
1
Planarity Testing and Embedding

Maurizio Patrignani
Roma Tre University

1.1 Properties and Characterizations of Planar Graphs 2
Basic Definitions • Properties • Characterizations

1.2 Planarity Problems . 6
Constrained Planarity • Deletion and Partition Problems • Upward
Planarity • Outerplanarity • Simultaneous Planarity • Clustered
Planarity

1.3 History of Planarity Algorithms. 9
1.4 Common Algorithmic Techniques and Tools 10
1.5 Cycle-Based Algorithms . 11

Adding Segments: The Auslander-Parter Algorithm • Adding Paths:
The Hopcroft-Tarjan Algorithm • Adding Edges: The de

Fraysseix-Ossona de Mendez-Rosenstiehl Algorithm

1.6 Vertex Addition Algorithms . 16
The Lempel-Even-Cederbaum Algorithm • The Shih-Hsu Algorithm •

The Boyer-Myrvold Algorithm

Testing the planarity of a graph and possibly drawing it without intersections is one of the
most fascinating and intriguing algorithmic problems of the graph drawing and graph theory
areas. Although the problem per se can be easily stated, and a complete characterization of
planar graphs is known since 1930, the first linear-time solution to this problem was found
only in the seventies of the last century.

Planar graphs play an important role both in the graph theory and in the graph drawing
areas. In fact, planar graphs have several interesting properties: for example they are
sparse, four-colorable, allow a number of operations to be performed more efficiently than for
general graphs, and their inner structure can be described more succinctly and elegantly (see
Section 1.1.2). From the information visualization perspective, instead, as edge crossings
turn out to be the main responsible for reducing readability, planar drawings of graphs are
considered clear and comprehensible.

In this chapter we review a number of different algorithms from the literature for efficiently
testing planarity and computing planar embeddings. Our main thesis is that all known
linear-time planarity algorithms fall into two categories: cycle-based algorithms and vertex-
addition algorithms. The first family of algorithms is based on the simple observation that
in a planar drawing of a graph any cycle necessarily partitions the graph into the inside and
outside portion, and this partition can be suitably used to split the embedding problem.
Vertex addition algorithms are based on the incremental construction of the final planar
drawing starting from planar drawings of smaller graphs. The fact that some algorithms
were based on the same paradigm was already envisaged by several researchers [Tho99,
HT08]. However, the evidence that all known algorithms boil down to two simple approaches
is a relatively new concept.

0-8493-8597-0/01/$0.00+$1.50
c© 2004 by CRC Press, LLC 1

2 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

The chapter is organized as follows: Section 1.1 introduces basic definitions, properties,
and characterizations for planar graphs; Section 1.2 formally defines the planarity testing
and embedding problems; Section 1.3 follows an historic perspective to introduce the main
algorithms and a conventional classification for them. Some algorithmic techniques are
common to more than one algorithm and sometimes to all of them. These are collected
in Section 1.4. Finally, the two Sections 1.5 and 1.6 are devoted to the two approaches
to the planarity problem, namely the “cycle-based” and the “vertex-addition” approaches,
respectively.

1.1 Properties and Characterizations of Planar Graphs

1.1.1 Basic Definitions

A graph G(V,E) is an ordered pair consisting of a finite set V of vertices and a finite set
E of edges, that is, pairs (u, v) of vertices. If each edge is an unordered (ordered) pair of
vertices, then the graph is undirected (directed). An edge (u, v) is a self-loop if u = v. A
graph G(V,E) is simple if E is not a multiple set and it does not contain self-loops. For the
purposes of this chapter we can restrict us to simple graphs.

The sets of edges and vertices of G can be also denoted E(G) and V (G), respectively. If
edge (u, v) ∈ E, vertices u and v are said to be adjacent and (u, v) is said to be incident
to u and v. Two edges are adjacent if they have a vertex in common.

A (rooted) tree T is a connected acyclic graph with one distinguished vertex, called the
root r. A spanning tree of a graph G is a tree T such that V (T) = V (G) and E(T) ⊆ E(G).

Given two graphs G1(V1, E1) and G2(V2, E2), their union G1 ∪ G2 is the graph G(V1 ∪
V2, E1 ∪ E2). Analogously, their intersection G1 ∩G2 is the graph G(V1 ∩ V2, E1 ∩ E2). A
graph G2 is a subgraph of G1 if G1 ∪ G2 = G1. A subdivision of an edge (u, v) consists of
the insertion of a new node w and the replacement of (u, v) with edges (u,w) and (w, v). A
graph G2 is a subdivision of G1 if it can be obtained from G1 through a sequence of edge
subdivisions.

A drawing Γ of a graph G maps each vertex v to a distinct point Γ(v) of the plane and
each edge (u, v) to a simple open Jordan curve Γ(u, v) with endpoints Γ(u) and Γ(v). A
drawing is planar if no two distinct edges intersect except, possibly, at common endpoints.
A graph is planar if it admits a planar drawing. A planar drawing partitions the plane
into connected regions called faces . The unbounded face is usually called external face
or outer face. If all the vertices are incident to the outer face the planar drawing is called
outerplanar and the graph admitting it is an outerplanar graph. Given a planar drawing,
the (clockwise) circular order of the edges incident to each vertex is fixed. Two planar
drawings are equivalent if they determine the same circular orderings of the edges incident
to each vertex (sometimes called rotation scheme). A (planar) embedding is an equivalence
class of planar drawings and is described by the clockwise circular order of the edges incident
to each vertex. A graph together with one of its planar embedding is sometimes referred to
as a plane graph.

A path is a sequence of distinct vertices v1, v2, . . . , vk, with k ≥ 2, together with the edges
(v1, v2), . . . , (vk−1, vk). The length of the path is the number of its edges.

A cycle is a sequence of distinct vertices v1, v2, . . . , vk, with k ≥ 2, together with the
edges (v1, v2), . . . , (vk−1, vk), (vk, v1). The length of a cycle is the number of its vertices or
the number of its edges.

An undirected graph G is connected if, for each pair of nodes u and v, G contains a path
from u to v. A k-connected graph G is such that removing any k − 1 vertices leaves G
connected; 3-connected, 2-connected, and 1-connected graphs are also called triconnected ,

1.1. PROPERTIES AND CHARACTERIZATIONS OF PLANAR GRAPHS 3

biconnected , and simply connected graphs, respectively. A separating k-set is a set of k
vertices whose removal disconnects the graph. Separating 1- and 2-sets are called cutvertices
and separation pairs , respectively. Hence, a connected graph is biconnected if it has no
cutvertices and it is triconnected if it has no separation pairs.

If a graph G is not connected, its maximal connected subgraphs are called the connected
components of G. If G is connected, its maximal biconnected subgraphs are called the
biconnected components or blocks of G. Note that a cutvertex belongs to several blocks and
that a biconnected graph has only one block. The graph whose vertices are the blocks and
the cutvertices of G and whose edges link cutvertices to the blocks they belong to is a tree
and is called the block-cutvertex tree (or BC-tree) of G.

Given a biconnected graph G, its triconnected components are obtained by a complex
splitting and merging process. The first linear-time algorithm to compute them was intro-
duced in [HT73], while an implementation of it is described in [GM01]. The computation
has two phases: first G is recursively split into its split components ; second, split compo-
nents with exactly two vertices and triangle split components are merged together as much
as possible to obtain parallel triconnected components and series triconnected components,
respectively. The split operation is performed with respect to a separation pair {v1, v2} of G.
Consider one connected component G1 obtained by removing {v1, v2}. Let G′

1 be the sub-
graph of G induced by vertices V (G1)∪{v1, v2} and let G′

2 = (V (G)/V (G1), E(G)/E(G′
1)).

Observe that vertices v1 and v2 belong to both G′
1 and G′

2 and that edge (v1, v2), provided
that it exists, belongs to G′

1. A split operation consists of replacing G with G′′
1 and G′′

2 ,
where G′′

1 and G′′
2 are obtained from G′

1 and G′
2 by adding the virtual edge (v1, v2). The

split components of a graph G are obtained by recursively splitting G until a separation pair
can be found in the obtained graphs. Split components are not unique and, hence, are not
suitable for describing the structure of G. Two split components are adjacent if the have the
same virtual edge (v1, v2). Such adjacent split components could be merged by identifying
the two copies of v1 and v2 and by removing the two copies of virtual edge (v1, v2). By
merging together all the split components that have only two vertices {v1, v2} we obtain
parallel triconnected components. By merging together all adjacent triangle split compo-
nents we obtain series triconnected components. Split components that are not affected by
the merging operations described above are called rigid triconnected components.

Triconnected components are unique and are used to describe the inner structure of a
graph. In fact, a graph G can be succinctly described by its SPQR-tree T , which provides
a high-level view of the unique decomposition of the graph into its triconnected compo-
nents [DT96a, DT96b, GM01]. Namely, each triconnected component corresponds to a
node of T . The triconnected component corresponding to a node µ of T is called the
skeleton of µ. As there are parallel, series, and rigid triconnected components, their corre-
sponding tree nodes are called P-, S-, and R-nodes, respectively. Triconnected components
sharing a virtual edge are adjacent in T . Usually, a fourth type of node, called Q-node,
is used to represent an edge (u, v) of G. Q-nodes are the leaves of T and they don’t have
skeletons. Tree T is unrooted, but for some applications it could be thought as rooted at
an arbitrary Q-node.

The connectivity properties of a graph have a strict relationship with its embedding
properties. Triconnected planar graphs (and triconnected planar components) have a single
embedding up to a flip (that is, up to a reversal of all their incidence lists) [Whi32]. The same
thing holds for biconnected outerplanar graphs and their unique outerplanar embedding
(adding a star on the outer face yields a triconnected plane graph).

A non-connected graph is planar if and only if all its connected components are planar.
Thus, in the following, without loss of generality, we only consider the planarity of connected
graphs. Also, a planar embedding of a graph implies a planar embedding for each one of its

4 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

blocks, while, starting from a planar embedding of the blocks, a planar embedding for the
whole graph can be found. Thus, since the blocks can be identified in linear time [Tar72],
a common strategy, both to test planarity and to compute a planar embedding, is that of
dividing the graph into its blocks, and tackle each block separately.
Finally, a graph is planar if and only if its triconnected components are planar [Mac37b].

More precisely, as parallel and series triconnected components are always planar, a graph is
planar if and only if all its rigid triconnected components are planar. However, since dividing
a graph into its triconnected components is a linear but rather laborious process [HT73,
GM01], usually planarity algorithms do not assume that the input graph is triconnected.

Also, from a planar embedding of the triconnected components of a graph a planar
embedding of the whole graph can be obtained. This property can be exploited to explore
the planar embeddings of a given graph in search for some embedding that has a specific
property (see, for example, [MW99, MW00, BDBD00, GMW01, ADF+10]).
Given a plane (multi)graph G, its plane dual (or simply its dual) is the multigraph G∗

such that G∗ has one vertex for each face of G and two vertices of G∗ are linked by one edge
e∗ if the corresponding faces in G share one edge e. Observe that the planar embedding of
G induces a planar embedding of its dual and that the dual of the dual of G is G itself.
Also, different embeddings of a planar graph G correspond to different dual graphs. Finally,
a cycle in G corresponds to a minimal cut in G∗ (anytime this property holds G and G∗

are called abstract dual).
A graph G(V,E) is k colorable if its vertices can be partitioned into k sets V1, V2, . . . , Vk

in such a way that no edge is incident to two vertices of the same set. A graph G(V,E)
is complete if each vertex in V is adjacent to each other.
A graph G(V,E) is bipartite if it is 2 colorable. A bipartite graph G(V1, V2, E) is complete

if each vertex in V1 is adjacent to all vertices in V2.

1.1.2 Properties

Planar graphs have a variety of properties whose exploitation allows to efficiently perform
a number of operations on them.

Perhaps the most renown property is the one stated by Euler’s Theorem, which shows
that planar graphs are sparse. Namely, given a plane graph with n vertices, m edges and f
faces, we have n−m+ f = 2. A simple corollary is that for a maximal planar graph with
at least three vertices, where each face is a triangle (2m = 3f), we have m = 3n − 6, and,
therefore, for any planar graph we have m ≤ 3n − 6. This number reduces to m = 2n − 3
for maximal outerplanar graphs with at least three vertices (and m ≤ 2n − 3 for general
outerplanar graphs). Also, if n ≥ 3 and the graph has no cycle of length 3, then m ≤ 2n−4.
Finally, if the graph is a tree, then m = n− 1.
These considerations allow us to replace m with n in any asymptotic calculation involving

planar graphs, while for general graph only m ∈ O(n2) can be assumed. From a more
practical perspective, they allow us to decide the non-planarity of denser graphs without
reading all the edges (which would yield a quadratic algorithm).
The Four Color Theorem [AH77, AHK77, RSST97] asserts that any planar graph is

four colorable and settles a conjecture that was for more than a century the most famous
unsolved problem in graph theory and perhaps in all of mathematics [Har69]. To stress
how important this property is, it suffices to observe that, apart from being considered
an important property of planar graphs, it has also been mentioned as the most notable
property of the number four.

While 3-colorability is NP-hard even on maximum degree four planar graphs [GJS76],
every triangle-free planar graph is 3-colorable [Grö59] and such a 3-coloring can be found

1.1. PROPERTIES AND CHARACTERIZATIONS OF PLANAR GRAPHS 5

in linear-time [DKT09].
Determining if the graph contains a k-clique, i.e., a set of k pairwise adjacent vertices, is

polynomial for planar graphs, as no clique can have more than four vertices. This problem is
polynomial even in the weighted case, where each vertex is associated with a weight and the
sum of the weights of the pairwise adjacent vertices is requested to be at least k. Observe
that both these problems are NP-complete on non-planar graphs.
Graph isomorphism is linear for planar graphs [HW74], while it is of unknown complexity

for general graphs [GJ79].
The planar separator theorem [LT79] states that every planar graph G = (V,E) admits a

partition of its n vertices into three sets A,B, and C, such that the size of C is O(
√
n), the

size of A and B is at most 2

3
n, and there is no edge with one endpoint in A and the other

endpoint in B. Such a partition can be found in linear time and is the starting point of a
hierarchical decomposition of the graph that may lead to efficient approaches to compute
properties of the graph.

