
2MMD30: Graphs and Algorithms Lecture 13 by Jesper Nederlof, 30/03/2016

Matrix Multiplication and applications

In this lecture we’ll look at matrix multiplication and its applications to several graph problems.

Note: Since it’s relevant for this lecture let us remark something about the computational
model often used: it is most common to assume we are working in the RAM model with word
size O(log(n)); i.e. elementary operations such as additions and comparisons on objects repre-
sented with O(log(n)) bits take constant time. One motivation for this is that otherwise it is
not even clear whether running a for-loop with empty body and n iterations takes O(n) time
since we need to increase the counter of the iteration every time.

13.1 Integer and Matrix Multiplication

13.1.1 Integers

The usual algorithm for multiplying two b-digit1 integers as illustrated in Figure 13.1 takes O(b2)
time.

Figure 13.1: Multiplying large numbers as learned in primary school
9 6 2 5 8 7 2 3 4
9 8 2 4 5 1 6 5 3

2 8 8 7 7 6 1 7 0 2
4 8 1 2 9 3 6 1 7 0

5 7 7 5 5 2 3 4 0 4
9 6 2 5 8 7 2 3 4

4 8 1 2 9 3 6 1 7 0
3 8 5 0 3 4 8 9 3 6

1 9 2 5 1 7 4 4 6 8
7 7 0 0 6 9 7 8 7 2

8 6 6 3 2 8 5 1 0 6
9 4 5 6 9 5 4 1 9 1 9 9 9 9 7 8 0 2

×

1Of course, the integers will actually be represented in binary, so it will require log2 10b bits to represent b but
note that for us there’s not much difference since this change of representation will only influence constant factors in
the running time

1

This can be quite costly when we have long integers. Note that the output has at most 2b
digits, so there is no reason we can do significantly faster than this2.

We’ll now see a very elegant algorithm that actually does better. If we want to multiply two
b-bit integers x, y, we can write x = x1 + 10b/2x2, y = y1 + 10b/2y2 where x1, x2, y1, y2 are integers
on at most b/2 digits and have

xy = (x1 + 10b/2x2)(y1 + 10b/2y2) = m1 +m210b/2 +m310b,

where m1 = x1y1 m2 = x1y2 + x2y1, m3 = x2y2. So we reduced the computation of one product
of b-digit integers to 4 products of integers on b/2 digits. If we use a recursive algorithm based
on this observation, its running time T (b) thus would satisfy T (b) = 4T (db/2e) + O(b) time3, so
T (b) = O(b2) and we obtained yet another quadratic time algorithm.

However, note that m2 = (x1 + x2)(y1 + y2)−m1 −m3, so we only need three multiplications
(x1y1,x2y2 and (x1 + x2)(y1 + y2)), so only three recursive calls! Then we get a running time of
T (b) = 3T (db/2e) +O(b) which solves to O(3log2(b)) which is O(blog2(3)) ≈ O(b1.58) time4.

13.1.2 Matrices

As usual, we denote matrices with capital letters. We’ll refer to entries of the matrices with lower
case letters. If A ∈ Zl×m and B ∈ Zm×n, recall the matrix product C = AB ∈ Zl×n is defined by
cik =

∑m
j=1 aijbjk, i.e. cij equals the inner-product of the vector (ai1, . . . , aim) and (b1k, . . . , bmk).

Let us focus on the situation where A,B ∈ Zn×n and all entries are O(n) so every arithmetic
operation takes O(1) time. How fast can we compute AB? If we just follow the definition, we can
do this in O(n3) time, and several scientists thought for a long time that one cannot do much faster
that this. However, in 1969 Strassen surprised everybody by showing one can do asymptotically
faster. The idea is very similar to Karatsuba! Divide the matrices into 4 submatrices of size at
most dn/2e × dn/2e, multiply the submatrices, then recombine the resulting matrices:[

A B
C D

]
·
[
E F
G H

]
=

[
AE +BG AF +BH
CE +DG CF +DH

]
Thus, instead of multiplying two n× n matrices we only need to multiply 8 pairs of dn/2e × dn/2e
matrices. A recursive algorithm based on this would have a running time T (n) satisfying T (n) ≤
8T (dn/2e) +O(n2) which solves to O(n3) again.

