
2MMD30: Graphs and Algorithms Lecture 11 by Jesper Nederlof, 18/03/2016

Probabilistic Exponential Time Algorithms.

In this lecture we again look at some exponential time algorithms, but this time see how random-
ization is useful here. We are going to see algorithms in this lecture that never return false positives
(i.e. the algorithm never outputs a true that should have been a false), but if the instance is a
YES-instance, the algorithm may output false with constant probability.

11.1 Stirling’s approximation

Stirling’s approximation states that n! ≈
√

2πn
(
n
e

)n
. The ≈ symbol is strictly speaking not

mathematical. A more mathematical way of putting it would be n! = θ(
√
n
(
n
e

)n
), e.g. there are

some constants c1, c2 such that c1
√
n
(
n
e

)n ≤ n! ≤ c2
√
n
(
n
e

)n
.

11.1.1 Derivation of a variant of Stirling’s approximation (will not be examined)

Since we’ll use Stirling’s approximation several times in this lecture, it’s good to have seen a proof
of some version of it. However, since this is mainly elementary calculus it will not be examined.
Specifically we’ll show e

(
n
e

)n ≤ n! ≤ (n+1)e
(
n
e

)n
. Note that ln(n!) = ln(1·2·3 · · ·n) =

∑n
k=1 ln(k),

and
∑n

k=1 ln(k) can be sandwiched by two integrals as follows:∫ n

1
ln(x)dx ≤

n∑
k=1

ln(k) ≤
∫ n+1

1
ln(x)dx,

to show that this is true, one can split the integral in n parts and argue that the i’th part is at
most/least ln(i). A nice pictorial description of this argument is provided in Figure 11.1. Then we
can compute these integrals by finding the anti-derivatives in the usual way:

[x lnx− x]n1 ≤
n∑

k=1

ln(k) ≤ [x lnx− x]n+1
1

n lnn− n+ 1 ≤
n∑

k=1

ln(k) ≤ (n+ 1) ln(n+ 1)− (n+ 1) + 1 = (n+ 1) ln(n+ 1)− n,

and taking exponentials in the last expression we obtain

e
(n
e

)n
≤ n! ≤ (n+ 1)

(
n+ 1

e

)n

≤ (n+ 1)

(
1 +

1

n

)n (n
e

)n
≤ (n+ 1)e

(n
e

)n
,

1

where we use 1 + x ≤ ex in the last inequality.

2 4 6 8 10

2

4

6

8

10

12

14

Figure 11.1: Sandwiching
∑n

k=1 ln(k) (the blue area) between
∫ n
1 ln(x)dx (the area below the red

curve) and
∫ n+1
1 ln(x)dx (the area below the green curve). In the example, n = 9.

11.2 Color-coding

Our first example addresses the (directed) k-path problem: we are given a directed graphG = (V,E)
and integer k and need to determine whether G has a simple path on k vertices. We’ll see two
algorithms for this problem.

11.2.1 First algorithm

The first algorithm requires O∗(kk) time. It relies on the following observation: if G happens to
be a DAG, i.e. it has no cycles we can actually determine whether a k-path exists in polynomial
time. This it outlined in the following algorithm:

Algorithm kpathDAG(G = (V,E), k) Assumes G is a directed acyclic graph
Output: Whether there exists a simple path on k vertices in G.
1: Find topological ordering v1, . . . , vn of G i.e. ordering such that for every (vi, vj) ∈ E, i < j

2: for i = 1, . . . , n do
3: if |N−(v)| = 0 then
4: Set A[v] = 1
5: else
6: Set A[v] = maxu∈N−(v)A[u] + 1
7: return true iff maxv∈V A[v] ≥ k

The algorithm starts by finding a topological ordering v1, . . . , vn of V which has the property
that for all edges (vi, vj) ∈ E, i < j. Now we can use a very simple and fast dynamic programming
algorithm: for v ∈ V let A[v] be the number of vertices of a longest path ending in v. If v has
no in-neighbors this is clearly 1. If v has in-neighbors, A[v] = maxu∈N−(v)A[u] + 1 since any path

2

ending at an in neighbor u and be extended with v since v could not have been in this path by the
DAG property and any longest path ending in v has an in-neighbor of v as penultimate vertex.