1.1.3 Characterizations

The first complete characterization of planar graphs is due to Kuratowski [Kur30], and
states that a graph is planar if and only if it contains no subgraph that is a subdivision of
K5 or K3,3, where K5 is the complete graph of order 5 and K3,3 is the complete bipartite
graph with 3 vertices in each of the sets of the partition. An equivalent later result, recasted
in terms of graph minors, is Wagner’s theorem that states that a graph G is planar if and
only if it has no K5 or K3,3 as minor, that is, K5 or K3,3 cannot be obtained from G by
contracting some edges, deleting some edges, and deleting some isolated vertices [Wag37a,
HT65]. Observe that the two characterizations are different since a graph may admit K5

as minor without having a subgraph that is a subdivision of K5 (consider, for example, a
graph of maximum degree 3).

Similarly, it can be proved that a graph is outerplanar if and only if it contains no
subgraph that is a subdivision of K4 or K2,3. Trivially, a graph is a tree if it does not
contain a subdivision (or a minor) of K3.

If the graph is triconnected a less renown but much simpler characterization can be
formulated. Namely, a triconnected graph distinct from K5 is planar if and only if it
contains no subgraph that is a subdivision of K3,3 [Wag37b, Hal43, Kel93, Lie01].

Given a graph G with no isolated vertices, the associated height-two vertex-edge poset
<G has V ∪ E as elements, and v <G e if and only if v ∈ V , e ∈ E, and v is an endpoint
of edge e. The smallest number of total orders the intersection of which yields the poset
is called the dimension of the poset. Graph G is planar if and only if its corresponding
vertex-edge poset has dimension at most three [Sch89]. Unfortunately, checking if a poset
has dimension at most t is proved to be NP-complete for t ≥ 3 and for t ≥ 4 if the poset
has height two [Yan82].

Edges traversing a bipartition of the vertices of G are called a cocycle. Observe that
while a cycle is a collection of edges that covers each vertex an even (possibly zero) number
of times, a cocycle is a collection of edges that intersects each cycle in an even number
of edges. A bicycle is a collection of edges that is both a cycle and a cocycle. Planarity
can be characterized in terms of the properties of the vector spaces of cycles [Mac37a],
cocycles [APBL95, LS10], and bicycles [APBL95].

A further planarity characterization is expressed via Colin de Verdiére’s graph invariant
µ(G), which in turn is based on the maximum multiplicity of the second eigenvalue of
certain Schrödinger operators defined by the graph [Col90, Col91], and states that a graph
G is planar if and only if µ(G) ≤ 3.

6 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

Alternative characterizations can be found in the literature based on the existence of
an abstract dual graph [Whi32], on the edge poset dimension [dO96], on the relationship
among theta-graph minors [AŠ98], on the orientability of circuits [LH77, Che81], on the
arrangements of pseudo-lines [TT97], or on DFS traversals of the graph [dR82, dR85, SH93,
SH99, BM99, BM04].

1.2 Planarity Problems

The main planarity problem is the decision problem of recognizing planar graphs, that is of
deciding the planarity of the input graph. Both with the purpose of exhibiting a planarity
certificate and of producing a planar embedding for information-visualization applications,
planarity testing algorithms are usually coupled with planar embedding procedures, that
sometimes, depending on the algorithmic approach, required themselves a considerable
research effort to be devised.

On the opposite, if the graph is not planar, the search for a non-planarity certificate is
called Kuratowski subgraph isolation [CMS08], and the research concentrated on planariza-
tion algorithms that allow us to produce a planar graph where some degree-four vertices
have been added to replace crossings [Lie01]. Since crossing number minimization is NP-
complete [GJ79] planarization algorithms use heuristics to introduce a reduced number of
dummy vertices.

Dynamic algorithms have also been devised for efficiently determining planarity and com-
puting a planar embedding of graphs where edges and vertices are added or deleted one at
a time [DT89, DT96b, GIS99, DBTV01].

Efficient algorithms for planarity testing in parallel have been investigated in [KR88,
RR89, RR94].

1.2.1 Constrained Planarity

The problem of determining the planarity of a graph and of computing a possible embedding
of it can be combined with additional constraints on the desired drawing that result in re-
strictions on the set of admissible planar embeddings [Tam98, GKM08]. Typical constraints
ask for some vertices to be on the same face (usually the outer face), some vertex to have
a specified circular ordering of its incident edges, some path to be drawn along a straight
line, etc. In the easier cases, such constraints can be enforced by replacing sets of nodes
and edges of the input graph with suitable gadgets, by launching an ordinary planarity
algorithm, and by transferring the results back on the original graph. More complex cases
require to efficiently explore the possible embeddings of the graph by considering their inner
structures described by their BC-trees and SPQR-trees. In [GKM08] embedding constraints
that restrict the admissible order of incident edges around a vertex are considered.

A very restrictive constraint is when the input graph G is partially embedded, i.e. when a
subgraph H of G is provided with an embedding H. In this case, the problem of determining
a planar embedding of the whole graph that extends the embedding H, if one exists, is
linear [ADF+10]. Also, if the answer is negative, an obstruction taken from a collection of
minimal non-planar instances can be produced in polynomial-time [JKR11].

A constrained planarization is implied anytime an embedding that minimizes some qual-
ity measure is desired. As pointed out in [BM90, PT00, Piz05], the quality of a planar
embedding can be measured in terms of the maximum distance of its vertices from the
external face. Such a distance can be given in terms of different incidence relationships
between vertices and faces. For example, if two faces are considered adjacent when they

1.2. PLANARITY PROBLEMS 7

share a vertex, then the maximum distance to the external face is called radius [RS84]. If
two vertices are adjacent when they are endpoints of an edge, then the maximum distance
to the external face is called width [DLT84]. If two vertices are adjacent when they are
on the same face and the external face is adjacent to all its vertices, then the maximum
distance to the external face is called outerplanarity [Bak94]. If two faces are adjacent when
they share an edge, then the maximum distance to the external face is called depth [BM88].
In [PT00, GM04] algorithm are proposed to minimize the maximum distance of the bicon-
nected components of the graph from the external face, where two biconnected components
are adjacent if they share a cut-vertex. This measure, which is also called “depth”, is a
rougher indicator of the quality of the embedding but can be computed in linear time.

In [BM90], Bienstock and Monma present an algorithm to compute the planar embed-
ding of an n-vertex planar graph with minimum maximum distance to the external face in
O(n5 log n) time, which is improved to O(n4) time in [ADP11]. The considered distance
is the depth. However, it is possible to compute the radius, the width, and the outerpla-
narity of a graph by modifying and simplifying the algorithm for the minimum depth, since
such distance measures are intrinsically simpler to compute than the depth [BM90]. The
complexity bounds for computing such simpler distance measures is improved in [Kam07],
where an algorithm that computes the outerplanarity of an n-vertex planar graph in O(n2)
time is described. Simple variations of this algorithm can lead to compute the radius in
O(n2) time and the width in O(n3) time [Kam07].

1.2.2 Deletion and Partition Problems

Deleting the minimum number of edges in order to obtain a planar graph is called maximum
planar subgraph and proved to be NP-hard in [GJ79]. Analogously, deleting the minimum
number of vertices in order to obtain a planar graph is called maximum induced planar
subgraph and proved to be NP-hard in [Yan78].

The problem of partitioning the edges of a graph G = (V,E) into k sets E1, . . . , Ek in such
a way that each graph Gi = (V,Ei), with i = 1, 2, . . . k is planar is called graph thickness
and is shown to be NP-hard for k = 2 in [Man83].

1.2.3 Upward Planarity

If the input graph G is directed, adding the requirement that the drawing of G is up-
ward, that is that each edge is a curve of increasing y-coordinates, transforms the planarity
problem into the upward planarity one, which was shown to be NP-complete in [GT01].
However, Upward Planarity Testing turns out to be polynomial for several families of

directed graphs:

1. if the digraph G is outerplanar. This problem was shown to be O(n2) in [Pap95].

2. If the digraph G is triconnected [BD91, BDLM94].

3. If the digraph G has a fixed embedding. An O(n2)-time algorithm was introduced
in [BDLM94]. Linear in the case of embedded outerplanar graphs ([Pap95]).

4. If the digraph G is single-source. The O(n2)-time algorithm described in [HL96]
was improved to linear in [BDMT98].

1.2.4 Outerplanarity

Determining if a graph is outerplanar and producing an outerplanar drawing of it is a
problem that can be solved independently or by using a planarity algorithm as a subroutine.

8 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

In fact, a graph G = (V,E) is outerplanar if and only if it is planar the graph G′(V ′, E′),
where V ′ = V ∪ {v} and E′ is obtained from E by adding an edge (vi, v) for each vertex
vi ∈ V .

Deleting the minimum number of vertices from a graph in order to make it outerplanar
is NP-complete [Yan78].

1.2.5 Simultaneous Planarity

A recent variant of the planarity problem asks for the simultaneous embedding of two
graphs on the same set of vertices V . Namely, a simultaneous embedding of G1 = (V,E1)
and G2 = (V,E2) consists of two planar drawings Γ1 and Γ2 of G1 and G2, respectively,
such that any vertex v ∈ V is mapped to the same point in each of the two drawings.
When Γ1 and Γ2 are required to be straight-line drawings, this problem is called geometric
simultaneous embedding . When edges common to E1 and E2 are required to be represented
by the same Jordan curve in Γ1 and Γ2 this problem is called simultaneous embedding with
fixed edges (or SEFE, for short). The above definition can be easily generalized to k graphs
Gi = (V,Ei), with i = 1, 2, . . . , k.
Geometric simultaneous embedding turns out to have limited usability, since testing

whether two planar graphs admit such an embedding is NP-hard [EBGJ+07] and since a geo-
metric simultaneous embedding does not always exist for two outerplanar graphs [BCD+07],
for two trees [GKV09], and even for a tree and a path [AGKN12].

Conversely, for several classes of graphs the computation of a simultaneous embedding
with fixed edges, if any, can be performed in polynomial time [EK05, DL07, Fra06, FGJ+08,
JS09, ADF+10, HJL10, ADF+11], although the general problem is of unknown complexity.

1.2.6 Clustered Planarity

The user’s need of drawing some set of vertices near one to the other naturally leads to the
requirement of drawing them inside the same simple closed region of the plane. This target
is pursued by clustered planarity where the containment relationship among regions and
vertices is described by an arbitrary hierarchy. More formally, a clustered graph C(G,T) is
a graph G and a rooted tree T whose leaves are the vertices of G. A c-planar drawing of
C(G,T) is such that G is planarly drawn and each internal node ν of T is a simple closed
region R(ν) such that:

• R(ν) contains the drawing of the graph G(ν) induced by the vertices that are
leaves of the subtree rooted at ν;

• R(ν) contains a region R(µ) if and only if µ is a descendant of ν in T ;

• any two regions R(ν1) and R(ν2) do not intersect if ν1 is not an ancestor or a
descendant of ν2; and

• an edge e does not cross the boundary of a region R(ν) more than once.

Restrictions on the c-planarity testing problem that have been considered in the litera-
ture include: (i) assuming that each cluster induces a small number of connected compo-
nents [FCE95b, FCE95a, Dah98, GJL+02, GLS05, CW06, CDF+08, JJKL08]; (ii) consid-
ering only flat hierarchies, where all clusters different from the root of T are children of the
root [CDPP04, DF08]; (iii) focusing on particular families of underlying graphs [CDPP04,
CDPP05, JKK+08]; and (iv) fixing the embedding of the underlying graph [DF08, JKK+08].
Although the general problem is of unknown complexity, it has been shown to be polynomial-

time solvable in the following cases:

1.3. HISTORY OF PLANARITY ALGORITHMS 9

• If the subgraph G(ν) induced by each cluster ν is connected the clustered graph
is called c-connected. The algorithm proposed in [FCE95b, FCE95a] is quadratic.
Linear-time algorithms are described in [Dah98, CDF+08]. The case when each
cluster induces at most two connected components has been investigated in [JJKL08].

• The results [BKM98, Bie98] on “partitioned drawings” of graphs can be inter-
preted as linear-time c-planarity tests for non-connected flat clustered graphs
with exactly two clusters. The same result (flat clustered planarity for non-
connected graphs with exactly two clusters) is shown in [HN09] where the prob-
lem is modeled as a two-page book embedding.

• Gutwenger et al. presented a polynomial-time algorithm for c-planarity testing
for almost connected clustered graphs [GJL+02], i.e., graphs for which all nodes
corresponding to the non-connected clusters lie on the same path in T starting
at the root of T , or graphs in which for each non-connected cluster its parent
cluster and all its siblings in T are connected.

• Cortese et al. studied the class of non-connected clustered graphs such that the
underlying graph is a cycle and the clusters at the same level of T also form a
cycle, where two clusters are considered adjacent if they are incident to the same
edge [CDPP04, CDPP05]. The c-planarity testing and embedding problem is
linear for this class of graphs.

• Goodrich et al. introduced a polynomial-time algorithm for producing planar
drawings of extrovert clustered graphs [GLS05], i.e., graphs for which all clusters
are connected or extrovert. A cluster µ with parent ν is extrovert if and only if ν
is connected and each connected component of µ has a vertex with an edge that
is incident to a cluster which is external to ν.

• Jeĺınková et al. presented a polynomial-time algorithm for testing the c-planarity
of “k-rib-Eulerian” graphs [JKK+08]. A graph is k-rib-Eulerian if it is Eulerian
and it can be obtained from a 3-connected planar graph with k vertices, for some
constant k, by replacing some edges with one or more paths in parallel.

1.3 History of Planarity Algorithms

Directly applying Kuratowski’s characterization of planar graphs based on subdivisions
would yield an exponential-time algorithm while Wagner’s characterization based on mi-
nors would give a factorial-time algorithm. The first polynomial-time algorithms for pla-
narity are due to Auslander and Parter citeap-igs-61, Goldstein [Gol63], and, independently,
Bader [Bad64].