As in the algorithm by Karatsuba the surprising part comes from saving a multiplication in a
base case. Strassen managed to come up with an approach to multiply 2× 2 matrices with only 7
multiplications! The multiplications are as follows:

M1 : (A+D)(E +H) M5 : (A+B)H

M2 : (C +D)E M6 : (C −A)(E + F)

M3 : A(F −H) M7 : (B −D)(G+H)

M4 : D(G− E)

2This is exactly what the famous scientist Kolmogorov was wondering, but in 1952 he conjectured one cannot
compute the product in Ω(b2) time. In 1960 he stated this as open problem and a week later the 23-years-old
Karatsuba came up with his O(blog2(3)) algorithm!

3T (b) =
∑dlg be

i=0 4iO(b)/2i=O(b)
∑n

i=12i = O(b2), or one could use the ‘Master Theorem’https://en.wikipedia.
org/wiki/Master_theorem

4There are much faster algorithms known relying on the famous ‘Fast Fourier Transformation’.

2

https://en.wikipedia.org/wiki/Master_theorem
https://en.wikipedia.org/wiki/Master_theorem

Then, it can be verified5 that[
AE +BG AF +BH
CE +DG CF +DH

]
=

[
M1 +M4−M5 +M7 M3 +M5

M2 +M4 M1−M2 +M3 +M6

]
Thus, instead of multiplying two n× n matrices we only need to multiply 7 pairs of dn/2e × dn/2e
matrices. A recursive algorithm based on this would have a running time T (n) satisfying T (n) ≤
7T (dn/2e) +O(n2) which solves to O(nlog2(7)) ≈ O(n2.81).

There has been a long line of research after Strassen’s breakthrough, and since we still do
not know how fast exactly we can multiply matrices it is common to denote ω for the matrix
multiplication exponent: ω is the smallest real number such that two n×nmatrices can be multiplied
in O(nω) time. Note that trivially ω ≥ 2, and by reducing the number of multiplications needed
for multiplying matrices of finite dimension combined with the above divide&conquer scheme,
researchers managed to prove that ω ≤ 2.37. Many researchers believe that ω = 2, but this is
unclear still.

13.2 Counting and Finding Triangles

For a square n× n matrix, define trace(A) =
∑n

i=1 aii. If G = (V,E), recall that a triangle of G is
a triple of vertices u, v, w ∈ V such that (u, v), (u,w), (v, w) ∈ E.

Suppose we have a graph G on n vertices with adjacency matrix A. If B = A2, we have that
bik =

∑n
j=1 aijajk, so bik equals the number of j such that (vi, vj), (vj , vk) ∈ E, i.e. the number of

walks on 2 edges from vi to vk. Similarly, if C = A3 then cil =
∑n

j,k=1 aijajkakl equals the number

of walks on 3 edges from vi to vl. Thus the trace of A3 equals the number of walks on 3 edges
that end where they started, and this is exactly six times the number of triangles (since we can
start on any of the three vertices and can traverse the triangle in two directions). So the following
algorithm counts the number of triangles in O(nω) time:

Algorithm #triangle(G) The adjacency matrix of G is A
Output: The number of triangles of G

1: Compute A3 with two matrix multiplications
2: return trace(A3)/6

Algorithm 1: Detecting / Counting triangles in O(nω) time.

Sometimes we also would like to know the weight of a maximum weight triangle. Suppose we
are given an undirected graph G = (V,E) with weights ω : E → {1, . . . ,W}. Suppose we define
ai,j = n3ω(vi,vj), and let C = A3 as before.

