
Planar Graphs 

Planarity Testing 
Planar Separator Theorem + Applications 

Planar Duality 
Planar Max-cut 



Basic Properties 

Planar drawing: No two edges cross. 
 
Face: Given a drawing of G,  a  face is a “region” 
(i.e. equivalence set of points in a plane reachable from 
each other) 
 
Euler’s formula:  If G is connected + planar,  
then v – e + f = 2          
 
Proof: Induction 



Basics 

Use Euler’s formula to show  𝑚 ≤ 3𝑛 − 6  for simple planar 
graphs 
 
Show: For bipartite planar graphs  m ≤ 2n -4  
 
Show:  𝐾3,3  and 𝐾5 are non-planar. 
 
Kuratowski’s theorem: G is planar if and only if it does not 
contain a subgraph that is a subdivision of 𝐾5 or 𝐾3,3. 
 
Subgraph: Obtained by deleting some edges and vertices. 
Subdivision:  Repeatedly insert a vertex in middle of an edge. 



Basics 

6-colorable 

 

5-colorable: Induction on v 

+ look at conn. components of colors 1 and 3. 

+ look at components of 2 and 4. 

 

Thm: Can color in 4 colors.   

Big result. 

 



Basics 

Fary’s theorem (1936): Any planar graph can be  

drawn such that edges are straight lines 

 

There is a whole research area called graph drawing. 

 

Want to draw (almost) planar  graphs in various ways with 
various desirable properties. 



Planarity Testing 

Linear time algorithms known. 

We focus on an insightful 𝑂 𝑛3  time algorithm  

 

Assume connected 

Assume 2 edge-connected   (each edge lies in a cycle)  

[If removing (u,v) disconnects, can contract (u,v)] 

 

Key insight: 

Consider a cycle C.  If (u,v) and edge with u and v not on 
C, then either both lie inside C  or both lie outside C. 

 

 



Planarity Testing 

Let 𝐺1, … , 𝐺𝑘 denote components obtained on removing C. 
 
Each 𝐺𝑖 is connected to C with at least two edges (by 2-connectivity 
assumption). Call these “connectors” 
 
Call 𝐺𝑖+ endpoints on C =  Segment 𝑆𝑖. 
 
Conflicting segments: If they “obstruct” each other. 
[When do segments conflict? ] 
 
Construct compatibility graph H.  
(one vertex for each segment,   edge between i and j if S_i and S_j conflict 
What can you say about H if G is planar? 



Algorithm outline 

•  Assume 2-connected 
• Find cycle C, and let 𝑆1, … , 𝑆𝑘 be segments. 
 
• If conflict graph not 2-colorable,  return NO. 
• Else, recursively test planarity of graph 𝐶 + 𝑆𝑖, for each 

i=1,…,k. 
 
 
Almost there, except one silly catch 



What if  C+𝑆1 = 𝐺? 

Defn: Call a cycle separating, if has >= 2 segments. 
 
Theorem: G has a separating cycle C unless, 
  (i) G is itself cycle or,  
  (ii) G is a  cycle + segment which is a path 
 
Moreover can find such a C in linear time. 
 
Proof:  Find some cycle C. If it has >= 2 segments, done already. 
 
Else it has one segment S. Consider two consecutive attachments u 
and v  (S may have more than 2 attachments). 
Take some path P  from u to v  in the segment S  (not involving C). 
Consider  a new cycle C’  = P  + B    (see picture) 
 where B  is the “longer” path on  C  from  u to v  that  contains the  
other attachments  of S (if any).  
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A and B are paths from C  
from  u to v 
  



Planar Separator Theorem 

Can break a graph into components by removing few edges such that  “no 
piece too large”. 
 
Balanced planar separator theorem: Can remove 4 𝑛  vertices  such that 
each component of size ≤

9𝑛

10
 

 
[Cannot hope for  o( 𝑛 ) size balanced separator] 
 
Very useful: 

1) Find max independent set in 2𝑂 𝑛   time  

2) Find (1 + 𝜖) approximation in 2𝑂 1/𝜖2  poly(n) time. 
3) …. 

 
(Solutions for 1 and 2 at the end) 



Koebe’s disk embedding theorem:   
Can draw a planar graph G such that for each vertex u, there is 
a  disc 𝐷𝑢, with the following properties: 
 
(i) Interiors of disks are disjoint 
(ii) two discs 𝐷𝑢 and 𝐷𝑣 touch iff (u,v) is an edge in G. 
 
  



Proof for Planar separator 

Consider disk embedding of G. 
 
Let D be the smallest circle that contains >= n/10  vertices.  
Assume radius(D) = 1, center(D) = origin (else scale and shift) 

 
Pick r uniformly at random in interval [1,2]  
 
Consider circle C centered at origin of radius r. 
Let S = {All disks that intersect C} 
 
(note S is a  random set) 
 



Lemma 1:  For each r, always get a valid balanced separator (i.e. 
no component bigger than 9n/10) 

 

Proof: Can cover ring using 8 disks of radius 1 

Give upper and lower bounds on number of vertices in inner 
piece 

 

 

 

 

 

 



Lemma 1:  For each r, always get a valid balanced separator (i.e. 
no component bigger than 9n/10) 

 

Proof: Can cover ring using 8 disks of radius 1 

Give upper and lower bounds on number of vertices in inner 
piece 

 

 

 

 

 

Lemma 2: E[S] ≤ 4 𝑛. 