In 1974 Hopcroft and Tarjan [HT74] proposed the first linear-time planarity testing algo-
rithm. This algorithm, also called “path-addition algorithm,” starts from a cycle and adds
to it one path at a time. However, the algorithm is so complex and difficult to implement
that several other contributions followed their breakthrough. For example, about twenty
years after [HT74], Mehlhorn and Mutzel [MM96] contributed a paper to clarify how to
construct the embedding of a graph that is found to be planar by the original Hopcroft and
Tarjan algorithm.

A different approach has its starting point in the algorithm presented by Lempel, Even,
and Cederbaum [LEC67]. This algorithm, also called “vertex-addition algorithm,” is based
on considering the vertices one-by-one, following an st-numbering; it has been shown to be
implementable in linear time by Booth and Lueker [BL76], while a linear-time algorithm
for computing the needed st-numbering was provided in [ET76]. Also in this case, a further

10 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

contribution by Chiba, Nishizeki, Abe, and Ozawa [CNAO85] has been needed for showing
how to construct an embedding of a graph that is found planar.

A further interesting algorithm [dOR06, de 08, Bra09] is based on a characterization
given by de Fraysseix and Rosenstiehl [dR82, dR85] in turn based on intuitions of Liu and
Wu [Wu74, Ros80, Liu88, Liu89, Xu89]. For a long time the algorithm has not been fully
described in the literature but had a very efficient implementation in the Pigale software
library [dO02].

However, although the planarity problem has been carefully studied in the above cited
literature, the story of the planarity testing algorithms enumerates several more recent
contributions. The motivations behind such relatively new papers are two-fold. On one
side, even if the known algorithms are combinatorially elegant, they are quite difficult to
understand and to implement. On the other side, the researchers are interested in deepening
the relationships between planarity and Depth First Search (DFS). Such relationships are
clearly strong but, probably, up to now, not completely understood.

Two recent DFS-based planarity testing algorithms, whose similarities were stressed
in [Tho99], are those presented by Shih and Hsu [SH93, SH99, Hsu03] and by Boyer and
Myrvold [BM99, BM04].

The Shih-Hsu algorithm replaces biconnected portions of the graph with single nodes,
called C-nodes, whose embedding is fixed.

The Boyer and Myrvold algorithm represents embedded biconnected portions of the graph
with a data structure that allows the embeddings to be “flipped” in constant time.

1.4 Common Algorithmic Techniques and Tools

In this section we introduce some definitions and common techniques used by the planarity
testing algorithms. The most important technique, common to almost all the algorithms,
is Depth First Search, or DFS in short. DFS is a method for visiting all the vertices of a
graph G. It starts from an arbitrarily chosen vertex of G, and continues moving from the
current vertex to an adjacent one, as long as unexplored neighbors are found. When the
current vertex has no unexplored neighbors, the traversal backtracks to the first vertex with
an unexplored adjacent vertex.

The edges by which DFS discovers new vertices of G form a spanning tree T of G, called
Palm Tree, or DFS Tree. The root of T is the vertex at which the traversal started. The
edges of T are called tree edges, while the remaining edges of G are called back edges (or
co-tree edges).

After performing a DFS traversal, each vertex v of G can be associated with a DFS index ,
DFS(v), that is the order in which v was reached during the DFS visit. The root of T has
index one. For a tree edge (u, v), we have that DFS(u) < DFS(v). On the contrary, a
back edge is oriented from the end vertex with higher DFS index to the end vertex with
lower DFS index. An example DFS is shown in Fig. 1.1.

For each vertex v of G, we can also define two sets of edges, called Bin(v) and Bout(v).
These sets contain respectively the back edges entering and exiting v. Note that each back
edge in Bin(v) connects v to a descendant in the DFS tree, while each back edge in Bout(v)
connects v to an ancestor. Given a tree edge e = (u, v), its returning edges are those back
edges that from a descendant of v (included v itself) go to an ancestor of u different from u
itself. At last, the lowpoint of a vertex v, denoted by lowpt(v), is the lowest DFS index of
an ancestor of v reachable through a back edge from a descendant of v. Analogously, the
highpoint of a vertex v, denoted by highpt(v), is the highest DFS index of an ancestor of v
reachable through a back edge from a descendant of v.

1.5. CYCLE-BASED ALGORITHMS 11

9

6 7 10 11

1

2

3 8

4 5

Figure 1.1 A DFS traversal of a graph. Thick lines represent the tree edges, while the
back edges are drawn with dashed lines. Each vertex is identified with its DFS index.

1.5 Cycle-Based Algorithms

The shared foundation of all algorithms in this section is an intuitive observation formalized
in the Jordan curve theorem: every simple closed curve divides the plane into two connected
regions, and hence there is no way to connect two points in both regions without crossing
that curve.

Acyclic (undirected) graphs are forests, and therefore planar. If a graph does contain a
cycle, that cycle yields a simple closed curve in any planar drawing of it. Consequently,
each of the remaining connected parts of the graph needs to be drawn entirely in one of the
two connected regions bounded by the cycle. Deciding whether this is possible, and which
region to choose, is the essence of planarity testing and embedding, respectively.

It will take three major steps to arrive at simple linear-time algorithms based on this
observation. The first step consists in formalizing the approach in a recursive algorithm,
the second step yields a linear-time realization of the algorithm, and the third step simplifies
the second while adding a corresponding combinatorial characterization.

1.5.1 Adding Segments: The Auslander-Parter Algorithm

Algorithms based on the above cycle criterion were first proposed in [AP61] (see also [Gol63,
Bad64, DETT99]).

To introduce the approach formally, consider a simple cycle C in a biconnected graph G.
Recall that a graph is planar if and only if its biconnected components are, and that every
edge of a biconnected graph is contained in at least one cycle. Each such cycle C yields a
collection of connected, edge-induced subgraphs Si, i = 1, . . . , k as follows. Either Si is an
edge that connects two vertices of C that are not consecutive (i.e., a chord), or Si is induced
by the edges of a connected component of G \ C together with the edges connecting that
component to C. Each Si is called a segment and, because of biconnectivity, contains at
least two vertices of C, referred to as the attachments of Si. Note that vertices of C may
be attachments of any number of segments.

A cycle C of G is said to be separating if it has at least two segments, while is called
non-separating otherwise. Of course, if G is a cycle, then C has no pieces and is non-
separating. In order to recur on subgraphs, the Auslander-Parter algorithm needs to
pick a separating cycle.

12 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

LEMMA 1.1 [DETT99] Let G be a biconnected graph, let C be a non-separating cycle
of G, and let P be its only segment. If P is not a path, then G has a separating cycle C ′

consisting of a subpath of C plus a path γ of P between two attachments.

Proof: Let u and v be two attachments of P that are consecutive in the circular ordering
of C, let α be a subpath of C between u and v that does not contain any other attachment
of P to C, and let β be the subpath of C between u and v different from α. Since P is
connected, there is a path γ in P between u and v. Let C ′ be the cycle obtained from C
by replacing α with γ. We have that α is a segment of G with respect to C ′. If P is not a
path, let e be an edge of P not in γ. There is a segment of C ′ distinct from α containing e.
Therefore, if P is not a path, then C ′ has at least two segments and is thus a separating
cycle of G. 2

We have already argued that segments must be drawn entirely in one of the two regions
created by the drawing of C. Two segments are said to be compatible, if they can be
drawn in the same region of C, and conflicting otherwise. The following lemma shows that
compatibility has a simple characterization.

LEMMA 1.2 Two segments are compatible, if and only if their attachments do not in-
terleave.

The interlacement graph of the segments of G with respect to C is the graph whose
vertices are the segments of G and whose edges are the pairs of interlacing segments. If
there are more than two pairwise incompatible segments, the graph is not planar, because
there are only two regions in which they can be drawn. If G is planar, then the interlacement
graph is bipartite and two-colorable, each color corresponding to one side of C. We can
recursively check the planarity of all subgraphs obtained from the union of a segment Si

and C.

The Auslander-Parter algorithm is based on the following intuitive recursive charac-
terization of planarity for biconnected graphs.

Theorem 1.1 [DETT99] A biconnected graph G with a cycle C is planar if and only if
the following two conditions hold:

• The interlacement graph of the segments of G with respect to C is bipartite.

• For each segment P of G with respect to C, the graph obtained by adding P to C
is planar.

Proof: If the graph is planar, it is easy to see that the two conditions hold by considering
a planar drawing of it. If the two conditions hold, the proof is by construction and is based
on the fact that compatible segments do not interleave (Lemma 1.2) and, hence, can be
planarly arranged on the same side of C. 2

The algorithm has three cases:

Trivial case. Graph G is a single cycle C. This case can only occur at the beginning
of the computation and terminates it.

Base case. Cycle C separates a single segment, which is a path. This terminates the
current branch of the computation (there will be no recursion).

Recursive case. A separating cycle C can be found in G. If the interlacement graph

1.5. CYCLE-BASED ALGORITHMS 13

is not bipartite, the algorithm terminates with a non-planarity. Otherwise, re-
cursion is needed on the subgraphs composed by C and each segment.

Here it is not necessary to describe this algorithm in more detail, because, in fact, the
subsequent ones are instantiations of this rather generic approach.

It can be shown that the number of recursions is O(n) and that the interlacement graph
has size O(n2), yielding an O(n3) time algorithm. Also, it is worth mentioning that for
a graph that turns out to be planar, the embedding is constructed bottom-up, where pla-
nar embeddings may have to be flipped depending on which region they are placed in.
There is an interesting alternative approach presented by Demoucron, Malgrange, and Per-
tuiset [DMP64]. Instead of recursively testing segments for planarity, they start from a fixed
embedding of one cycle, and incrementally add only a path connecting two attachments of
a segment into a face of the current embedding. This approach requires a careful selection
of (facial) cycles and paths and yields a quadratic-time algorithm, but is the only algorithm
known to us that does not require alterations of preliminary embeddings.

1.5.2 Adding Paths: The Hopcroft-Tarjan Algorithm

The relative inefficiency of recursively testing augmented segments for planarity is caused
by a lack of control over the instances obtained when selecting a cycle.

By exploiting the special structure of DFS trees, Hopcroft and Tarjan [HT74] (see also [Deo76,
RND77, Eve79, Wil80]) were able to serialize the combination of trivially planar segments
(namely, paths) in a bottom-up fashion.

Let us start from a spine cycle, i.e., a fundamental cycle consisting of a path of tree
edges starting at the root of the DFS tree together with a single back edge returning to
the root. Call the subgraph consisting of only the spine cycle G0. Next, segments are
added recursively one path at a time, which is why the algorithm is often referred to as the
path-addition approach.

To explain the order in which paths are selected, consider the subgraph Gi consisting of
the spine cycle and the first i paths, and an edge e that is incident to but not contained in Gi.
Define the segment S(e) of e to be the inclusion-maximal connected subgraph containing
e, in which no vertex of Gi has degree larger than one. Moreover, define the vertex with
the lowest DFS number in S(e) to be the lowpoint of the segment. Since G is biconnected,
S(e) contains at least two vertices of Gi, which we call attachments as well. By the order
in which paths are inserted, the lowpoint of S(e) will always be an attachment.

Now assume that the DFS tree was pre-built to determine lowpoints and biconnected
components. When exploring the tree once again, but this time by traversing edges with
lower lowpoints first, we are effectively performing a recursive traversal of segments in
which segments with lower lowpoints are traversed first. This order is crucially important
for our ability to test efficiently whether segments are conflicting, because it ensures that the
attachments of a segment are visited in order of non-decreasing lowpoints. We can therefore
place lowpoints on a stack and remove them from the top of the stack during backtracking,
thus maintaining in the stack all attachments in the order in which they appear in the lower
part of the segment-defining cycle not yet backtracked over. Recall that two segments are
compatible if their attachments do not interleave.

Again, we do not go into further details, because the approach is further simplified below.
We just note that the algorithm can actually be implemented to run in linear time, but
that this is quite difficult and that it took many years until this test was complemented by
an embedding phase [MM96] (which is also linear-time).

14 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

Part of the difficulty is in the absence of a characterization of planarity that is closely
tied to the workings of the algorithm.

1.5.3 Adding Edges: The de Fraysseix-Ossona de Mendez-Rosenstiehl Al-
gorithm

While we have argued that the test of Hopcroft and Tarjan implements that of Auslander
and Parter by recursively building up segments one path at a time, it turns out that the
original approach can be further simplified by interpreting it on an even more detailed level,
adding one edge at a time.

This does not only simplify the algorithm, it also yields a characterization of planarity
that provides a less procedural proof of correctness and a straight-forward embedding.
Therefore, following the approach of [Bra09], we first recall the characterization and then
revisit the algorithm.

Consider a connected undirected graph which needs not to be biconnected, and let G =
(V, T ⊎ B) be the directed graph obtained from a DFS, where T is the set of tree edges
and B the set of back edges. We say that G is a DFS-orientation of the original graph.
Note that this is not a procedural definition, since such an orientation is characterized by
consisting of a rooted spanning tree such that each non-tree edge defines a directed cycle.

DEFINITION 1.1 [dOR06] Let G = (V, T ⊎ B) be a DFS-oriented graph. A partition
B = L⊎R of its back edges into two classes, referred to as left and right, is called left-right
partition, or LR partition for short, if for every vertex v with incoming tree edge e and
outgoing edges e1, e2

• all return edges of e1 ending strictly higher than lowpt(e2) belong to one class
and

• all return edges of e2 ending strictly higher than lowpt(e1) belong to the other
class.

As each back edge returns to an ancestor of its source, it implicitly defines a cycle, which
is called fundamental cycle. Intuitively, the partition of the back edges into classes L and R
corresponds to orienting such fundamental cycles in such a way that those closed by back
edges in L are counterclockwise while those closed by back edges in R are clockwise.

Theorem 1.2 A graph is planar if and only if it admits an LR partition.

Necessity of the condition of Theorem 1.2 is straightforward: given a DFS tree and a
planar embedding of the graph it suffices to assign each back edge to the classes L or
R depending on whether the fundamental cycle it closes is counterclockwise or clockwise,
respectively. Sufficiency is shown by constructing a planar embedding from a given LR
partition. First observe that in an LR partition it can be assumed that all return edges
from a tree edge e that return to lowpt(e) are on the same side. Such a LR partition is
called aligned . If a partition is not aligned an equivalent aligned partition can be found.