But how does that help for solving k-path in arbitrary directed graphs? The point is we can
make the graph acyclic by only keeping a subset of the edges picked in a probabilistic way such
that if the original graph had a k-path, this k-path still exists in the new graph with reasonable
probability. This is outlined in the following algorithm:

Algorithm kpath1(G, k) G is directed
Output: Whether G has a simple path on k-vertices, with constant one-sided error probability.
1: for i = 1 . . . kk do
2: Pick for every v ∈ V a number c(v) ∈ {1, . . . , k} uniformly and independently at random
3: Let G′ = (V,E′) where E′ = {(u, v) ∈ E : c(v) = c(u) + 1}}
4: if kpathDAG(G′, k) then return true
5: return false

Algorithm 1: O∗(kk) time randomized algorithm for detecting a k-path.

Let’s first look at what happens inside the for-loop. We pick for every vertex a number at most
k uniformly and independently at random (e.g. there are no correlations between the numbers
in any way) and we only keep edges between vertices that are consecutively numbered. We right
away see that G′ is indeed acyclic since we cannot arrive back at a number by only increasing the
number, and in fact any ordering of V that first puts all vertices with number 1, then vertices with
number 2 and so on will be a topological ordering of V .

Now, if p1, . . . , pk is a k-path in G, what is the probability it will still be a k-path in G′? Indeed
this happens if c(pi) = i for every 1 ≤ i ≤ k and since the numbers c(pi) are picked uniformly at
random we see

Pr
c

[∀i ∈ {1, . . . , k} : c(pi) = i] =

(
1

k

)k

.

Thus we see that if G has a k-path, this k-path would be in G′ and we would detect it in Line 4

with probability
(
1
k

)k
. Thus, if G would have a k-path, the probability that we will not detect it

in the loop at Line 1 is at most (1− 1
kk

)k
k ≤ e−1 using 1 + x ≤ ex where x = −1

kk
. Thus, if G would

have a k-path the algorithm would find it with probability at least 1− 1/e.

11.2.2 Second algorithm

Now let’s see how to improve this. It seems that the requirement that ∀1 ≤ i ≤ k : c(pi) = i is a
bit demanding. Suppose instead we require from our k-path p1, . . . , pk that {c(pi) : 1 ≤ i ≤ k} =
{1, . . . , k}, i.e. all numbers 1, . . . , k occur exactly once in the k-path. Often these numbers 1, . . . , k
are thought of as ‘colors’ and a k-path having this property is called colorful. Sticking to the color
perspective the technique we’ll going to see now is called color-coding.

The probability that a k-path p1, . . . , pk is colorful is computed as

Pr
c

[{c(pi) : 1 ≤ i ≤ k} = {1, . . . , k}] =
k!(n− k)k

kk(n− k)k
≥
(
k
e

)k
kk

=
1

ek
,

3

here the first equality follows by dividing the number of functions c such that p1, . . . , pk is colorful
by the total number of possible functions, and the inequality uses Stirling’s approximation. Thus
analogous to kpath1, we can use the following algorithm:

Algorithm kpath2(G, k) G is directed
Output: Whether there exists a simple path on k vertices in G, with constant one-sided error

probability.
1: for i = 1 . . . ek do
2: Pick for every v ∈ V a color c(v) ∈ {1, . . . , k} uniformly and independently at random
3: if colorfulkpath(G, c, k) then return true
4: return false

Algorithm 2: O∗((2e)k) time randomized algorithm for detecting a k-path.

Assume colorfulkpath determines whether G has a colorful k-path with respect to c in O∗(2k)
time. By the above discussion we see that if G has a k-path, then in Line 2 we choose c such that
this k-path is colorful with probability 1

ek
, so the probability that we will not detect it at all is at

most (1− 1
ek

)e
k

which is at most e−1 so we will detect any k-path with probability at least 1− 1/e.
So we managed to improve this part, but how fast can we detect colorful paths? It is easy to

see that when all vertices have distinct colors, this reduces to the NP-complete Hamiltonian path
problem so we cannot expect to do this in polynomial time. It turns out however that familiar
techniques can be used to solve this problem in O∗(2k) time.