Then cii =
∑n

j,k=1 n
3ω(vi,vj)+3ω(vj ,vk)+3ω(vk,vi). We see that if a triangle containing vi of weight

OPT exists cii > n3OPT , and if no such triangle exists, cii < n2n3(OPT−1) = n3OPT−1. Thus the
maximum weight of a triangle containing vii can be read off from cii. Thus the following algorithm
determines the weight of a maximum weight triangle:

5Indeed, finding the minimum number of multiplications is an instance of an NP-complete problem. It takes us
a few minutes to check what Strassen came up with, but it is quite an achievement that he managed to find these
multiplications!

3

Algorithm maxTriangle(G = (V,E), ω : E → {1, . . . ,W})
Output: The maximum weight of a triangle of G, −1 if none exists.

1: Let V = {v1, . . . , vn}
2: for (vi, vj) ∈ E do
3: ai,j = n3ω(vi,vj)

4: Compute C = A3 using two matrix multiplications
5: Set max = −1
6: for i = 1, . . . , n do

7: Let c be the max integer such that ci,i ≥ nc O(log22(ci,i)) time by trying all c

8: if c/3 > max then set max = c/3
9: return c

Algorithm 2: Finding the weight of a maximum weight triangle in O∗(nω(W log2(n))2) time.

All integers in this computation will be at most nO(W), so they can be represented with
O(W) log2(n) bits so arithmetic operations on these integers can be performed in at mostO(W 2 log22 n)
time, so the running time of this algorithm can be upper bounded by O(nω(W log2(n))2) time.

13.3 Exponential Time Algorithm for Max 2-Sat

In the Max 2-SAT problem, we are given a 2-CNF formula ϕ on variables v1, . . . , vn and we would
like to find an assignment x ∈ {0, 1}n that satisfies as many clauses of ϕ as possible. Can we solve
this problem in O∗((2 − ε)n) time, for some ε > 0? In turns out we can, but curiously the only
currently known algorithm relies on matrix multiplication:

Algorithm max2Sat(ϕ) Assume the number n of variables of ϕ divides 3.
Output: An assignment maximizing the number of satisfying clauses.

1: Partition the variables of ϕ in V1, V2, V3, |V1| = |V2| = |V3|.
2: Create an instance (G = (V,E), ω) of maximum weight triangle as follows:
3: Add vertices {vix}x∈{0,1}n/3 , for i = 1, . . . , 3, to V

4: for x, y ∈ {0, 1}n/3 and 1 ≤ i ≤ 3 do
5: Let j = (i+ 1)%3
6: Let p be the partial assignment obtained by assigning x to variables Vi and y to variables Vj
7: Set c1 = number of clauses with only variables in Vi satisfied by p
8: Set c2 = number of clauses with a variable in Vi and in Vj satisfied by p

9: Set ω(vix, v
j
y) = c1 + c2

10: return maxTriangle(G,ω)

Algorithm 3: Solving Max 2-Sat in O∗(2ωn/3) time.

The algorithm arbitrarily partitions the variables into three parts, creates an exponentially
sized graph with a vertex for every partial assignment to one of the three variables sets. An edge
then encodes a partial assignment with 2n/3 variables set, and the weight of an edge is exactly the
number of clauses this partial assignment satisfies. We see there is a one-to-one mapping between
the triangles of G and the total assignments of ϕ. Moreover, every satisfied clause is accounted for

4

exactly once in in the weight of a triangle since the variables of any clause are either contained in
V1, V2, V3 or if they are not in either V1 ∪ V2, V2 ∪ V3 or V3 ∪ V1.

The running time of the algorithm is O∗(2ωn/3): Line 10 clearly is the bottleneck and since
|V | = 2n/3 and W is poly(m), maxTriangle runs in O∗(2ωn/3) time.

13.4 All Pairs Distances

In this sections and the next two sections, we’ll focus on the computing the shortest paths between
all pairs of vertices of a given connected undirected unweighted graph. This will improve over
Exercise 6.8 in this more restricted case.

Given a graph G = (V,E) with V = {v1, . . . , vn} we want to compute for every 1 ≤ i < j ≤ n
the distance di,j which is the number of edges on a shortest path from vi to vj .