In order to obtain a planar embedding the LR partition is extended to cover also outgoing
tree edges and, for each vertex v, a linear nesting order is defined on its exiting tree edges.
Such an order contains both right and left outgoing edges of v mixed together: restricted
to the right outgoing tree edges it gives their clockwise order around v and restricted to the
left outgoing tree edges it gives their counterclockwise order around v. The final embedding
for each vertex v is obtained by suitably interleaving outgoing tree edges with back edges

1.5. CYCLE-BASED ALGORITHMS 15

entering v.
The extension of the LR partition to tree edges is straightforward. If a tree edge has

some return edges (i.e., its source is neither the root nor a cut vertex), it is assigned to the
same side as one of its return edges ending at the highest return point. Otherwise, the side
is arbitrary.

To determine the linear nesting order for tree edges outgoing v, suppose first that all back
edges belong to R and consider a fork consisting of tree edge e = (u, v) and outgoing tree
edges e1 and e2 exiting v. If both e1 and e2 have some return edges, v is a branching point
of at least two overlapping fundamental cycles sharing e. Since both cycles are clockwise
(all edges belong to R), they must be properly nested in order to avoid edge crossings. As
the root of the DFS tree is assumed to be on the outer face, we have to put e2 clockwise
after e1 (i.e., inside the cycle defined by it) if and only if the lowpoint of e1 is strictly lower
than that of e2. The same holds if both have the same lowpoint but only e2 is chordal, i.e.,
has another return point above it. On the contrary, if both L and R are not empty, it can
happen that both e1 and e2 are chordal. In this case the tie is broken arbitrarily, because
in any planar embedding these two edges must be on different sides.

Let e = (v, w) be a tree edge. We denote by L(e) (R(e), respectively) the sequence
of incoming back edges entering v from descendants of w ordered in such a way that if
b1 = (x1, v) and b2 = (x2, v) are two such back edges, and if (z, x), (x, y1), and (x, y2) is the
fork of the two cycles closed by b1 and b2, then b1 comes before b2 in L(e) (R(e), respectively)
if and only if (x, y1) comes before (x, y2) ((x, y1) comes after (x, y2), respectively) in the
adjacency list of x.

DEFINITION 1.2 Given an LR partition and a vertex v, let eL1 , . . . , e
L
l be the left

outgoing tree edges of v, and eR1 , . . . , e
R
r its right outgoing edges. If v is not the root, let

u be its parent. The clockwise left-right ordering, or LR ordering for short, of the edges
around v is defined as follows:

(u, v), L(eLl), e
L
l , R(e

L
l), . . . , L(e

L
1), e

L
1 , R(e

L
1), L(e

R
1), e

R
1 , R(e

R
1), . . . , L(e

R
r), e

R
r , R(e

R
r)

where (u, v) is absent if v is the root.

The following lemma shows the sufficiency of the left-right planarity criterion of Theo-
rem 1.2 (the proof by contradiction can be found in [Bra09]).

LEMMA 1.3 Given an LR partition, its LR ordering yields a planar embedding.

Hence, the search for a planar embedding of the input graph boils down to the search
for an LR partition of its back edges. Fortunately, from the definition of LR partition
directly come two constraints that have to be satisfied by back edges in L and R classes.
Let b1 = (u1, v1) and b2 = (u2, v2) be two back edges with overlapping fundamental cycles
and let (u, v), (v, w1), (v, w2) be their fork.

1. b1 and b2 belong to different classes if lowpt(w2) < v1 and lowpt(w1) < v2

2. b1 and b2 belong to the same class if there is an edge e′ = (x, y), with x ∈
C(b1) ∩ C(b2) and y 6∈ C(b1) ∩ C(b2) such that lowpt(y) < min{v1, v2}

Of course, if a pair of back edges is subject to both the constraints above, no LR partition
can exist and hence the graph is non-planar. By exploiting the constraints a quadratic pla-
narity test and embedding algorithm can be immediately found. Namely, build a constraint

16 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

graph, analogous to the interlacement graph of the Auslander-Parter algorithm, where
each back edge is a vertex and each constraint is an edge, labeled “-1” if the two back edges
have to belong to different classes and labeled “+1” if they have to belong to the same class.
After contracting “+1” edges, test if the constraint graph is bipartite.

In order to transform this quadratic-time algorithm into a linear one, the constraint
graph cannot be explicitly built and the tentative assignment of back edges to the L and
R classes may be changed several times during the computation, which is structured as
a further traversal of the DFS tree. Details of the linear-time algorithm can be found
in [dOR06, de 08, Bra09].

1.6 Vertex Addition Algorithms

Given a planar drawing Γ of a graph G(V,E), we could delete one vertex at a time from Γ
to obtain a sequence of smaller planar drawings ending with a single isolated vertex. The
intuition that this process could be suitably reversed yields the so-called “vertex addition”
algorithms.

We classify in this family the Lempel-Even-Cederbaum, the Shih-Hsu, and theBoyer-

Myrvold algorithms, although we know that some authors proposed a different classifica-
tion for their approach. The similarities between the Shih-Hsu and the Boyer-Myrvold

algorithms were already pointed out in [Tho99], while a common view encompassing all the
three algorithms was envisaged by Haeupler and Tarjan in [HT08].
Vertex addition algorithms start from an initial graph G1 composed by one isolated

vertex v1. At each step i = 2, . . . n, a new vertex vi is added to the graph and the subgraph
Gi(Vi, Ei), induced by the current vertices Vi = {v1, . . . , vi} ⊆ V , is considered. Two kinds
of operations are performed: first, Gi is checked for planarity; second, some data structures
are updated in order to allow analogous checks to be efficiently performed at step i+ 1.

A key feature, common to this family of algorithms, is that the order in which the vertices
are added is not arbitrary. Let Gi(V i, Ei) be the subgraph of G induced by the vertices
V i = V − Vi that have still to be added to the graph. All the algorithms based on vertex
addition require that Gi is connected for i = 1, . . . , n, that is, the vertex addition order is
a leaf-to-root order for some spanning tree of G. Lempel-Even-Cederbaum’s algorithm,
for example, requires that the vertices are added in the order given by an st-numbering;
in the Shih-Hsu and in the Boyer-Myrvold algorithms the order is that of a reverse
DFS traversal of the graph. The importance of this requirement is stated by the following
lemma.

LEMMA 1.4 Let G(V,E) be a planar, connected graph and let {Va, Vb} be a bipartition
of the vertices in V such that the graph Gb(Vb, Eb) induced by Vb is connected. Consider
any planar embedding Γ of G and denote Γa the planar embedding Γ restricted to Ga. The
following properties hold:

(α) vertices of Vb are on the same face f∗ of Γa

(β) each face f of Γa, with f 6= f∗, is also a face of Γ

(γ) if G is biconnected, cut-vertices of Ga are also incident to face f∗ of Γa

Proof: Property (α) trivially descends from the fact that Gb is connected and Γ is a
planar embedding of G. Property (β) is also trivial. Suppose for a contradiction that
f 6= f∗ is a face of Γa but not a face of Γ. Observe that f is a cycle of Γ and, since it
is not a face of Γ, it contains at least one edge e = (u, v) of Γ that is not an edge of Γa.

1.6. VERTEX ADDITION ALGORITHMS 17

v1 v3

v4
v5

v6

v7

v8

v2

Gb

Ga

f
1

f
2

f
3

f
4 f

5

f
6

f
7

v1 v3

v4
v5

v2

f
1

f
2

Ga
f *

(a) (b)

Figure 1.2 Properties of Lemma 1.4. (a) The embedding Γ where the connected subgraph
Gb is highlighted. (b) The embedding Γa of Ga. By Property 1.4.α, v6, v7, and v8 fall into
f∗. By Property 1.4.β, f1 ad f2 are also faces of Γ. By Property 1.4.γ, the cut-vertex v2 is
on f∗.

If both u and v belong to Va, we have a contradiction as e belongs to the graph induced
by Va but it is not in Γa. Otherwise, if one among u and v is not in Va, we have again a
contradiction since Property (α) ensures that f = f∗. This proves Property (β). Suppose
that G is biconnected. If v is a cut-vertex of Ga, then there is a face f of Γa that is incident
at least two times on v. Since v is not a cut-vertex of Γ, face f is a face of Γa but is not a
face of Γ, and Property (β) ensures that f∗ is the only face of Γa that has this property. 2

An example showing the three properties of Lemma 1.4 is depicted in Fig. 1.2. Prop-
erty (α) was also proved in [Eve79, Lemma 8.10] for the special case of connected subgraphs
induced by an st-numbering.

Let ψ be a function ψ : V → {1, . . . , n} that assigns to each vertex of G a different
index. We say that ψ is a proper numbering of G if for each i we have that the subgraph
Gi(V i, Ei) induced by V i = {v|ψ(v) > i} is connected. In order to simplify the notation
in the remaining part of this chapter we denote by vi the vertex for which ψ(vi) = i.
Vertex addition algorithms require that vertices are considered in the order imposed by a
proper numbering, hence exploiting at each step the properties of Lemma 1.4. Namely,
Property (α) guarantees that vertices and edges can be added to a single face f∗ of Γi,
which can be assumed to be the outer face. Property (β) implies that once a vertex or edge
is closed inside an internal face of Γi it does not need to be considered again (this is a key
point to ensure linearity). Finally, Property (γ) justifies the usual assumption, common to
most vertex addition algorithms, that G is biconnected.

Properties (α) and (β) lead to the following lemma.

LEMMA 1.5 Let ψ be any proper numbering of a planar, connected graph G. Denote
by Gi the subgraph of G induced by vertices in Vi = {v|ψ(v) ≤ i}. There exists a sequence
of planar embeddings Γi of Gi, with i = 1, . . . , n, such that, for i = 1, . . . , n− 1, all internal
faces of Γi are also internal faces of Γi+1.

Proof: Let Γn be a planar drawing of G with vn on the external face and let Γi, with
i = 1, . . . , n − 1, be the embeddings of Gi obtained from Γn by removing the vertices vj ,
with j = i + 1, . . . , n. Vertex vn is on the external face of Γn by definition. Since Gi is

18 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

v1 v2

v3

v4

v8

v7

v5

v6

G6 G6

v1 v2

v5 v4

v3

v6

v

v

7

8

(a) (b)

Figure 1.3 A planar graph G with subgraph G6 highlighted. (a) and (b) show two planar
embeddings of G6, both with the outer vertices of G6 on the external face. The embedding
in (a) is compatible with a planar drawing of G while the embedding in (b) is not.

connected, vertex vi is also on the external face of Γi for any i = n− 1, n− 2, . . . , 1. Also,
Va = {v1, . . . , vi−1} and Vb = {vi} is a bipartition of the vertices of Gi of which Γi is a planar
embedding and Gb(Vb, ∅) is trivially connected. Lemma 1.4 applies and by Property (β)
we have that all the faces of Γi−1 with the exception of f∗ are also faces of Γi. Since the
external face of Γi−1 is not a face of Γi, any other internal face f of Γi−1 is also a face of
Γi. Finally, as the external face of Γi contains vi, which does not belong to Gi−1, face f is
an internal face of Γi. 2

Provided that G is planar, Lemma 1.5 can be exploited for devising an incremental
planarity algorithm that, starting from Γ1, i.e., the trivial embedding of the isolated vertex
v1, computes Γi, with i = 2, . . . , n, by adding at each step a vertex vi on the outer face of
Γi−1, until an embedding Γn of the whole graph is produced. Also, Lemma 1.4 provides
an indication of what are the properties that these Γi should have. Namely, call outer
vertices of Gi the cut-vertices of Gi and the vertices of Gi adjacent to vi+1, vi+2, . . . , vn.
Properties (α) and (γ) of Lemma 1.4 state that if G is biconnected, which can be assumed,
each Γi necessarily has its outer vertices on the outer face.

Still, computing the sequence of Γi, with i = 1, . . . , n, is not an easy task. First, Gi may
be not connected. Second, it is easy to see that not any embedding of Gi with its outer
vertices on the external face is equivalent to any other. In fact, given a planar graph G,
there may exist a planar embedding Γi of Gi that has the outer vertices of Gi on the external
face but is not obtainable from some planar embedding of G by vertex deletion (Fig. 1.3
provides an example).

Hence, although we know that, starting from any proper numbering ψ of G, the planarity
of G implies the existence of a sequence of planar embeddings Γi satisfying the conditions of
Lemma 1.5, we do not know how to find such a sequence, and choosing a wrong embedding
Γi along the way would lead to a failure of the whole process even if G is planar. The
following lemma comes in help.

LEMMA 1.6 In any planar embedding of a biconnected graphG where vertices v1, v2, . . . , vk
share the same face, they appear in the same circular order up to a reversal.

Proof: The statement is trivial for k = 2, 3, since any circular sequence of 2 or 3 labels
is equal to any other up to a reversal. Consider two planar embeddings Γ′ and Γ′′ of G
such that vertices v1, v2, . . . , vk, with k ≥ 4, share the face f ′ in Γ′ and f ′′ in Γ′′ (see
Fig. 1.4(a) and 1.4(b) for an example). The proof is based on the trivial observation that a

1.6. VERTEX ADDITION ALGORITHMS 19

v7

v5 v1

v6

v9

v8

v2

v3

v4

v
f’

v1

v9

v4

v8 v2

v7

v3

v

v5

v6

f"

v5

v6

v

v1

v2

v3

v4

(a) (b) (c)

Figure 1.4 (a), (b) Two planar embeddings of a biconnected graph where vertices
v1, v2, v3, and v4 (highlighted in the figure) share the same face. Vertex v is added as
in the proof of Lemma 1.6.

dummy vertex v can be inserted into both f ′ and f ′′ and planarly connected to v1, v2, . . . , vk.
Since G is biconnected, the cycle face f ′ is simple (see Fig. 1.4(a)). Hence, the subgraph
composed by the edges and vertices of f ′ and v is a wheel (dashed lines in Figs. 1.4(a),
1.4(b), and 1.4(c)) and admits a unique planar embedding up to a reversal. It follows that
the circular order of the edges around v is the same in Γ′ and in Γ′′ up to a reversal. 2

Lemma 1.6 applied to each block ofGi is stated in [Eve79, Lemma 8.12] for the special case
of subgraphs induced by st-numberings. When iteratively computing a planar embedding
for G, the practical use of Lemma 1.6 is that, although in general no definitive choice can
be made on the embedding of Gi, something can be said about the embedding of its blocks.
Namely, apart from a possible flip, it can be computed an embedding for them that is always
compatible with a planar embedding of the whole graph, provided it exists. Surprisingly,
this is the only thing that can be safely computed for the embedding of Gi. All the more
so, this little amount of information suffices for computing analogous embeddings for the
blocks of Gi+1, and, since Gn = G is biconnected, at the last step a planar embedding Γn of
the whole graph is obtained. Finally, the following lemma shows that if the process stops,
the graph is not planar.