Let’s look at how to apply dynamic programming. Assume we are given a directed graph
G = (V,E) and coloring c : V → {1, . . . , k} and for a vertex v and X ⊆ {1, . . . , k} define

Av[X] =

{
true if ∃ path p1, . . . , p|X| = v in G s.t. {c(pi) : 1 ≤ i ≤ |X|} = X (11.1)

false otherwise. (11.2)

Then we see that

Av[X] =

true if X = {c(v)} (11.3)

false if X = {i}, i 6= c(v) (11.4)∨
u∈N−(v):c(u)∈X\c(v)

Au[X \ c(v)] otherwise. (11.5)

We can transform this into a dynamic programming algorithm as we did in Lecture 6:

Algorithm colorfulkpath(G = (V,E), c, k)
Output: Whether G has a colorful simple path on k vertices.
1: for v ∈ V do
2: Set Av[{c(v)}] = true, Av[{i}] = false for i ∈ {1, . . . , k} \ c(v).
3: for l = 2 to k do
4: for X ⊆ {1, . . . , k} such that |X| = l do
5: for v ∈ V such that c(v) ∈ X do
6: Set Av[X] =

∨
u∈N−(v):c(u)∈X\c(v)Au[X \ c(v)]

Since colorfulkpath runs in O∗(2k) time, kpath2 runs in O∗((2e)k) time.

4

11.3 Schöning’s algorithm for k-CNF-SAT

Let us get back to the CNF-SAT problem again: we are given a k-CNF-formula and need to
determine whether it is satisfiable or not. In homework 2 you were asked to solve 100-CNF-SAT in
O∗((2− ε)n) for some ε > 0, which typically led to an O∗((2100 − 1)n/100) time algorithm. Indeed
(2100− 1)1/100 < 2− ε, but only for ε < 10−30. Now we’ll see how to do better using randomization
for any (constant) k. In particular we’ll see an algorithm solving k-CNF-SAT instances in time

O∗
((

2k
k+1

)n)
, for any constant k. For k = 100 this reduces to about O∗(1.9802n) time.

If x, y ∈ {0, 1}n, we let H(x, y) denote the Hamming distance between x and y, i.e., the number
of coordinates in which x and y differ.

11.3.1 Local Search

We start with solving a local search variant of the CNF-SAT problem: given ϕ and an assignment
x ∈ {0, 1}n of the variables of ϕ, can we change at most d coordinates to get an assignment satisfying
the formula? Equivalently, is there an assignment y ∈ {0, 1}n satisfying ϕ such that H(x, y) ≤ d?
A näıve approach would be to simply try all

(
n
d

)
subsets where x and y could differ and see whether

either works out, but we’ll now see an algorithm that is quite a bit better for constant k based on
clever enumeration of the type seen in Lecture 5:

Algorithm localSearch(ϕ, x, d) ϕ is a k-CNF-formula on n variables, x ∈ {0, 1}n, d ∈ N≥0.
Output: Whether there exists y ∈ {0, 1}n that satisfies ϕ and H(x, y) ≤ d
1: if d = 0 and ϕ(x) = false then return false
2: if ∃ clause Cj not satisfied by x then
3: For i = 1, . . . , ` = |Cj | let zi ∈ {0, 1}n be the assignment obtained from x by flipping the
4: variable in the i’th literal of Cj

5: return
∨`

i=1 localSearch(ϕ, zi, d− 1)
6: else
7: return true

Algorithm 3: O∗(kd) time algorithm for detecting a solution of Hamming distance d from x.

For bounding the running time of localSearch, we can like usual analyse the recursion tree
and let T (d, k) be the number of leaves of this recursion tree. We see that T (0, k) = 1 and
T (d, k) = k · T (k, d− 1) since ` ≤ k, so we see T (d, k) = kd. Thus, since we spend only polynomial
time per recursive call, indeed this algorithm runs in time O∗(kd).

But why does it what it promises? If it returns true then it is correct: the algorithm only
considers assignments of Hamming distance at most d since it decreases d every time it flips changes
the assignment and x satisfies ϕ since there are no unsatisfied clauses. It remains to show that if an
assignment y of Hamming distance at most d to x that satisfies ϕ exists, then the algorithm returns
true. We’ll prove this by induction on d. If d = 0, indeed true is returned since x satisfies ϕ (so
the condition on Line 2 will not apply). Otherwise, if d > 0 and Cj is a clause that is not satisfied
by x then let i be such that the i’th literal of Cj is satisfies by y. Since this literal is not satified by
x, we know that x and y must assign a different value to the underlying variable. This implies that

5

H(zi, y) ≤ d− 1 and by induction the recursive call localSearch(ϕ, zi, d− 1) will return yes1.