Let G′ be the graph obtained from G by placing an edge between every pair of vertices that
are at distance 1 or 2 in G. We directly see that the adjacency matrix A′ of G′ can be computed
in O(nω) time since a′ij is 1 is aij = 1 or if cij > 0 where C = A2. Motivated by the close relation
between the adjacency matrices of G and G′, G′ is often called the ‘square’ of G.

The diameter diam(G) of a graph G is the number of edges on the longest shortest path between
two vertices. We see that diam(G′) = ddiam(G)/2e. Moreover, if diam(G) ≤ 2 we see that D =
2A′ − A. This suggests a recursive approach by ‘repeated squaring’ to reduce the diameter: if we
would be able to compute D from D′ quickly, we can recurse to reduce to diam(G) ≤ 2 in only
log2(n) recursive steps.

If we let d′ij denote the number of edges on a shortest path between vi and vj in G′ we see that

dij =

{
2d′ij , if dij is even

2d′ij − 1, if dij is odd,

or equivalently put, d′ij = ddij/2e. Thus if we would know the parities of dij for every i, j we would
be able to compute dij from d′ij , so we can restrict our attention to this!

Since dkj − 1 ≤ dij ≤ dkj + 1, if dij is odd there must be some k such that dkj < dij and
d′ij = ddij/2e we note the following:

Observation 13.1. For every 1 ≤ i < j ≤ n we have that

• If dij is even, then d′kj ≥ d′ij for every neighbor k of i in G,

• If dij is odd, then d′kj ≤ d′ij for every neighbor k of i in G. Moreover, there exists a neighbor
k of i such that d′kj < d′ij.

If we sum these inequalities over all neighbors k we obtain

dij is even if and only if
∑

k∈NG(vi)

d′kj ≥ d′ij |NG(vi)|. (13.1)

Here NG(vi) and dG(vi) denote the neighborhood and degree of vi in G, just to be explicit about
which graph we are looking at and avoid confusion with the distances.

Recall we were trying to compute the dij ’s from the d′ij and G. Then the right hand side

of (13.1) can easily be computed in O(n2) time for all i, j but what about the left hand side?

5

Specifically, we would like to know lij =
∑

k∈NG(vi)
d′kj for every i, j. We recognize that L = AD′,

so we can compute these values with a matrix multiplication!

Summarizing, the algorithm is as follows:

Algorithm APD(A) Assumes A is the adjacency matrix of an undirected graph G
Output: Matrix D with dij being the distance from i to j in G.

1: Z = A2

2: Construct A′ such that a′ij = 1 if and only if i 6= j and aij = 1 or Zij = 1

2: a′ij = 1 if and only if d(vi, vj) ≤ 2

3: if a′ij = 1 for every i 6= j then return 2A′ −A diam(G) ≤ 2

4: D′ = APD(A′)
5: L = AD′

6: for 1 ≤ i < j ≤ n do
6: lij ≥ d′ij |NG(vi)| iff dij even

7: if lij ≥ d′ij |NG(vi)| then
8: dij = 2d′ij
9: else

10: dij = 2d′ij − 1
11: return D

Algorithm 4: Compute APD matrix.

Now the running time T (n, d) of APD(A) where d is the diameter of the graph represented by A
satisfies

T (n, d) ≤ 2nω + T (n, dd/2e) +O(n2),

since the involved integers will never exceed n2 (n2 may happen in AD′). This recursion resolves
to T (n, d) ≤ O(nω lg(n)).