LEMMA 1.7 Let G be a graph and let ψ be any proper numbering of G. Denote by
Gi, with i = 1, . . . , n the subgraph of G induced by vertices in Vi = {v|ψ(v) ≤ i} and by
B1

i , B
2
i , . . . , B

bi
i the bi blocks of Gi. For a given k, 1 ≤ k ≤ n− 1, let Γ(Bj

k), 1 ≤ j ≤ bk, be

arbitrary embeddings of Bj
k with the outer vertices of Gk on their outer faces. If the blocks

of Gk+1 cannot be embedded such that the outer vertices of Gk+1 are on the outer face and
Γ(Bj

k), 1 ≤ j ≤ bk, are preserved up to a flip, then G is not planar.

Proof: Suppose for a contradiction that G is planar and that there is no planar embedding
for all its blocks Bj

k+1
, 1 ≤ j ≤ bk, such that the outer vertices of Gk+1 are on the outer

face and the blocks of Gk are embedded, up to a flip, as in Γ(Bj
k), 1 ≤ j ≤ bk. Since G is

planar, by Lemma 1.5 there is a pair of planar drawings Γ∗

k of Gk and Γ∗

k+1
of Gk+1, both

with their outer vertices on the outer face. By Lemma 1.6 the outer vertices of each block
of Gk appear in the same order, up to a reversal, both in Γ(Bj

k), 1 ≤ j ≤ bk, and in Γ∗

k+1
.

Hence, all embeddings Γ(Bj
k) can be inserted into Γ∗

k+1
yielding a planar embedding for

the blocks Bj
k+1

, 1 ≤ j ≤ bk, such that the outer vertices of Gk+1 are on the outer face: a

20 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

contradiction. 2

Lemma 1.7 proves the soundness of the vertex-addition approach. In fact, it shows that
iteratively building a planar embedding of the input graphG is not only a sufficient condition
for the planarity of G, which is obvious, but also a necessary condition, as G is not planar
if one step of the iterative process cannot be accomplished. Usually, in the vertex-addition
literature the non-planarity of the input graph in case of failure of the proposed algorithms
is proved by a complex case analysis, spread all over the description of the algorithm steps,
aimed at identifying a subgraph isomorphic to K5 or K3,3 for each possible cause of failure.
Instead, Lemma 1.7 provides a direct proof of the correctness of the approach that avoids
the use of Kuratowski’s theorem, as claimed in [HT08].

Observe that, since the internal faces of the blocks are preserved in the final embedding
of G, at each iterative step of the vertex-addition algorithms the embedded blocks may be
flipped and composed together, but they are never inserted one into the other. Hence, all
vertex addition algorithms make use of suitable data structures to describe the subgraph
Gi that has been explored so far and in particular the embedding of its blocks. These
data structures allow for permuting the blocks around the cut-vertices and for flipping the
blocks in constant time. In the Lempel-Even-Cederbaum algorithm the data structure
is Booth and Lueker’s PQ-tree. The Shih-Hsu algorithm uses PC-trees. The Boyer-

Myrvold algorithm uses bicomp data structure. The purpose of these data structures is
analogous: they allow us to flip a portion of the graph (a block) in constant time; they allow
us to permute (or to leave undecided) the order of the blocks around a cut-vertex until the
blocks are merged together.

1.6.1 The Lempel-Even-Cederbaum Algorithm

The Lempel-Even-Cederbaum algorithm was the first one to exploit the vertex addition
paradigm [LEC67] (see also [Eve79, BFNd04]). It is no surprise, therefore, that in order
to ease the computation several simplifying assumptions are made. First, but this is usual,
the input graph is assumed to be biconnected. Second, the description of the algorithm
in [LEC67] only checks the planarity of the input graph, without actually computing a planar
embedding if it exists. This gap was closed by Chiba, Nishizeki, Abe, and Ozawa [CNAO85]
some decades later. Third, a proper numbering of the vertices of G is required that also
ensures that Gi, the graph induced by Vi, is connected. Namely, given any edge (s, t) of
a biconnected graph G(V,E) with n vertices an st-numbering of G is a function ψ : V →
{1, . . . , n} that assigns to each vertex a different index, such that: (i) ψ(s) = 1; (ii) ψ(t) = n;
and (iii) any vertex except s and t is adjacent both to a lower-numbered and to a higher-
numbered vertex. This strong constraint, which implies that both the st-numbering and its
reversal are proper numberings, fostered the search for a linear-time algorithm to actually
compute an st-numbering of a biconnected graph. Such an algorithm was not known when
the approach was introduced (the time complexity of the algorithm used in [LEC67] is
O(nm) [ET76]), and was finally found in [ET76].

Working of the algorithm

A bush is a single-source connected planar directed graph that admits a planar em-
bedding, called a bush form, where all vertices of degree one are on the outer face.
Let G be a biconnected graph G, let ψ be an st-numbering of G, and let Gi be the graph

induced by vertices {v1, . . . , vi}. Graph G can be assumed to be directed, where each edge
is oriented from the vertex with the lower value to the vertex with higher value of ψ (see
Fig. 1.5(a) for an example). Denote Bi the graph Gi augmented with the edges of G incident

1.6. VERTEX ADDITION ALGORITHMS 21

to the outer vertices of Gi. These edges are called virtual edges , while the leaves that they
introduce in Bi are virtual vertices . Virtual vertices are labeled with the same indexes they
have in G, and multiple instances of the same vertex are kept separate in Bi. Since Gi is
determined by an st-numbering, Bi is connected. Observe that a planar embedding of Bi

with the virtual vertices on the outer face corresponds to a planar embedding of Gi with
the outer vertices on the outer face. Hence, if G is planar by Lemma 1.5 Bi is a bush. See
Fig. 1.5 for an example of a graph Gi and the corresponding bush Bi. A bush form ΓBi

is
usually represented by drawing all the virtual vertices on the same horizontal line (dashed
line of Fig. 1.5(b)).

v1

v2

v4

v5

v3

v6 v1

v2

v3

v6 v5 v5 v4v4 v6

v4 v6v6 v5 v5 v4()])()(+[

(a) (b)

Figure 1.5 (a) A directed planar graph. Labels correspond to an st-numbering of the
vertices. The highlighted area is the subgraph G3 induced by {v1, v2, v3}. Observe that,
due to the st-numbering, both G3 and G−G3 are connected. (b) The bush form B3.

Bush form ΓBi
contains a planar embedding of all biconnected components of Gi, and

Lemma 1.7 ensures that such embeddings can be kept fixed up to a flip when searching for
a planar drawing of G.

The strategy of the algorithm is that of focusing on the virtual vertices of Bi and of
encoding the linear order that they have in ΓBi

into a suitable algebraic expression ε(ΓBi
)

that implicitly represents all their permutations compatible with a planar embedding of Bi

with virtual vertices on the outer face.
The definition of ε(ΓBi

) can be inductively provided as follows. Let v be the source of ΓB.
If ΓB is a trivial bush form consisting of a single directed edge (v, u) then ε(ΓB) = u. Other-
wise, if v is a cutvertex splitting ΓB into bush forms b1, b2, . . . , bk. Let ε(b1), ε(b2), . . . , ε(bk)
be the corresponding expressions for b1, b2, . . . , bk. The algebraic expression associated with
ΓB is ε(ΓB) = (ε(b1) ◦ ε(b2) ◦ . . . ◦ ε(bk)). Observe that any permutation of b1, b2, . . . , bk is
compatible with a planar embedding of B. Finally, if v is not a cut vertex of ΓB, consider
the biconnected component b of ΓB including v and let u1, u2, . . . , uk be the cut vertices of
B belonging to b. Observe that each subgraph of ΓB routed at ui, with i = 1, . . . , k, is a
bush form bi. Let ε(b1), ε(b2), . . . , ε(bk) be the corresponding expressions for b1, b2, . . . , bk.
The algebraic expression associated with ΓB is ε(ΓB) = [ε(b1) + ε(b2) + . . . + ε(bk)]. Ob-
serve that flipping the biconnected component b corresponds to flipping the expression
[ε(bk) + ε(bk−1) + . . .+ ε(b1)].

Figure 1.6 illustrates an example of permutations and flipping in a bush form.
Given a bush form ΓBi

, the reduction operation changes the embedding of Bi, by per-
muting bush forms attached to cut vertices and by flipping biconnected components, and
produces bush form Γ′

Bi
where all virtual vertices labeled vi+1 are consecutively disposed.

If this is not possible, then there is no way of adding vertex vi+1 to the embedding while

22 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

v1

v2

v3

v6 v5 v5 v4 v4 v6

v6v4v6 v5 v5 v4])()((+[)

v1

v5

v2

v3

v4 v5 v6 v6v4

v6v4 v5 v5v4 v6()])()(+[

(a) (b)

Figure 1.6 (a) A permutation of the bush form of Fig. 1.5(b). (b) A flip of the bush form
of Fig. 1.5(b).

keeping all outer vertices of Gi−1 on the outer face, and by Lemma 1.7 the graph is not
planar. If this is possible, then a substitution operation is performed on ΓBi

, obtaining a
drawing ΓBi+1

. Namely, the virtual vertices labeled vi+1 are merged together, and for each
edge (vi+1, vj) exiting vi+1 a new virtual vertex vj is introduced and connected to vi+1.

In the original description of the Lempel-Even-Cederbaum algorithm these operations
are not actually performed. Instead, it is shown that the reduction operation on ΓBi

cor-
responds to an equivalent transformation on ε(ΓBi

) that produces an algebraic expression
ε(Γ′

Bi
) where all the variables vi+1 are consecutive. Analogously, the substitution opera-

tion corresponds to the removal of the sequence of variables vi+1 which are replaced by
(vj1 ◦ vj2 ◦ . . . ◦ vjk), where vj1 , . . . , vjk are the vertices directly attached to vi+1.

Data structures

The problem of efficiently identifying the flips and the permutations needed to reduce
ΓBi

(or, equivalently, needed to normalize ε(ΓBi
)) is solved in [BL76] where the PQ-tree

data structure is introduced. Intuitively, a PQ-tree is a data structure corresponding to the
syntax tree of the expression ε(ΓBi

). Namely, a PQ-tree is a rooted, directed, ordered tree
with three types of nodes: P-nodes, Q-nodes, and leaves. For each ◦ operation (ǫ1◦ǫ2◦. . .◦ǫk)
in ε the corresponding PQ-tree has a P-node with children PQ(ǫ1), Also, for each +
operation (ǫ1 ◦ ǫ2 ◦ . . . ◦ ǫk) in ε the corresponding PQ-tree has a P-node with children
PQ(ǫ1), The children of a P-node can be arbitrarily permuted, while the order of the
children of a Q-node can be reversed. In [BL76] it is shown how a bottom up computation
starting from all leaves labeled vi+1 is sufficient to compute a sequence of permutations and
flips that consecutively disposes all vi+1 leaves. Only the smallest subtree containing the
vi+1 leaves is traversed.

1.6.2 The Shih-Hsu Algorithm

The Shih-Hsu algorithm either constructs a planar embedding of the input graph G or fails
and outputs the information that G is not planar [SH93, SH99] (see also [Hsu01, Boy05]).
The proper numbering ψ of the vertices of G used by the Shih-Hsu Algorithm is obtained
by a DFS traversal of G. Namely, vertices are considered in reverse DFS order, where
the root r of the DFS tree has ψ(r) = n. Therefore, differently from the Lempel-Even-

Cederbaum algorithm, although the graph Gi(V i, Ei) induced by V i = {v|ψ(v) > i} is
always connected, the graph Gi(Vi, Ei) induced by vertices in Vi = {v|ψ(v) ≤ i} is not
guaranteed to be connected. At step 1 graph G1 has vertex v1 only. At a generic step i,
with i = 2, . . . , n, an embedding ΓGi

is obtained from the embedding of ΓGi−1
by adding

1.6. VERTEX ADDITION ALGORITHMS 23

vertex vi together with all edges connecting it to vertices with lower values of ψ. The
strategy used by the Shih-Hsu Algorithm is that of characterizing those configurations
that determine a non-planarity, and by giving a recipe to build ΓGi

otherwise.

As Gi is not necessarily connected, at each step i a planar embedding of each connected
component of Gi is encoded into a data structure called “PC-tree”. A PC-tree T is a
rooted, ordered tree with two types of nodes: P-nodes and C-nodes. While the neighbors
of a P-node can be arbitrarily permuted, C-nodes come with a cyclic ordering of their
adjacency list which can only be reversed. Intuitively P-nodes represent regular nodes of
an embedded partial graph, while C-nodes represent biconnected components. Consider a
planar embedding of a connected component C of graph Gi such that the outer vertices
of C are on its outer face. The PC-tree T associated with C can be easily obtained from
C by replacing each biconnected component of C with a C-node connected to the outer
vertices of it in the same circular order as they appear on the border of the biconnected
component. In order to simplify the tree, each C-node representing a trivial biconnected
component composed of a single edge connecting two cut-vertices vj and vk is replaced with
a single edge attached to the two P-nodes corresponding to vj and vk. Let r be the root of
the connected component C, i.e., the vertex of C with higher value of ψ. Observe that r is
an outer vertex of C and always corresponds to a P-node of its PC-tree.

The PC-trees associated with Gi represent all the planar embeddings of Gi such that each
connected component of Gi has its outer vertices on the outer face. In particular, if Gi is
connected, it is apparent the correspondence between its single PC-tree T and the PQ-tree
of Gi used by the Lempel-Even-Cederbaum algorithm, since the former is obtained from
the latter by removing leaves and replacing Q-nodes with C-nodes.