11.3.2 Using local search as a subroutine for faster k-CNF-SAT.

It’s nice to know we can solve the local search version of CNF-SAT fast, but how does that help
us to solve the normal CNF-SAT problem? The answer is in the following algorithm:

Algorithm kSAT(ϕ) ϕ is a k-CNF-formula on n variables
Output: Whether x ∈ {0, 1}n is satisfiable, with constant one-sided error probability.

1: d = n/(k + 1) Assume d is integer (otherwise, add at most k dummy variables)

2: for i = 1 . . . d2n/
(
n
d

)
e do

3: Pick x ∈ {0, 1}n uniformly at random
4: if localSearch(ϕ, x, d) then return true
5: return false

Algorithm 4: Determining whether a k-CNF formula is satisfiable in O∗
((

2k
k+1

)n)
time, for any

constant k.

Let’s check whether this algorithm does what it promises: since localSearch only returns true
when it found a satisfying solution, the same holds for this algorithm. Now suppose ϕ is satisfied
by some variable assignment y ∈ {0, 1}n. At Line 3 we pick x ∈ {0, 1}n uniformly at random, and
we have seen that localSearch(ϕ, x, d) = true if H(x, y) ≤ d. So let’s look at the probability that
this happens:

Pr
x

[H(x, y) ≤ d] =

∑d
i=0

(
n
i

)
2n

≥
(
n
d

)
2n

.

So in one single iteration we detect y if it exists with probability at least
(
n
d

)
/2n, so the probability

that we will not detect such a y in the whole loop of Line 2 is at most (1−
(
n
d

)
/2n)2

n/(nd) < 1/e.

Now let’s look at the running time. Note that we add at most k variables in Line 1 but since k

is a constant, O∗
((

2k
k+1

)n+k
)

= O∗
((

2k
k+1

)n)
, so there’s no need to worry about the increase of

the number of variables. The running time then is easily seen to be O∗(kd2n/
(
n
d

)
), so let’s try to

simplify that expression. Stirling tells us that (ne)n ≤ n! ≤ 3n(ne)n, and using
(
n
d

)
= n!

d!(n−d)! we see
that (

n

d

)
=

n!

d!(n− d)!
≥ (n/e)n

3n(d/e)d3n((n− d)/e)n−d
=

nn

dd(n− d)n−d9n2
.

Plugging this in the running time and expanding d = n/(k + 1) we see

kd
2n(
n
d

) =
2n(kd)d(n− d)n−d9n2

nn
=

2n
(
n k
k+1

)d (
n k
k+1

)n−d
9n2

nn
= O∗

((
2k

k + 1

)n)
,

so indeed we found a O∗
((

2k
k+1

)n)
time algorithm for k-CNF-SAT, for any constant k.

1Let us remark here that one can also give and analyse an algorithm that is more close to Papadimitriou’s 2SAT
algorithm, but it’s analysis is slightly more involved (https://www.ics.uci.edu/~eppstein/280e/001121.pdf)

6

https://www.ics.uci.edu/~eppstein/280e/001121.pdf

11.4 Feedback Vertex Set

Let’s look at yet another problem we have seen before: the Feedback Vertex Set problem. Recall:

Definition 11.1. A forest is a graph without cycles. A feedback vertex set (FVS) of a graph
G = (V,E) is a subset X ⊆ V such that G[V \X] is a forest.

Alternatively, we could say that a FVS is a vertex set X such that for any cycle of G at least
one of its vertices is in X.

We’ll look at the problem on multigraphs, as we also did before. Recall that we said that in a
multi-graph the edge set may be a multiset so two edges vertices might share parallel edges (two
of which already form a cycle). Moreover, this time we’ll also encounter loops: these are edges of
the type (v, v) for some vertex v. And loops also form a cycle on their own already. As before we
also use degree of a vertex v for the number of edges incident to v (which counts parallel edges and
loops as well).

Before we get into the algorithm, we need the following graph-theoretic observation:

Lemma 11.1. Let G be a multigraph on n vertices with minimum degree at least 3. Then, for
every feedback vertex set X of G, more than half of the edges of G have at least one endpoint in X.

