0 be the initial arbitrary assignment, and let Xt be the assignment after
t steps. We will track the random variable Dt, which gives the overlap between the (random)
assignment Xt and the satisfying assignment Y , i.e. the number of entries in which Xt and Y are
the same.

Note that Dt takes its values in {0, . . . , n}. Clearly, if Dt = n, then Xt = Y , and the algorithm
stops. Our plan will be to show that no matter what X0 is and no matter what Y is and no matter
which unsatisfied clauses the algorithm picks during its execution, Dt reaches n with probability
at least 1/2 by time 2n2. Note that the algorithm might even stop earlier if it finds some different
satisfying assignment, but we will not even try to exploit this.

The point is that whenever the algorithm flips a variable in some unsatisfied clause, Dt does a
random walk which is at least as good as the drunk random walk as far as reaching n is concerned.
For example, suppose that unsatisfied clause was (x1, x2), so both x1 and x2 were set to FALSE.
In Y at least one of them must be set to T . Suppose the assignment under Y to x1, x2 was (T, F ).
So, if we flip either x1 or x2 randomly, with probability at least 1/2, the overlap between Xt+1 and
Yt increases by 1 (i.e. if we flip x1), or decreases by 1 (if we flip x2). The same holds for (F, T ).
In fact if the assignment was (T, T ) under Y , our random walk does even better, since the overlap
always increases by 1, no matter whether we flip x1 or x2. 2

3 3-Coloring dense 3-colorable graphs

We saw that coloring 3-colorable graphs using few colors is a big open problem. Currently, we only
know how to color such graphs using about n0.2 colors. Interestingly, if the graph is dense, i.e. the
minimum vertex degree is at least δn for some δ > 0, then we can actually give a polynomial time
algorithm to 3-color the graph. Here is the precise theorem.

Theorem 3 If G is 3-colorable and the minimum degree is at least δn, then one can find a 3-
coloring in time nO(1/δ).
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Proof: The idea will be to use the 2-SAT algorithm above in a clever way.
First we find a small dominating set of size O((log n)/δ). To see this, recall that the minimum

degree if d, then a random subset of (n/d) log n vertices is a dominating set with probability at
least 1/2. Call this set S.

Second, we can try all possible 3-colorings of vertices of S. There are most 3|S| = nO(1/δ) such
possibilities to try. Now, we don’t know how S is colored in the correct 3-coloring of G, but one of
these colorings of S that we try will be the right one. So the idea would be that for each possible
coloring of S, we try to extend it to a valid coloring of G. Clearly, for one of these colorings we will
succeed.

So, it remains to show how to extend the coloring from S to G. The crucial observation is
that since S is a dominating set, once we fix some coloring of S, each vertex v ∈ V \ S has at
most two choices of colors left for it. In fact, we can assume that there are exactly two choices for
each vertex. Indeed, if some v has 0 choices we already know that there is no way to extend this
coloring. If there is exactly one choice of color for v, we can fix this choice for v and continue this
preprocessing.

Now, we claim that we can model the above problem of extending to a valid coloring of G
as a 2-SAT instance. For each vertex v, we create a variable xv and we create a local mapping
where xv = T if v is assigned its first choice of color, or xv = F if v is assigned its second choice.
Given such a mapping for each vertex, we can model the constraint that the endpoints of each
edge should get different colors by a valid collection of clauses of size 2. For example, if (u,w) is
an edge and u has the color choices red and green and w has choices red and yellow. Suppose we
define convention, xu = T if u is colored red and F otherwise. For w, suppose we choose xw = F
if w is red, and T otherwise. Then we need to forbid the assignment (red,red) to this edge, so we
would put the clause (xv ∨ xw). This will precisely forbid the (red,red) assignment to u and v is
any satisfying solution to the 2-SAT instance. We do this for each edge (note that you add up to
at most clauses for an edge). 2

4 Polynomial Identity Testing

Our next example is a very fundamental problem, where randomization plays a very important
role. In fact, we do not know of any deterministic algorithm for this problem, and designing such
an algorithm would have profound consequences in computer science (in particular, it would allow
us to prove super-polynomial size circuit lower bounds).

The problem is the following: Given an n-variate polyonmial p(x1, . . . , xn) with integer coef-
ficients, determine if this polynomial is identically 0. Note that we are not asking whether this
polynomial has some roots (i.e. where it evaluates to 0). But that it is identically 0. For example
p(x1, x2) = (x1 + x2)

2 − x21 − x22 − 2x1x2 is identically 0.
First, we need to address the question how this polynomial is given to us as input. This is done

in the form of a polynomial size arithmetic circuit, consisting of +-gates and − gates and × gates,
and where you can multiply an input by any integer.

Now, the most obvious strategy would be expand out this polynomial into monomials and
see if everything cancels out. However, this problem is that this could be an exponential time
algorithm as you might get exponentially many terms. For example, if you expand out (x1 +
x2)(x3 + x4) · · · (x2n−1 + x2n), we get 2n terms, even though this expression can be evaluated by
simple circuit using O(n) additions and multiplications.

3



Another natural strategy could be to evaluate it a random point, and check whether the answer
is 0 or not. Indeed, if the polynomial is identically 0 the answer will always be 0 no matter where
we evaluate it. On the other hand, if it was non-zero polynomial, we would expect it to be evalute
to a non-zero number at least with some reasonable chance.