Working of the algorithm

At step 1, graph G1 only has one isolated vertex labeled v1 and its PQ-tree is a single
P-node associated with vertex v1.

At a generic step i, graph Gi−1 has been already processed and its PC-trees have been
computed. When the new vertex vi is added, all tree-edges and back edges connecting vi
to Gi−1 are considered. Suppose that only a tree edge (vi, u) exits from vi. In this case
only the PC-tree corresponding to the connected component of Gi−1 needs to be updated.
Otherwise, if vi has more than one child u1, u2, . . . , uk, then vi is a cut-vertex of Gi; a new P-
node is introduced for it and suitably attached to the PC-trees of the connected components
C1, C2, . . . , Ck of Gi−1 containing u1, u2, . . . , uk, respectively, producing a single PC-tree for
the new connected component of Gi. Consider a child u of vi. The PC-tree T corresponding
to the connected component containing u can be attached to vi in a way that is independent
of the PC-trees corresponding to the other children of vi. Hence, for simplicity of description,
we will assume that vi has a single child u.

Let C be the connected component of Gi−1 containing u. If no back edge from C attaches
to vi then the P-node introduced for vi is attached to the P-node representing r in Ti, and
step i concludes. Otherwise, suppose some vertex of C has some back edge to vi. Since the
input graph is biconnected, nodes of Ti−1 either have highpt = i or have lowpt > i, or both.
Call relevant node each node w of Ti−1 such that highpt(w) = i and lowpt(w) > i. It is
easy to see that the parent of w either is r or is a relevant node in its turn. Hence, relevant
nodes form a subtree of the PC-tree rooted at r. By leveraging the relevant nodes subtree
it is possible to efficiently check the planarity of Gi and to compute the PC-tree updated
with the P-node for u.

Namely, call terminal nodes the leaves of the subtree of the PC-tree composed by relevant
nodes. We have the following lemma.

24 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

LEMMA 1.8 If T has more than two terminal nodes then Gi (and hence G) is not
planar.

vi

u

vi

u’

u’’

m

(a) (b)

Figure 1.7 (a) Relevant nodes of Ti−1 have one terminal. (b) Relevant nodes of Ti−1

have two terminals.

Therefore, if G is planar, Ti−1 has one or two terminal nodes and the relevant nodes
subtree of Ti−1 is either a path or a Y-shaped tree, respectively (see Fig. 1.7). Also,
observe that an edge exiting a relevant node may be of five different types:

(i) a tree edge to another relevant node;

(ii) a back edge to vi;

(iii) a tree edge to a subtree whose back edges are all type-(ii) edges; or

(iv) a back edge to a node vj with j > i;

(v) a tree edge to a subtree whose back edges are all type-(iv) edges.

Subtrees attached to edges of type (iii) are called i-subtrees, while subtrees attached to edges
of type (v) are called i∗-subtrees. In Fig. 1.7 i-subtrees are represented with black triangles
and i∗-subtrees with white triangles.

The Shih-Hsu algorithm either identifies a non-planarity or finds a planar arrangement
of the back edges to vi and the i-subtrees to produce a new C-node that represents the block
determined by the additions of the back edges to vi. The algorithm considers four main
cases, depending on whether some relevant node is a C-node, and depending on whether
Ti−1 has one or two terminal nodes.

The easiest case is when Ti−1 has exactly one terminal and all the relevant nodes are
P-nodes. In fact, in this case all i-subtrees and back edges to i can always be embedded
on one side of Ti−1, and the embedded part can be replaced with a C-node, as shown in
Fig. 1.8(a).

The case when Ti−1 has exactly one terminal and some relevant node is a C-node, is
analogous, with the difference that the constraints enforced by C-nodes (whose adjacency
list can only be flipped) have to be taken into account and may cause a non-planarity
whenever, no matter how they are flipped, they force one i-subtree (or back edge to vi) to
be outside the new block or one i∗-subtree (or back edge to vj , with j > i) to be inside it.

1.6. VERTEX ADDITION ALGORITHMS 25

u

vi vi

u’
u’’

(a) (b)

Figure 1.8 (a) The example of Fig. 1.7(a) after contraction. The double border identifies
C-nodes. (b) The example of Fig. 1.7(b) after contraction.

The most difficult cases are when Ti−1 has two terminal nodes u′ and u′′. Let m be their
common ancestor, P be the unique path in Ti−1 from u′ to u′′, and P ′ be the path from r
to m. If all relevant nodes are P-nodes, then we have the following planarity criterion.

LEMMA 1.9 Graph Gi is planar if and only if any node internal to P ′ has edges of type
(i), (ii), or (iii).

In fact, it is easy to see that if the conditions of Lemma 1.9 are satisfied a new block
can be planarly embedded, its border being composed by path P and two paths from the
two terminal nodes to vi and containing all i-subtrees and back edges to vi. Such a block
is replaced by a C-node as shown in Fig. 1.8(b). Again, if some relevant node is a C-node,
its constraints on the embedding need to be taken into account and yield a more intricate,
although not difficult, case.

Data Structures

A tricky point of the Shih-Hsu algorithm is when a newly identified block has to
be replaced with a C-node. To understand why this operation is critical consider that, in
order to have a linear-time algorithm, each node of the PC-tree should have a pointer to the
parent node. Such a pointer is used, for example, when, starting from the current vertex
vi, its incoming back edges are considered and i-subtrees are traversed moving from child
to parent. This operation is needed to identify the relevant node subtree and its terminals.
Observe that i∗-subtrees cannot be traversed without losing linearity. Also, even identifying
them by browsing the adjacency list of a relevant node would have the same result. If the
block were naively replaced by a C-node structure as shown in Fig. 1.8 the pointers to the
parent of a possibly linear number of children would have to be updated.

Perhaps the easiest way to address this problem is that of encoding the neighborhood
of C-nodes with a strategy analogous to that used in [BM99, BM04] which allows us to
efficiently traverse in parallel the boundary of a block and it [Hsu01, Hsu03, BFNd04]. A
second approach, inspired by the analogous operation on Q-nodes of PQ-trees [LEC67], is
that of borrowing the parent pointer from sibling to sibling. The two approaches turn out to
be similar, since browsing siblings of a C-node in search for the parent pointer is equivalent
to traversing the corresponding block border [Hsu01, Hsu03].

26 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

1.6.3 The Boyer-Myrvold Algorithm

The Boyer-Myrvold algorithm [BM99, BM04] (see also [Tho99, BCPD04, HT08]) has
several features in common with the Shih-Hsu one, so much that the two have been some-
times identified [Tho99, HT08]. The proper numbering ψ of the vertices of G used by the
Boyer-Myrvold algorithm is again a reverse DFS order. The general strategy is that of
explicitly maintaining a “flexible” planar embedding of each connected component of Gi

with the outer vertices on the outer face. This embedding is “flexible” in the sense that
each block can be flipped in constant time, whatever is its size, while the permutation of
the blocks around cut-vertices is left undecided. In order to achieve this, each block of Gi

is maintained separately from the others in a special structure, and the cut-vertex that has
higher value of ψ in one block B, called the root of B, has a pointer to the corresponding
cut-vertex in the parent block.

Working of the algorithm

The algorithm described in [BM99] was simplified in [BM04]. First, we describe the
primitive version in [BM99], which, in our opinion, is more intuitive. Second, we sketch the
differences with [BM04].

The computation starts with an initial set of blocks corresponding to the tree edges of the
DFS tree of G (see Fig. 1.9). Hence, it could be argued that this is not a vertex-addition
algorithm, since all vertices are in place from the first iteration. Actually, a vertex vj with
index higher than the current iteration i is ignored until iteration j is reached. Vertices are
considered in reverse DFS order, starting from v1 and ending with the root vn of the DFS
tree (see Fig. 1.9(a)). If vertex vi has no incoming back edges, no operation is needed at
iteration i.

5

9 4

8 7

6 12

3

10

11

3

4

3 3

12

10

11

4

10

9

8

9

10

7

9

7 7

6 5

(a) (b)

Figure 1.9 The same DFS tree of Fig. 1.1 where vertices are labeled with their reverse
DFS index. (b) The Boyer-Myrvold algorithm starts by creating a block for each edge
of the tree.

So, for example, a running of the algorithm on the example of Fig. 1.9(b) would not
perform any operation at steps 1, 2, . . . , 8, as vertices v1, v2, . . . , v8 don’t have incoming
back edges. Otherwise, if vi has some incoming back edges, the strategy of the algorithm
is that of deciding how to embed them by exploring the borders of the current blocks of
Gi−1. To give an intuitive example Fig. 1.10(a) represents G9. At iteration 10 vertex v10

1.6. VERTEX ADDITION ALGORITHMS 27

is considered by the algorithm and the back edge (v6, v10) needs to be embedded. In the
embedding choice shown in Fig. 1.10(b) the red path inside the closed face of the new block
can be identified in Fig. 1.10(a) as the red path going from v6 to v10 along the borders of
the blocks. The approach of Boyer-Myrvold algorithm is that of first choosing suitable
paths for the back edges returning to vi and then using such paths to close a new block and
update the data structures. Hence, each iteration has two phases: Path searching and Block
embedding (in [BM99, BM04] these phases are called Walkup and Walkdown, respectively,
but the tree is drawn upside down with respect to the convention used here).

6(v ,v)10

7

9 4

3
8

7

6

5

99

10 10

4

3 3

12

10

11

4

4

3

3

9

8

6

7

5

11

10

10 10

2 1

3

9

(a) (b)

Figure 1.10 The Boyer-Myrvold algorithm on the DFS tree of Fig. 1.9(a). (a) When
vertex v10 is considered the back edge (v6, v10) needs to be embedded. (b) The embedding
of back edge (v6, v10) corresponding to the choice of the red path from v6 to v10 along the
borders of blocks shown in (a).

Let’s start from the Path searching phase. Suppose that some back edges enter vi from
vertices u1, u2, . . . uk. For each j, with j = 1, . . . , k, the algorithm searches for a path pj
from uj to vi with the following properties:

1. Vertices and edges of pj are on the boundary of the blocks of Gi−1

2. Each vertex of pj that is the root of a block is followed by the corresponding
cut-vertex in the parent block, until vi is reached

3. Each vertex of pj which is different from the entry point and the root of the
current block is not an outer vertex of Gi (see Fig. 1.11(a))

Also, two paths (i.e. two embedding choices) may be incompatible one with the other.
Namely, let pl and pm be two paths to vi and let b be a block b traversed by them. The
following compatibility properties are enforced:

1. If pl and pm don’t share edges of b, they do not share edges in any other block
(see Fig. 1.12(a)).

2. Paths pl and pm do not share edges of b if they traverse two other distinct
outer blocks, where an outer block is one containing an outer vertex of Gi (see
Fig. 1.12(b)).

3. If pl and pm don’t share edges of b and the root rb of b is different from vi, then
rb is not an outer vertex of Gi. (see Fig. 1.12(c)).

28 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

Figure 1.11 Properties of the admissible path to vi. The lower vertex is the currently
processed one while outer vertices of Gi are drawn black. The red path is not admissible,
as it traverses an outer vertex of Gi (a cut vertex of Gi in this example).

(a) (b) (c)

Figure 1.12 Compatibility properties of the paths to vi. The lower vertex is the currently
processed one while outer vertices of Gi are drawn black. (a) Two compatible paths not
sharing edges in any block they traverse. (b) Two admissible paths coming from two distinct
outer blocks. (c) Two non-admissible paths.

The above properties guarantee that when the new block is closed, no outer vertex of Gi

falls inside a face of the block.

In order to be linear, the algorithm does not explicitly compute all the paths pj , for
j = 1, . . . , k. In fact, if two paths share one edge, the second path can follow the same route
towards v1 used by the first one without the need of checking the above properties. Also,
whenever a path enters a block b, it searches both the sides of b in parallel, searching for
the root rb of b. In this way the shorter admissible path to rb is found by exploring at most
twice the number of its edges. Since the edges used by the paths will be closed inside some
face of the new block, they are never explored again in a subsequent iteration, and the total
number of steps required by the algorithm for the computation of such paths is linear.

If the Path searching phase does not detect a non-planarity, the Block embedding phase
starts. This is a simpler phase in which, starting from vi and moving along the boundary

1.6. VERTEX ADDITION ALGORITHMS 29

of Gi−1, the blocks traversed by the paths are merged together and the back edges are
embedded based on their corresponding paths to produce a planar embedding for Gi.
The simplified version of the algorithm described in [BM04] is based on the same two

phases, Path searching and Block embedding. However, the check for the paths’ compat-
ibility, which in the primitive version were demanded to the first phase are moved to the
second phase, which may, therefore, also detect a non-planarity.

Data Structures

The tricky point of the Boyer-Myrvold algorithm is when two blocks, traversed by
a path, are merged together. It may happen that a path traverses the child block clockwise
and the parent block counterclockwise, or vice-versa. Fortunately, it can be shown that
the properties of the paths guarantee that if one path does so all other paths comply with
this embedding choice. However, in order to merge the two blocks, one of them needs to
be flipped and reversing the adjacency lists of all the vertices of the block may result in a
linear-time operation that would yield a quadratic planarity algorithm. In order to solve
this problem the authors introduced a suitable data structure, called bicomp, that allows us
to flip a block in O(1)-time, whatever is its size. Such a data structure is based on circular
lists that do not have a predefined orientation.

Namely, suppose that the list items of a circular list instead of having the usual next
and prev pointers have two generic pointers ref1 and ref2 which could be used arbitrarily
to store a reference to the next or previous list item. Suppose, also, that you maintain a
reference to the last element encountered while traversing the list. If you want a reference
to the next element you compare this reference with ref1 and ref2 and choose the one
that is different from it. Hence, the circular list is traversed in the direction that is decided
by the first step. If the circular order of the list has to be reversed it suffices to begin the
traversal in the opposite way.

Of course, if the clockwise direction of the adjacency list of each vertex of a block is
independently chosen, this would not necessarily produce a planar embedding. However, it
is not difficult to devise some convention to transfer the orientation of the adjacency list
of one vertex to the adjacency lists of the neighboring vertices. For example, it may be
convened that if in the adjacency list of vertex vi the list item of vertex vj uses ref1 as
next and ref2 as prev, the same choice is made for the list item of vi in the adjacency list
of vj (in [BM99, BM04] a less intuitive, but more practical, convention is adopted).