Proof. Let F = V \X (note we call it F because G[F] needs to be a forest since X is a FVS). Let
EF = E ∩ (F × F) be the edges inside the forest and let I = {(u, v) ∈ E : u ∈ X ∨ v ∈ X}. We see
that EF and I partition E (i.e. EF ∪ I = E and EF ∩ I = ∅) so |EF |+ |I| = |E|. Thus, since the
lemma claims that |I| ≥ |E|/2, it is sufficient to show that |I| ≥ |EF |.

First, since F is a forest, we know that |EF | ≤ |F | (i.e. a forest cannot have more edges than
vertices since we can reduce it to a graph with no edges by removing leaves along with their incident
edge). Let us partition F into sets F≤1, F2, F≥3 which are all vertices of F with respectively degree
at most 1, exactly 2 and at least 3 in G. We have that |F≥3| < |F≤1|. To see this, note we can root
the tree and replace subtrees rooted at degree ≥ 3 vertices with only degree ≤ 2 below it with leafs
until we are no degree ≥ 3 vertices left; at every step we remove 1 degree ≥ 3 vertex and reduce
the number of leaves by at least 1.

Now we can lower bound the number of edges with one endpoint in F and one end point in X
(and all of these edges are in I) using the assumption that every vertex has degree at least 3; we
have that

|I| ≥ 2|F≤1|+ |F2| ≥ |F≤1|+ |F2|+ |F≥3| = |F | ≥ |EF |,

where we use |F≥3| < |F≤1| in the second inequality.

Now let’s think about how to use this lemma for an algorithm. Using reduction rules similar to
what we did in our previous algorithm for FVS, we’ll see that indeed we can make sure that our
graph has minimum degree 3 by using some reduction rules. Lemma 11.1 tells us that if this is the
case and X is a FVS of G, we can pick an edge uniformly at random, then pick an endpoint of that
edge uniformly at random and we end up picking a vertex that is in X with probability at least
1/4. This motivates some kind of bounded search tree algorithm, using randomization:

7

Algorithm FVSpoly(G, k) G may be a multigraph

Output: false if G has no FVS of size at most k, true with probability at least 4−k otherwise
1: if k = 0 then return true if G is a forest, return false otherwise
2: if ∃(v, v) ∈ E then

3: return FVSpoly(G \ v, k − 1) the only way to hit a loop (v, v) is to include v

4: if ∃v ∈ V such that deg(v) ≤ 1 then
5: return FVSpoly(G \ v, k) seen in L5 as well, v is not on any cycle so irrelevant
6: if ∃v ∈ V such that d(v) = 2 with neighbors u,w then
7: Let G′ be the graph obtained by removing v and adding an edge (u,w)

variant seen in L5, u = w if parallel edges, every cycle containing v includes u,w

8: return FVSpoly(G′, k) so in every FVS v can be replaced with u or w
9: Pick an edge e of G uniformly at random

10: Pick an endpoint v from e uniformly at random
11: return FVSpoly(G \ v, k − 1)

The reduction rules are familiar to what we have seen in L5: for the rule on Line 6 we note that
any FVS containing v can be altered by replacing v with either u or w so we can safely make the
decision to not include v. Note that if u = w, the algorithm adds a loop (u, u)

If the algorithm returns true, it can be easily verified that it has found a FVS (we will not go
through all steps here again). On the other hand, if there exists a FVS X of size at most k, we claim
it returns true with probability at least 4−k. We can prove this using induction on k. If k = 0
this is trivial, and if any of the reduction rules apply we can directly use the induction hypothesis
since we already have seen the reduction rules are correct. Otherwise, we pick a random edge and
then a random endpoint v of this edge. By Lemma 11.1 and the argumentation below it, we see
that Prv[v ∈ X] ≥ 1/4, and conditioned on this event Pr[FVSpoly(G \ v, k − 1) = true] ≥ 4k−1 so
indeed we return true with probability at least 4−k.

Now we can transform this algorithm into an exponential time algorithm with constant one-sided
error probability by the standard boosting technique:

Algorithm FVS2(G, k)
Output: Whether there exists a simple path on k-vertices in G, with one-sided error probability.
1: for i = 1 . . . 4k do
2: if FVSpoly(G, k) then return true
3: return false

Algorithm 5: O∗(4k) time randomized algorithm for detecting a k-path.