13.5 Boolean Matrix Product and Witness Matrices

If A,B ∈ {0, 1}n×n we define A � B to be the matrix C with cij =
∨

k(aik ∧ bkj). Then we can
compute C from A,B in O(nω) time by computing C ′ = AB and setting cij = 1 if c′ij > 0 and 0
otherwise. But ideally, we would also like to have a witness k ready for every ij such that cij = 1,
where a witness is an integer k such that aik ∧ bkj . The matrix that contains in every cell a 0 if
no witness exists and a witness otherwise is called a witness matrix. We’ll focus now on computing
such a witness matrix fast

Suppose that for every i, j there is at most one witness. Then the witness matrix is just ÂB
where âij = 0 if aij = 0 and âij = j otherwise. But of course in general this may not be the case.
However, somewhat similar to the isolation lemma we saw previous time, we can use randomization
to reduce to this case. Our isolation lemma is somewhat more elementary now:

Lemma 13.1. Suppose X ⊆ U , |U | = n and |X| = w. If R ⊆ U is picked uniformly from the set
of all subsets of U of size r, and n/2 ≤ wr ≤ n then Pr[|X ∩R| = 1] ≥ 1/8.

6

Proof.(
w
1

)(
n−w
r−1
)(

n
r

) = w
r!

(r − 1)!

(n− w)!

n!

(n− r)!
(n− w − r + 1)!

(
n
d

)
= n!

d!(n−d)!

= wr

(
w−1∏
i=0

1

n− i

)w−2∏
j=0

(n− r − j)


=
wr

n

w−2∏
j=0

n− r − j
n− 1− j

=
wr

n

w−2∏
j=0

(
n− 1− j
n− 1− j

− r − 1

n− 1− j

)

≥ wr

n

w−2∏
j=0

(
1− r − 1

n− w

)
using (r − 1)w ≤ n− w since wr ≤ n; wr ≥ n/2

=
1

2

(
1− 1

w

)w−1
≥ 1

2

(
1− 1

w

)w

using 1− x/2 ≥ 2−x for x ∈ [0, 1] with x = 2/w

≥ 1/8.

Note that of course we do not know w, but since it is good enough to have n/(2w) ≤ r ≤ n/w
we only need to try powers of 2 for r:

Algorithm wm(A,B) Assume A,B are n× n matrices with entries from {0, 1}.
Output: Witness matrix for the Boolean matrix product A�B, with constant probability.

1: for t = 0, . . . , dlog2 ne do
2: r = 2t

3: for i = 1, . . . , 32dlog2 ne do
4: Pick random set R ⊆ {1, . . . , n} uniformly from the set of all r-sized subsets of {1, . . . , n}
5: Compute ÂR with âRij = j if j ∈ R and aij = 1 and âRij = 0 otherwise.

6: Compute Z = ÂRB
7: for 1 ≤ i, j ≤ n do
8: if zi,j > 0 and zij is witness then set wij = zi,j
9: return W

Algorithm 5: Compute the witness matrix, with constant error probability.

Note that if ij has a unique witness k in R, then zij = âRikbkj = k so indeed conditioned on
this event we correctly set wij on Line 8. So we just need to lower bound the probability that
for every pair ij where a witness exists, there will be a unique witness in R at some iteration.
Line 3 is repeated 16dlog ne times, and we are successful for fixed ij with probability at least 1/8
by Lemma 13.1 when n/(2w) ≤ r ≤ n/w, which happens for some iteration since for every x there
is a power of two between x and 2x. Thus, the probability that we never have a unique witness for

7

fixed i, j is at most (
1− 1

8

)32 logn

≤ e−4 logn ≤ 2−4 logn = n−4.

Thus by the union bound, the probability that we do not find a witness for some i, j is at most
n−2, and hence wm(A,B) constructs a witness matrix for A � B with probability at least 1 − 1

n2 .

The running time is easily upper bounded by O(nω log22(n)).

13.6 Computing the Successor Matrix

Given undirected graph G = (V,E) with V = {v1, . . . , vn}, the successor matrix S of G is an n×n
matrix with entries from {1, . . . , n} in which sij is the index k of a neighbor vk of vi that lies on a
shortest path from vi to vj .

We will now combine the algorithms from the last two sections two compute the successor matrix
fast. A sensible first step is to compute APD(A), since it already provides a lot of information on
the shortest paths:

dij = dkj + 1 and (i, j) ∈ E ↔ k is on shortest path from i to j.