Hence, when two blocks are merged and their common cutvertex is identified the two
adjacency lists of the cutvertex can be suitably joined in such a way to implicitly reverse
all the adjacency lists of one of the two blocks.

Bibliography

[ADF+10] P. Angelini, G. Di Battista, F. Frati, V. Jelinek, J. Kratochvil, M. Patrignani,

and I. Rutter. Testing planarity of partially embedded graphs. In M. Charikar,

editor, Symposium On Discrete Algorithms (SODA ’10), pages 202–221,

2010.

[ADF+11] P. Angelini, G. Di Battista, F. Frati, M. Patrignani, and I. Rutter. Testing the

simultaneous embeddability of two graphs whose intersection is a biconnected

graph or a tree. In Workshop on Combinatorial Algorithms (IWOCA ’10),
volume 6460 of LNCS, pages 212–225, 2011.

[ADP11] P. Angelini, G. Di Battista, and M. Patrignani. Finding a minimum-depth

embedding of a planar graph in o(n4) time. Algorithmica, 60(4):890–937,

2011.

[AGKN12] P. Angelini, M. Geyer, M. Kaufmann, and D. Neuwirth. On a tree and a path

with no geometric simultaneous embedding. Journal of Graph Algorithms
and Applications, 16(1):37–83, 2012. Special Issue on Selected Papers from

GD ’10.

[AH77] K. Appel and W. Haken. Every planar map is four colourable, part I: discharg-

ing. Illinois J. Math., 21:429–490, 1977.
[AHK77] K. Appel, W. Haken, and J. Koch. Every planar map is four colourable, part

II: Reducibility. Illinois Journal of Mathematics, 21:491–567, 1977.
[AP61] L. Auslander and S. V. Parter. On imbedding graphs in the sphere. Journal

of Mathematics and Mechanics, 10(3):517–523, 1961.
[APBL95] D. Archdeacon, C. Paul Bonnington, and C. H. C. Little. An algebraic char-

acterization of planar graphs. Journal of Graph Theory, 19(2):237–250, 1995.
[AŠ98] D. Archdeacon and J. Šráň. Characterizing planarity using theta graphs. Jour-

nal of Graph Theory, 27(1):17–20, 1998.
[Bad64] W. Bader. Das topologische Problem der gedruckten Schaltung und seine

Lösung. Electrical Engineering (Archiv für Elektrotechnik), 49(1):2–12, 1964.
[Bak94] B. S. Baker. Approximation algorithms for NP-complete problems on planar

graphs. J. ACM, 41:153–180, 1994.

[BCD+07] P. Braß, E. Cenek, C. A. Duncan, A. Efrat, C. Erten, D. Ismailescu, S. G.

Kobourov, A. Lubiw, and J. S. B. Mitchell. On simultaneous planar graph

embeddings. Computational Geometry, 36(2):117–130, 2007.
[BCPD04] J. M. Boyer, P. F. Cortese, M. Patrignani, and G. Di Battista. Stop minding

your P’s and Q’s: Implementing a fast and simple DFS-based planarity testing

and embedding algorithm. In Giuseppe Liotta, editor, Graph Drawing (Proc.
GD ’03), volume 2912 of LNCS, pages 25–36, 2004.

[BD91] P. Bertolazzi and G. Di Battista. On upward drawing testing of triconnected

digraphs. In Proc. 7th Annu. ACM Sympos. Comput. Geom., pages 272–280,
1991.

[BDBD00] P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal draw-

ings with the minimum number of bends. IEEE Transaction on Computers,
49:826–840, August 2000.

[BDLM94] P. Bertolazzi, G. Di Battista, G. Liotta, and C. Mannino. Upward drawings of

triconnected digraphs. Algorithmica, 6(12):476–497, 1994.
[BDMT98] P. Bertolazzi, G. Di Battista, C. Mannino, and R. Tamassia. Optimal upward

0-8493-8597-0/01/$0.00+$1.50
c© 2004 by CRC Press, LLC 1

2 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

planarity testing of single-source digraphs. SIAM J. Comput., 27(1):132–169,
1998.

[BFNd04] J. Boyer, C. Fernandes, A. Noma, and J. de Pina. Lempel, Even, and Ceder-

baum planarity method. In Celso Ribeiro and Simone Martins, editors, Ex-
perimental and Efficient Algorithms, volume 3059 of LNCS, pages 129–144.
Springer, 2004.

[Bie98] T. C. Biedl. Drawing planar partitions III: Two constrained embedding prob-

lems. Technical Report RRR 13-98, RUTCOR Rutgen University, 1998.

[BKM98] T. C. Biedl, M. Kaufmann, and P. Mutzel. Drawing planar partitions II:

HH-Drawings. In J. Hromkovic and O. Sýkora, editors, Workshop on Graph-
Theoretic Concepts in Computer Science (WG ’98), volume 1517, pages

124–136. Springer, 1998.

[BL76] K. Booth and G. Lueker. Testing for the consecutive ones property interval

graphs and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci.,
13:335–379, 1976.

[BM88] D. Bienstock and C. L. Monma. On the complexity of covering vertices by

faces in a planar graph. SIAM Journal on Computing, 17:53–76, 1988.
[BM90] D. Bienstock and C. L. Monma. On the complexity of embedding planar graphs

to minimize certain distance measures. Algorithmica, 5(1):93–109, 1990.
[BM99] J. Boyer and W. Myrvold. Stop minding your P’s and Q’s: A simplified O(n)

planar embedding algorithm. In 10th Annual ACM-SIAM Symposium on
Discrete Algorithms, volume 1027 of LNCS, pages 140–146. Springer-Verlag,
1999.

[BM04] J. Boyer and W. Myrvold. On the cutting edge: Simplified O(n) planarity by

edge addition. Journal of Graph Algorithms and Applications, 8(3):241–273,
2004.

[Boy05] J. Boyer. Additional PC-tree planarity conditions. In J. Pach, editor, Graph
Drawing, volume 3383 of LNCS, pages 82–88. Springer, 2005.

[Bra09] U. Brandes. The left-right planarity test. Manuscript submitted for publica-

tion, 2009.

[CDF+08] P. F. Cortese, G. Di Battista, F. Frati, M. Patrignani, and M. Pizzonia. C-

planarity of c-connected clustered graphs. Journal of Graph Algorithms and
Applications, 12(2):225–262, Nov 2008.

[CDPP04] P. F. Cortese, G. Di Battista, M. Patrignani, and M. Pizzonia. Clustering

cycles into cycles of clusters. In János Pach, editor, Proc. Graph Drawing
2004 (GD ’04), volume 3383 of LNCS, pages 100–110. Springer, 2004.

[CDPP05] P. F. Cortese, G. Di Battista, M. Patrignani, and M. Pizzonia. Clustering

cycles into cycles of clusters. Journal of Graph Algorithms and Applications,
Special Issue on the 2004 Symposium on Graph Drawing, GD ’04, 9(3):391–
413, 2005.

[Che81] C.C. Chen. On a characterization of planar graphs. Bulletin of the Australian
Mathematical Society, 24:289–294, 1981.

[CMS08] M. Chimani, P. Mutzel, and J. M. Schmidt. Efficient extraction of multiple

kuratowski subdivisions. In Seok-Hee Hong, Takao Nishizeki, and Wu Quan,

editors, Graph Drawing (GD 2007), volume 4875 of LNCS, pages 159–170.

Springer, 2008.

[CNAO85] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for em-

bedding planar graphs using PQ-trees. J. Comput. Syst. Sci., 30(1):54–76,
1985.

[Col90] Y. Colin de Verdière. Sur un nouvel invariant des graphes et un critère de

1.6. VERTEX ADDITION ALGORITHMS 3

planarité. Journal of Combinatorial Theory, Series B, 50(1):11–21, 1990.
[Col91] Y. Colin de Verdière. On a new graph invariant and a criterion for planarity.

In Neil Robertson and Paul D. Seymour, editors, Graph Structure Theory,
volume 147 of Contemporary Mathematics, pages 137–148. American Math-

ematical Society, 1991.

[CW06] S. Cornelsen and D. Wagner. Completely connected clustered graphs. Journal
of Discrete Algorithms, 4(2):313–323, 2006.

[Dah98] E. Dahlhaus. Linear time algorithm to recognize clustered planar graphs and

its parallelization. In Claudio L. Lucchesi and Arnaldo V. Moura, editors,

Proc. Latin American Theoretical INformatics (LATIN ’98), volume 1380

of LNCS, pages 239–248. Springer, 1998.
[DBTV01] G. Di Battista, R. Tamassia, and L. Vismara. Incremental convex planarity

testing. Information Computation, 169:94–126, August 2001.

[de 08] H. de Fraysseix. Trémaux trees and planarity. Electronic Notes in Discrete
Mathematics, 31:169–180, 2008.

[Deo76] N. Deo. Note on Hopcroft and Tarjan planarity algorithm. Journal of the
Association for Computing Machinery, 23:74–75, 1976.

[DETT99] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

[DF08] G. Di Battista and F. Frati. Efficient c-planarity testing for embedded flat

clustered graphs with small faces. In Seok-Hee Hong, Takao Nishizeki, and

Wu Quan, editors, Proc. Graph Drawing 2007 (GD ’07), volume 4875 of

LNCS, pages 291–302. Springer, 2008.
[DKT09] Z. Dvorak, K. Kawarabayashi, and R. Thomas. Three-coloring triangle-free

planar graphs in linear time. In Claire Mathieu, editor, SODA, pages 1176–

1182. SIAM, 2009.

[DL07] E. Di Giacomo and G. Liotta. Simultaneous embedding of outerplanar graphs,

paths, and cycles. Int. J. Computational Geometry and Applications,
17(2):139–160, 2007.

[DLT84] D. Dolev, F. T. Leighton, and H. Trickey. Planar embedding of planar graphs.

In Franco P. Preparata, editor, VLSI Theory, volume 2 of Adv. Comput. Res.,
pages 147–161. JAI Press, Greenwich, Conn., 1984.

[DMP64] G. Demoucron, Y. Malgrange, and R. Pertuiset. Graphes planaires: Recon-

naissance et construction des représentations planaires topologiques. Revue
Fran cais de Recherche Opérationelle, 8:33–47, 1964.

[dO96] H. de Fraysseix and P. Ossona de Mendez. Planarity and edge poset dimension.

European Journal of Combinatorics, 17(8):731–740, 1996.
[dO02] H. de Fraysseix and P. Ossona de Mendez. P.I.G.A.L.E - Public Implementation

of a Graph Algorithm Library and Editor, 2002. SourceForge project page

http://pigale.sourceforge.net/ (GPL License).

[dOR06] H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl. Trémaux trees

and planarity. International Journal of Foundations of Computer Science,
17(5):1017–1029, 2006.

[dR82] H. de Fraysseix and P. Rosenstiehl. A depth-first characterization of planarity.

Annals of Discrete Mathematics, 13:75–80, 1982.
[dR85] H. de Fraysseix and P. Rosenstiehl. A characterization of planar graphs by

Trémaux orders. Combinatorica, 5(2):127–135, 1985.
[DT89] G. Di Battista and R. Tamassia. Incremental planarity testing. In Proc. 30th

Annu. IEEE Sympos. Found. Comput. Sci., pages 436–441, 1989.
[DT96a] G. Di Battista and R. Tamassia. On-line maintenance of triconnected compo-

4 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

nents with SPQR-trees. Algorithmica, 15:302–318, 1996.
[DT96b] G. Di Battista and R. Tamassia. On-line planarity testing. SIAM J. Comput.,

25:956–997, 1996.

[EBGJ+07] A. Estrella-Balderrama, E. Gassner, M. Jünger, M. Percan, M. Schaefer,

and M. Schulz. Simultaneous geometric graph embeddings. In S. H. Hong,

T. Nishizeki, and W. Quan, editors, Graph Drawing (GD ’07), volume 4875

of LNCS, pages 280–290, 2007.
[EK05] C. Erten and S. G. Kobourov. Simultaneous embedding of planar graphs with

few bends. Journal of Graph Algorithms and Applications, 9(3):347–364,

2005.

[ET76] S. Even and R. E. Tarjan. Computing an st-numbering. Theoret. Comput.
Sci., 2:339–344, 1976.

[Eve79] S. Even. Graph Algorithms. Computer Science Press, Potomac, Maryland,

1979.

[FCE95a] Q. W. Feng, R. F. Cohen, and P. Eades. How to draw a planar clustered graph.

In Ding-Zhu Du and Ming Li, editors, Proc. Computing and Combinatorics
(COCOON ’95), volume 959 of LNCS, pages 21–30. Springer, 1995.

[FCE95b] Q. W. Feng, R. F. Cohen, and P. Eades. Planarity for clustered graphs. In

Proc. European Symposium on Algorithms (ESA ’95), volume 979 of LNCS,
pages 213–226. Springer, 1995.

[FGJ+08] J. J. Fowler, C. Gutwenger, M. Jünger, P. Mutzel, and M. Schulz. An SPQR-

tree approach to decide special cases of simultaneous embedding with fixed

edges. In I. G. Tollis and M. Patrignani, editors, Graph Drawing (GD ’08),
volume 5417 of LNCS, pages 157–168, 2008.

[Fra06] F. Frati. Embedding graphs simultaneously with fixed edges. In M. Kaufmann

and D. Wagner, editors, Graph Drawing (GD ’06), volume 4372 of LNCS,
pages 108–113, 2006.

[GIS99] Z. Galil, G. F. Italiano, and N. Sarnak. Fully dynamic planarity testing with

applications. Journal of the Association for Computing Machinery, 46:28–
91, January 1999.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, New York, NY, 1979.

[GJL+02] C. Gutwenger, M. Jünger, S. Leipert, P. Mutzel, M. Percan, and

R. Weiskircher. Advances in C-planarity testing of clustered graphs. In

Stephen G. Kobourov and Michael T. Goodrich, editors, Proc. Graph Drawing
2002 (GD ’02), volume 2528 of LNCS, pages 220–235. Springer, 2002.