This intuition is indeed correct. For example, in the univariate case (i.e. n = 1), we know that
a non-zero polynomial P (x) of degree d can be zero at at most d values (as it has at most d roots).
This motivates the following algorithm in general. For each i = 1, . . . , n, assign xi := ri where ri
is chosen randomly. Except that we need to define what a random point means. Another issue is
that we need to make sure that evaluation can be done in polynomial time. In particular, we need
to make sure that the intermediate numbers involved themselves do not become of exponential bit
length. Fortunately, there is an easy fix for both these issues. We can just work in the field Fp (i.e.
numbers modulo p for some prime p). Now pick xi randomly just means we pick from uniformly
from {0, . . . , p− 1}. Also, every time we multiply or add two numbers we can take modulo p, and
ensures that all intermediate numbers say in {0, . . . , p− 1}.

So, the algorithm is the following: We independently and uniformly pick ri at random ∈ Fp
for i = 1, . . . , n. If P (r1, . . . , rn) = 0 return yes, otherwise return no. To this end, we have the
following very useful result, which will also tell us what p to choose.

Theorem 4 (Schwartz–Zippel) Let P (x1, . . . , xn) be a polynomial, but not the zero-polynomial.
If r1, . . . , rn are uniformly random selected from Fp, then:

Pr[P (r1, . . . , rn) = 0] ≤ deg(P )

|Fp|
.

Here the degree of P is the maximum degree among all its monomials, where the degree of the
monomial

∏
i x

di
i is defined as d1 + . . .+ dn.

Proof: We will proof this theorem using induction on n, the number of variables. For n = 1 this
is trivial, as P has at most deg(P ) roots and r1 can have |Fp| values:

Pr[P (r1) = 0] ≤ deg(P )

|Fp|
.

Let d = deg(P ). For n > 1, we can extract one variable from P and write:

P (x1, . . . , xn) = xd1P0(x2, . . . , xn) + xd−11 P1(x2, . . . , xn) + . . .+ x01Pd(x2, . . . , xn),

with Pi being a polynomial of degree at most i. Let i be the smallest value such that Pi(x2, . . . , xn) 6=
0 is satisfied. Such i exists, as otherwise P would be the zero polynomial. By induction hypothesis
we have that:

Pr[Pi(r2, . . . , rn) = 0] ≤ i

|Fp|
.

Now fix any values for r2, . . . , rn and consider the univariate polynomial P ′(x) given by P ′(x) =
P (x, r2, . . . , rn). If Pi(r2, . . . , rn) 6= 0, then P ′ is a non-zero polynomial of degree at most d − i,
because for all j < i its terms xd−jPj(r2, . . . , rn) are zero. Hence:

Prr1 [P (r1, . . . , rn) = 0 | Pi(r2, . . . , rn) 6= 0
]
≤ d− i
|Fp|

4



and thus we have that

Pr[P (r1, . . . , rn) = 0] = Pr[P (r1, . . . , rn) = 0 | Pi(r2, . . . , rn) = 0] · Pr[Pi(r2, . . . , rn) = 0]

+Pr[P (r1, . . . , rn) = 0 | Pi(r2, . . . , rn) 6= 0] · Pr[Pi(r2, . . . , rn) 6= 0]

≤ Pr[Pi(r2, . . . , rn) = 0] + Pr[P (r1, . . . , rn) = 0 | Pi(r2, . . . , rn) 6= 0]

≤ i

|Fp|
+
d− i
|Fp|

=
d

|Fp|
.

This concludes the induction and the proof. 2

So if we choose p = 2d, there the probability that a non-zero degree d polynomial evaluates to
0 is at most 1/2.

4.1 Application: Perfect Bipartite matching

Let G be a bipartite graph. We want to check whether G = (V,E) has a perfect matching. The
best known deterministic algorithm has a running time of O(|E|

√
|V |). Hence if the graph is

dense, |E| ∈ Ω(|V |2), this algorithm is O(|V |2.5). However a faster randomized algorithm exists
that always answers no if there is no perfect matching and incorrectly answers no if there is a
perfect matching with a probability less than 1

2 . For this we need a fast algorithm to compute the
determinant of a matrix.

Theorem 5 (Fast matrix multiplication) Let A and B be n×n-matrices, then C = A×B can
be computed in O(n2.376) time.

Corollary 6 The determinant of A can be computed in O(n2.376) time.

In fact one can use this is a smart way to actually produce a matching in the same time, but
we will not consider this here.

i
j

A =

j︷ ︸︸ ︷


0
xij








iG

Figure 1: Transforming a bipartite graph into a matrix.

Given a bipartite graph G We create the matrix A, where the rows correspond to the vertices
on the left side, and columns correspond to vertices on the right side of G. We set the entries
Aij = xij ⇐⇒ (i, j) ∈ E and Aij = 0 otherwise (as illustrated in figure 1. Note that detA is a
polynomial over the variables i, j, hence we can apply PIT to obtain our randomized algorithm.

Claim 7 A perfect matching exists if and only if the determinant of A is not the zero-polynomial.
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Proof: The determinant of A can be written as:

∑

σ∈Sn

(−1)sgn(n)
n∏

i=1

aiσ(i).

Each term in this sum is a potential perfect matching using (i, σ(i)) as the edges. If one of these
edges does not exist in the graph, then the product multiplies by zero and the term does not
contribute to the result of the sum. If no perfect matching exists, then all terms are zero and the
determinant is the zero-polynomial. On the other hand, if a perfect matching P ⊂ E does exist, the
monomial

∏
(i,j)∈P xij will survive. Hence the determinant is not the zero polynomial if a perfect

matching exists. 2
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