Again the one-sided error probability addresses that the algorithm return true if a solution
exists and it returns false in this case with probability at most (1 − 4−k)4

k
< 1/e so it return

true with probability at least 1− 1/e.

8

11.5 Exercises

Note: In all the exercises below your algorithms may have one-sided constant error probability.

Excercise 11.1. A triangle in an undirected graph G = (V,E) is a triple of vertices (u, v, w)
with a (u, v), (v, w), (u,w) ∈ E. A k-triangle-packing is a collection of triangles T1, . . . , Tk that are
mutually disjoint.

• Give an O∗(kO(k)) time algorithm that given (G, k) determines whether G has a k-triangle
packing. Hint: assign numbers c(v) ∈ {1, . . . , 3k} uniformly and independently at random
to every vertex v and look for triangle packings where all triangles (u, v, w) satisfy c(w) =
c(v) + 1 = c(u) + 2 = 3i for different integers i.

• Give an O∗(2O(k)) time algorithm that given (G, k) determines whether G has a k-triangle
packing. Hint: assign numbers c(v) ∈ {1, . . . , 3k} uniformly and independently at random
and look for colorful triangle packings using dynamic programming or Inclusion-Exclusion.

Excercise 11.2. Find an algorithm that, given a directed acyclic graph, finds a topological ordering
in polynomial time.

Excercise 11.3. Change Line 1-3 in Algorithm kpath1 to get an algorithm running in time
O∗(k!).

Excercise 11.4. Graphs G = (V,E), P = (W,F) are isomorphic if there exists a bijection π : V ↔
W such that (u, v) ∈ E if and only if (π(u), π(v)) ∈ F . In this exercise we assume P is connected.

• Suppose that |P | = k. Show that we can determine in O∗(k!) time whether P is isomorphic
to one of the connected components of G.

In the Subgraph Isomorphism problem, we are given graphs G = (V,E), P = (W,F) and are asked
whether P (the ‘pattern’) is isomorphic to subgraph of G (recall that a subgraph is obtained by
removing vertices and edges).

• Show that the Subgraph Isomorphism problem is NP-complete by picking a specific n-vertex
graph P for every n.

Suppose G has maximum degree d.

• Suppose that P is isomorphic to a subgraph of G and G′ is obtained from G by removing
every edge with probability 1/2. Lower bound the probability that P is isomorphic to a
connected component of G′.

• Show how to solve the Subgraph Isomorphism problem in O∗(2kdk!) time, if |P | = k and G
has maximum degree d.

Excercise 11.5. Suppose we would like to solve an instance (G = (V,E), k) of FVS where |V | = n
and k = n/2. We can directly run the O∗(4k) time algorithm but that is not too impressive. In
this question we try to use the O∗(4k) time algorithm in this setting in a more clever way.

9

• Why is running the O∗(4k) time algorithm not too impressive?

• Consider the following problem: given an instance (G = (V,E), k) of FVS and a set W , does
G have a FVS X such that |X| ≤ k and W ⊆ X. Use the O∗(4k) time algorithm to solve this
problem in O∗(4k−|W |) time.

• Suppose W is picked uniformly at random from the set of all (n/4)-sized subsets of V 2. If
X is a FVS of size n/2, lower bound the probability that W ⊆ X. Use that

(
x

x/2

)
≥ 2x/x

• Give an algorithm that determines whether a FVS of size k = n/2 exists in time O∗(
(

n
n/4

)
) ≤

O∗(2.82n).

Excercise 11.6. Solve the k-path problem in O∗((2e)k) time and polynomial space using Inclusion-
Exclusion. Hint: To look for a colorful k-path, use as universe the set of all walks with k− 1 edges
(e.g. on k vertices).

2this can be easily done in polynomial time, but we will not concern ourselves with this technical issue here

10

	Probabilistic Exponential Time Algorithms.
	Stirling's approximation
	Derivation of a variant of Stirling's approximation (will not be examined)

	Color-coding
	First algorithm
	Second algorithm

	Schöning's algorithm for k-CNF-SAT
	Local Search
	Using local search as a subroutine for faster k-CNF-SAT.

	Feedback Vertex Set
	Exercises

