
2MMD30: Graphs and Algorithms Lecture 13 by Jesper Nederlof, 30/03/2016

Solutions to exercises of lecture 13

Excercise 13.1. The successor matrix is an implicit representation of the shortest paths. A more
explicit representation of the shortest paths would be a sequence of vertices describing the shortest
path for every pair. Give a graph with Ω(n2) pairs of distance Ω(n) from each other to show that
such a representation will require Ω(n3) to compute.

Solution. A path already does the job: the first n/4 vertices are of distance at least n/2 from
the last n/4 vertices.

Excercise 13.2. In Exercise 5.3 you gave an algorithm for determining whether a clique of size
k exists with running time O(nkk2). Unfortunately, researchers believe that clique parameterized
by k is not FPT, and in this exercise you are asked to find the currently asymptotically fastest
algorithm for this problem for the case when k is a multiple of 3: show how to determine whether
a clique on k vertices exists in O(nωk/3poly(k)) time in this case. Hint: start with k = 3, 6.

Solution. For k = 3 this is exactly the problem of finding a triangle which we solved by rais-
ing the adjacency matrix to the power 3. For k = 3l with l > 1 and input graph G = (V,E)
construct graph G′ = (V l, E′) (i.e. G′ has a vertex for every l-tuple of vertices from G), where
((v1, . . . , vl), (v

′
1, . . . , v

′
l)) ∈ E′ if {v1, . . . , vl, v′1, . . . , v′l} is a clique on 2l vertices in G. We see that

G′ has a triangle if and only if G has a clique on 3l = k vertices, since the triangle implies all
needed edges are present in G and if G has a clique of size k we can partition its vertices in three
parts and the associated tuples will give a triangle in G′.

Constructing the adjacency matrix of G′ costs O(n2lk2) time while finding a triangle in G′ costs
O(nωk/3) time.

Excercise 13.3. In the Max-Cut problem we are given an undirected graph G = (V,E) and
need to find a partition of V into V1, V2 maximizing E ∩ (V1 × V2). It is known that Max-Cut is
NP-complete. Show that MAX-2-SAT is NP-complete and solve Max-Cut in O∗(2ωn/3) time.

Solution. Given an instance of Max-Cut we can create an instance of MAX-2-SAT on n variables
v1, . . . , vn indicating whether a vertex is in v1 or v2, and with for every edge (v1, v2) ∈ E clause
v1 ∨ v2 and ¬v1 ∨¬v2. We see that every assignment satisfies at least one of these clauses and both
are simultaneously satisfied if and only if v1 6= v2. Thus we can satisfy at least m + x clauses if

1



and only if we have a cut splitting at least x edges. Since we know how to solve MAX-2-SAT in
O∗(2ωn/3) time and the reduction did not increase n this can be used to solve Max-Cut in O∗(2ωn/3)
time.

Excercise 13.4. It is a big open problem to solve MAX-3-SAT (which has the same definition of
MAX-2-SAT except we are given a 3-CNF formula) in O∗((2− ε)n) time for some ε > 0. Why can
we not use the approach from Section 13.3 for MAX-2-SAT for this?

Solution. We do not know where to account for the clauses with a variable in all three parts.

Excercise 13.5. The n’th Fibonacci number fn is defined as follows: f1 = 1,f2 = 1 and for n > 2,

fn = fn−1 + fn−2. Show that

(
fn+1 fn
fn fn−1

)
=

(
1 1
1 0

)n

. Show how to compute the n’th

Fibonacci number using O(log2(n)) arithmetic operations. Why is this ‘running time’ misleading?

Solution. Proof by induction. Holds for n = 1 (if we let f0 = 0). For the induction step just
apply the definition of matrix multiplication:(

1 1
1 0

)n

=

(
1 1
1 0

)n−1(
1 1
1 0

)
=

(
fn fn−1
fn−1 fn−2

)(
1 1
1 0

)
=

(
fn + fn−1 fn
fn−1 + fn−2 fn−1

)
.

If A is the 2× 2 matrix above we can compute An with O(log(n)) matrix multiplications by using
A2x = AxAx and A2x+1 = A2xA. The running time is misleading since fn is exponential in n,
so representing fn already requires O(n) bits, so the arithmetic operations used by this procedure
take O(n) time.

Excercise 13.6. The transitive closure of a directed acyclic graph G = (V,E) is the graph
G∗ = (V,E∗) where (u, v) ∈ E∗ whenever there is a path from u to v in G. Compute the transitive
closure of a directed acyclic graph in O(nω log(n)) time.

Solution. In Section 13.4 we define the square of a graph/adjacency matrix G as the graph G′

with an edge between two vertices iff the two vertices are of distance at most 2 in G. The adjacency
matrix of the square of a directed graph can still be compute via matrix multiplication: if B = A2,
bij still is the number of walks on two edges from i to j in the directed setting. Therefore, we let
denote sq(A) for the square of A, we can simply compute A∗ = sq(sq(. . . sq(A))) (e.g. squaring
log2 n times) and since all if there is a path from u to v the distance of u to v is at most n, G∗ will
have an edge between such u and v if A∗ is the adjacency matrix of G∗.

Excercise 13.7. Why doesn’t Algorithm succ work for directed graphs?

Solution. Among others, it is not clear how to determine the parities of the dij since (13.1) does
not hold.

2


	Solutions to exercises of lecture 13