In particular, this means that if we define D(l) by letting d
(l)
ij = 1 if dij = l and 0 otherwise,

then in the witness matrix of A � D(l−1) we can find successors for every i, j such that di,j = l.
However, iterating for every l will be too slow for our purposes. This is fixed by observing that
since dkj − 1 ≤ dij ≤ dkj + 1, dij = dkj + 1 is equivalent with dij ≡3 dkj + 1:

dij = dkj + 1 and (i, j) ∈ E ↔ dij ≡3 dkj + 1 and (i, j) ∈ E ↔ k is on shortest path from i to j.

Therefore, we can still use the above idea but only need to do 3 iterations, except we use a mild
variant of D(s):

Algorithm succ(A) Adjacency matrix of a graph G
Output: The successor matrix of G with constant probability.

1: D = APD(A)
2: for s = 1, 2, 3 do

3: Construct D(s) with d
(s)
ij = 1 iff dij ≡3 s

4: Compute W (s) = wm(A,D(s))

5: Construct S with sij = w
((dij−1)%3)
ij

Algorithm 6: Compute the successor matrix in O(nω log22 n) time.

The algorithm clearly runs inO(nω log22 n) time (with wm being the bottleneck) given the previous

sections, and S is a successor matrix since for every i, j we have that k = w
((dij−1)%3)
ij satisfies

dkj ≡3 dij − 1 (since d
(s)
kj = 1 which is because k is a witness for the entry ij in A � D(s)) so

dkj = dij − 1 and aik = 1 since k (because, again, k is a witness for the entry ij in A�D(s)).

8

13.7 Exercises

Excercise 13.1. The successor matrix is an implicit representation of the shortest paths. A more
explicit representation of the shortest paths would be a sequence of vertices describing the shortest
path for every pair. Give a graph with Ω(n2) pairs of distance Ω(n) from each other to show that
such a representation will require Ω(n3) to compute.

Excercise 13.2. In Exercise 5.3 you gave an algorithm for determining whether a clique of size
k exists with running time O(nkk2). Unfortunately, researchers believe that clique parameterized
by k is not FPT, and in this exercise you are asked to find the currently asymptotically fastest
algorithm for this problem for the case when k is a multiple of 3: show how to determine whether
a clique on k vertices exists in O(nωk/3poly(k)) time in this case. Hint: start with k = 3, 6.

Excercise 13.3. In the Max-Cut problem we are given an undirected graph G = (V,E) and
need to find a partition of V into V1, V2 maximizing E ∩ (V1 × V2). It is known that Max-Cut is
NP-complete. Show that MAX-2-SAT is NP-complete and solve Max-Cut in O∗(2ωn/3) time.

Excercise 13.4. It is a big open problem to solve MAX-3-SAT (which has the same definition of
MAX-2-SAT except we are given a 3-CNF formula) in O∗((2− ε)n) time for some ε > 0. Why can
we not use the approach from Section 13.3 for MAX-2-SAT for this?

Excercise 13.5. The n’th Fibonacci number fn is defined as follows: f1 = 1,f2 = 1 and for n > 2,

fn = fn−1 + fn−2. Show that

(
fn+1 fn
fn fn−1

)
=

(
1 1
1 0

)n

. Show how to compute the n’th

Fibonacci number using O(log2(n)) arithmetic operations. Why is this ‘running time’ misleading?

Excercise 13.6. The transitive closure of a directed acyclic graph G = (V,E) is the graph
G∗ = (V,E∗) where (u, v) ∈ E∗ whenever there is a path from u to v in G. Compute the transitive
closure of a directed acyclic graph in O(nω log(n)) time.

Excercise 13.7. Why doesn’t Algorithm succ work for directed graphs?

9

	Matrix Multiplication and applications
	Integer and Matrix Multiplication
	Integers
	Matrices

	Counting and Finding Triangles
	Exponential Time Algorithm for Max 2-Sat
	All Pairs Distances
	Boolean Matrix Product and Witness Matrices
	Computing the Successor Matrix
	Exercises