Analysis: Lemma 2 

Pr[ Cut Disk i] ≤ 2 𝑟𝑖 

 

E[S] ≤ 2  𝑟𝑖𝑖  

 

But  𝜋𝑟𝑖
2

𝑖 ≤ 4 𝜋 

 



Planar Duality 

With every connected planar multi-graph can associate a dual graph G^* 

 

Faces -> Vertices    Vertices -> Faces 

 

 

 

 

 

 

 

 

 𝐺∗ might depend on the particular drawing of G. 

 



Dual(Dual(G)) = G. 

 

 

No self-loops  iff graph is 2 edge-connected. 

 

One can also show that no parallel edges  iff no cuts of size 2 (i.e. 
graph is 3-edge connected). 

(formally later when see cycle–cut duality) 

 



Max-cut in Planar Graphs 

In general graphs Max-cut is NP-hard (as opposed 
to min-cut) 

 

Very basic problem 

(delete fewest edges to make graph bipartite) 

(minimum energy state of charges) 

 

 

Can solve in planar graphs exactly 

 

 



Cut Space and Cycle Space 

Consider the 0-1 incidence vector of a cut. 
(view as vector in n(n-1)/2 dimensions over field 𝐹2) 
 
Claim: Form a vector space. 
Proof:  Closed under addition and scalar 
multiplication 
 
Claim:  Generated by singleton cuts.  
(i.e. span(singleton cuts) = Cut Space) 
  



Cycle Space 

Consider the 0-1 incidence vector of collection of edge 
disjoint cycles 

(view as 0-1  vector in n(n-1)/2 dimensions over field 𝐹2) 

 

Claim: Form a vector space. 

Proof:  Closed under addition and scalar multiplication 

 

Claim:  This space is same is Eulerian subgraphs of G 

Proof:  Why? 

 



Connection 

Cut Space(G)   = Cycle Space(𝐺∗) 
 
Claim: Every cut in G corresponds to a collection of Cycles in 𝐺∗. 
 
 
Claim: Every collection of cycles in 𝐺∗corresponds to a cut in G. 
(Hint: Cycle = sum of faces) 
 
 
So, max-cut (G)  = max Eulerian subgraph in G^*. 
 
How do we find it?  
(Hint: Think about how we solved Chinese Postman) 



Uniqueness of Planar Drawings 

Thm: We will show that theorem that if a graph G is 3-vertex connected then 
it is a unique drawing. 
Claim: In any drawing C forms a face  
iff  it is an induced cycle  and G\V(C)  has 1 component. 
 
For =>  (consider where G\(V(C) can lie) 
 
For  <=   Take a face f, and consider corresponding cycle C   
Claim: C is induced cycle.   If not, pick  Consider C\{u}\{v} 
(3 connected implies path  from x to y.  Add a vertex in face and connect to 
u,v,x,y. Get K_5 subdivision.) 
 
Also, G\V(C)  cannot have >=2 components. Pick two vertices, at least 3 vertex 
disjoint paths touching C. Let a,b,c,  be some 3 points of contact. 
Add extra vertex in face  and connect to a,b,c.  Get K_3,3.   

 



Exercises 

1. Using cut-cycle duality, show that G* has  

a) No self loops if graph G is 2-edge connected. 

b) No parallel edges if G is 3-edge connected  

 



Solutions 

1. Let S be separator. And 𝐺1, … , 𝐺𝑘 be pieces of G\S. 

      For each possible independent set X of S,  

      Recursively find optimum independent sets of (𝐺𝑖 + S) for i=1,…,k, 
conditioned on the fact that X is picked in S. 

 

Recurrence:  𝑇 𝐺 ≤ 2 𝑆   (   𝑇 𝐺𝑖𝑖  

 

Can show that   2𝑐 𝑛  fits for n large enough. 

 

Even a sloppy calculation where we assume that we get n components 
all of size 9n/10   would work 

T(n) ≤  24 𝑛  n  T(9n/10 )      



Problem 2 

Algorithm: Keep applying separator theorem to each piece, as long as 
it has more than  than 

1

𝜖2
  vertices. 

 
This is more tricky. Let us see two simplest ideas that do not work. 
 
Let S(n) denote the number of edges we need to remove from a n 
vertex planar graph of get pieces of size 1/\epsilon^2. 
Then get recurrence 
𝑆 𝑛 ≤  4 𝑛 +  𝑆 𝑛1 + … +  𝑆 𝑛𝑘  

Where each 𝑛𝑖 ≤
9𝑛

10
. 

 
Even if k=2,     Assuming 𝑛1, 𝑛2  = 9n/10  will not work. 
Guess:  𝑆 𝑛𝑖  ≤ 𝑐 𝜖 𝑛𝑖 
 
 



Show that S(n) =   𝑐 𝜖𝑛  −    𝑑 𝑛  works for 
some constants c and d.  

 



Another solution based on an intuitive  
charging argument 

 
We need to count how many vertices are removed over 
all.  
So let us try distributing the “mass” of vertices as we 
remove them, and then collect it later. 
This is a very useful way of counting. 
 
Every time you split a piece G by removing the separator 
X,  put  X/G mass on every vertex in G. 
 
Let us count how much mass each vertex can get at the 
end of the algorithm. 