[GJS76] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete

graph problems. Theoretical Computer Science, 1(3):237–267, 1976.
[GKM08] C. Gutwenger, K. Klein, and P. Mutzel. Planarity testing and optimal edge

insertion with embedding constraints. Journal of Graph Algorithms and Ap-
plications, 12(1):73–95, 2008.

[GKV09] M. Geyer, M. Kaufmann, and I. Vrt’o. Two trees which are self-intersecting

when drawn simultaneously. Discrete Mathematics, 307(4):1909–1916, 2009.
[GLS05] M. T. Goodrich, G. S. Lueker, and J. Z. Sun. C-planarity of extrovert clustered

graphs. In P. Healy and N.S. Nikolov, editors, Proc. Graph Drawing 2005 (GD
’05), volume 3843 of LNCS, pages 211–222. Springer, 2005.

[GM01] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-trees. In

Joe Marks, editor, Graph Drawing (GD 2000), volume 1984 of LNCS, pages
77–90. Springer, 2001.

[GM04] C. Gutwenger and P. Mutzel. Graph embedding with minimum depth and

1.6. VERTEX ADDITION ALGORITHMS 5

maximum external face. In Giuseppe Liotta, editor, Graph Drawing, volume

2912 of LNCS, pages 259–272. Springer, 2004.
[GMW01] C. Gutwenger, P. Mutzel, and R. Weiskircher. Inserting an edge into a planar

graph. In Proceedings of the twelfth annual ACM-SIAM symposium on
Discrete algorithms, SODA ’01, pages 246–255, Philadelphia, PA, USA, 2001.

Society for Industrial and Applied Mathematics.

[Gol63] A. J. Goldstein. An efficient and constructive algorithm for testing whether a

graph can be embedded in the plane. In Jr. Edmonds, John R., editor, Graphs
and Combinatorics Conference, Technical Report, page 2 unn. pp. Princeton

University, 1963.

[Grö59] H. Grötzsch. Ein dreifarbensatz fü dreikreisfreie netze auf der kugel. Wiss. Z.

Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 8, 1959.

[GT01] A. Garg and R. Tamassia. On the computational complexity of upward and

rectilinear planarity testing. SIAM J. Comput., 31(2):601–625, 2001.
[Hal43] D. W. Hall. A note on primitive skew curves. Bulletin of the American

Mathematical Society, 49(2):935–936, 1943.
[Har69] F. Harary. Graph Theory. Addison-Wesley, Reading, Mass., 1969.

[HJL10] B. Haeupler, K. R. Jampani, and A. Lubiw. Testing simultaneous planarity

when the common graph is 2-connected. In Proceedings of the 21st Sympo-
sium on Algorithms and Computation (ISAAC’10), volume 6507 of LNCS,
pages 410–421. Springer Heidelberg/Berlin, 2010.

[HL96] M. D. Hutton and A. Lubiw. Upward planar drawing of single-source acyclic

digraphs. SIAM J. Comput., 25(2):291–311, 1996.
[HN09] S. H. Hong and H. Nagamochi. Two-page book embedding and clustered graph

planarity. Technical Report 2009-004, Department of Applied Mathematics &

Physics, Kyoto University, 2009.

[Hsu01] W. L. Hsu. PC-trees vs. PQ-trees. In Proceedings of the 7th Annual Interna-
tional Conference on Computing and Combinatorics, COCOON ’01, pages

207–217, London, UK, 2001. Springer-Verlag.

[Hsu03] W. L. Hsu. An efficient implementation fo the PC-Tree algorithm of Shih and

Hsu’s planarity test. Technical Report TR-IIS-03-015, Inst. of Inf. Science,

Academia Sinica, 2003.

[HT65] F. Haray and W. T. Tutte. A dual form of Kuratowski’s theorem. Canad.
Math. Bull., 8:17–20, 1965.

[HT73] J. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components.

SIAM J. Comput., 2(3):135–158, 1973.
[HT74] J. Hopcroft and R. E. Tarjan. Efficient planarity testing. J. ACM, 21(4):549–

568, 1974.

[HT08] B. Haeupler and R. E. Tarjan. Planarity algorithms via pq-trees (extended

abstract). Electronic Notes in Discrete Mathematics, 31:143–149, 2008.
[HW74] J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of

planar graphs (preliminary report). In Proceedings of the sixth annual ACM
symposium on Theory of computing, STOC ’74, pages 172–184, New York,

NY, USA, 1974. ACM.

[JJKL08] V. Jelinek, E. Jelinkova, J. Kratochvil, and B. Lidicky. Clustered planarity:

Embedded clustered graphs with two-component clusters. In GD ’08, volume

5417 of LNCS, pages 121–132, 2008.
[JKK+08] E. Jeĺınková, J. Kára, J. Kratochv́ıl, M. Pergel, O. Suchý, and T. Vyskocil.

Clustered planarity: Small clusters in Eulerian graphs. In Seok-Hee Hong,

Takao Nishizeki, and Wu Quan, editors, Proc. Graph Drawing 2007 (GD

6 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

’07), volume 4875 of LNCS, pages 303–314. Springer, 2008.
[JKR11] V. Jeĺınek, J. Kratochv́ıl, and I. Rutter. A kuratowski-type theorem for pla-

narity of partially embedded graphs. In Proceedings of the 27th annual
ACM symposium on Computational geometry, SoCG ’11, pages 107–116,

New York, NY, USA, 2011. ACM.

[JS09] M. Jünger and M. Schulz. Intersection graphs in simultaneous embedding with

fixed edges. Journal of Graph Algorithms and Applications, 13(2):205–218,
2009.

[Kam07] F. Kammer. Determining the smallest k such that g is k -outerplanar. In

L. Arge, M. Hoffmann, and E. Welzl, editors, ESA ’07, volume 4698 of LNCS,
pages 359–370, 2007.

[Kel93] A. K. Kelmans. Graph planarity and related topics. In Neil Robertson and

Paul Seymour, editors, Graph Structure Theory, Proceedings of the AMS-
IMS-SIAM Joint Summer Research Conference on Graph Minors, 1991,
volume 147 of Contemporary Mathematics, pages 635–667, 1993.

[KR88] P. N. Klein and J. H. Reif. An efficient parallel algorithm for planarity. J.
Comput. Syst. Sci., 37(2):190–246, 1988.

[Kur30] K. Kuratowski. Sur le problème des courbes gauches en topologie. Fund.
Math., 15:271–283, 1930.

[LEC67] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing

of graphs. In Theory of Graphs: Internat. Symposium (Rome 1966), pages
215–232, New York, 1967. Gordon and Breach.

[LH77] C. H. C. Little and D. A. Holton. A new characterization of planar graphs.

Bulletin of the American Mathematical Society, 83(1):137–138, 1977.
[Lie01] A. Liebers. Planarizing graphs – a survey and annotated bibliography. Journal

of Graph Algorithms and Applications, 5(1):1–74, 2001.
[Liu88] Y. Liu. A new approach to the linearity of testing planarity of graphs. Acta

Mathematicae Applicatae Sinica (English Series), 4(3):257–265, 1988.
[Liu89] Y. Liu. Boolean approach to planar embeddings of a graph. Acta Mathematica

Sinica (New Series), 5(1):64–79, 1989.
[LS10] C. H. C. Little and G. Sanjith. Another characterisation of planar graphs. The

Electronic Journal of Combinatorics, 17(15), 2010.
[LT79] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM

J. Appl. Math., 36:177–189, 1979.
[Mac37a] S. MacLane. A combinatorial condition for planar graphs. Fundamenta Math-

ematicae, 28:22–32, 1937.
[Mac37b] S. MacLane. A structural characterization of planar combinatorial graphs.

Duke Mathematical Journal, 3:466–472, 1937.
[Man83] A. Mansfield. Determining the thickness of graphs is NP-hard. Proc. Math.

Cambridge Philos. Soc., 93:9–23, 1983.
[MM96] K. Mehlhorn and P. Mutzel. On the embedding phase of the Hopcroft and

Tarjan planarity testing algorithm. Algorithmica, 16:233–242, 1996.
[MW99] P. Mutzel and R. Weiskircher. Optimizing over all combinatorial embeddings

of a planar graph. In Proceedings of the 7th International IPCO Conference
on Integer Programming and Combinatorial Optimization, pages 361–376,

London, UK, 1999. Springer-Verlag.

[MW00] P. Mutzel and R. Weiskircher. Computing optimal embeddings for planar

graphs. In Proceedings of the 6th Annual International Conference on Com-
puting and Combinatorics, COCOON ’00, pages 95–104, London, UK, 2000.

Springer-Verlag.

1.6. VERTEX ADDITION ALGORITHMS 7

[Pap95] A. Papakostas. Upward planarity testing of outerplanar dags. In R. Tamassia

and I. G. Tollis, editors, Graph Drawing (Proc. GD ’94), volume 894 of

Lecture Notes Comput. Sci., pages 298–306. Springer-Verlag, 1995.
[Piz05] M. Pizzonia. Minimum depth graph embeddings and quality of the drawings:

An experimental analysis. In P. Healy and N.S. Nikolov, editors, Graph Draw-
ing ’05, volume 3843 of LNCS, pages 397–408, 2005.

[PT00] M. Pizzonia and R. Tamassia. Minimum depth graph embedding. In M. Pa-

terson, editor, ESA ’00, volume 1879 of LNCS, pages 356–367, 2000.
[RND77] E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms: The-

ory and Practice. Prentice Hall, Englewood Cliffs, NJ, 1977.

[Ros80] P. Rosenstiehl. Preuve algébrique du critère de planarité du Wu-Liu. Annals
of Discrete Mathematics, 9:67–78, 1980.

[RR89] V. Ramachandran and J. H. Reif. An optimal parallel algorithm for graph

planarity. In Proc. 30th Annu. IEEE Sympos. Found. Comput. Sci., pages
282–293, 1989.

[RR94] V. Ramachandran and J. Reif. Planarity testing in parallel. Journal of Com-
puter and System Sciences, 49:517–561, December 1994.

[RS84] N. Robertson and P. D. Seymour. Graph minors. III. Planar tree-width. Jour-
nal on Combinatorial Theory, Series B, 36(1):49–64, 1984.

[RSST97] N. Robertson, D.P. Sanders, P.D. Seymour, and R. Thomas. The four color

theorem. J. Combin. Theory Ser. B, 70:2–4, 1997.
[Sch89] W. Schnyder. Planar graphs and poset dimension. Order, 5:323–343, 1989.
[SH93] W.K. Shih and W.L. Hsu. A simple test for planar graphs. In Int. Workshop

on Discrete Math. and Algorithms, pages 110–122, 1993.
[SH99] W.K. Shih and W.L. Hsu. A new planarity test. Theor. Comp. Sci., 223,

1999.

[Tam98] R. Tamassia. Constraints in graph drawing algorithms. Constraints, 3:87–120,
April 1998.

[Tar72] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Com-
put., 1(2):146–160, 1972.

[Tho99] R. Thomas. Graph planarity and related topics. In Jan Kratochv́ıl, edi-

tor, Graph Drawing (Proc. GD ’99), volume 1731 of LNCS, pages 137–144.

Springer-Verlag, 1999.

[TT97] Hisao Tamaki and Takeshi Tokuyama. A characterization of planar graphs

by pseudo-line arrangements. In Proc. 8th Annu. Internat. Sympos. Algo-
rithms Comput., volume 1350 of Lecture Notes Comput. Sci., pages 123–132.
Springer-Verlag, 1997.

[Wag37a] K. Wagner. Über eine Eigenschaft der ebenen Komplexe. Mathematische
Annalen, 114:570–590, 1937.

[Wag37b] K. Wagner. Über eine Erweiterung eines Satzes von Kuratowski. Deutsche
Mathematik, 2:280–285, 1937.

[Whi32] H. Whitney. Non-separable and planar graphs. Transactions of the American
Mathematical Society, 34:339–362, 1932.

[Wil80] S. G. Williamson. Embedding graphs in the plane – algorithmic aspects. An-
nals of Discrete Mathematics, 6:349–384, 1980.

[Wu74] W. Wu. Planar embedding of linear graphs. Kexue Tongbao, 2:226–282, 1974.
(In Chinese).

[Xu89] W. Xu. Improved algorithm for planarity testing based on Wu-Liu’s citerion.

Annals of the New York Academy of Science, 576:641–652, 1989.
[Yan78] M. Yannakakis. Node-and edge-deletion NP-complete problems. In Proceed-

8 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

ings of the tenth annual ACM symposium on Theory of computing, STOC

’78, pages 253–264, New York, NY, USA, 1978. ACM.

[Yan82] M. Yannakakis. The complexity of the partial order dimension problem. SIAM
J. Algebraic Discrete Methods, 3(3):351–358, 1982.

Index

Algorithm
Auslander-Parter, 11–13
Boyer-Myrvold, 26–29
de Fraysseix-Ossona de Mendez-Rosenstiehl,

14–16
Hopcroft-Tarjan, 13–14
Lempel-Even-Cederbaum, 20–22
Shih-Hsu, 22–25

BC-tree, 3
Biconnected component, 3
Block, 3
Block-cutvertex tree, 3
Bush, 20
Bush form, 20

Clustered graph, 8
Clustered planarity, 8
Component

biconnected, 3
connected, 3
triconnected, 3

Connected component, 3
Cutvertex, 3
Cycle

definition, 2
fundamental, 14
length, 2

Depth First Search, 10
highpoint, 10
index, 10
lowpoint, 10
tree, 10

Depth of a graph, 7
DFS, see Depth First Search
Drawing, 2

c-planar, 8
outerplanar, 2
planar, 2

Dual graph, 4

Edge
adjacent, 2
incident, 2
self-loop, 2
subdivision, 2

virtual
of a bush, 21
of a skeleton, 3

Embedding, 2
simultaneous, 8

Face, 2
external, 2
outer, 2

Fundamental cycle, 14

Geometric simultaneous embedding, 8
Graph

k colorable, 4
biconnected, 3
bipartite, 4
clustered, 8
complete, 4
connected, 2
definition, 2
depth, 7
directed, 2
intersection, 2
outerplanar, 2
outerplanarity, 7
planar, 2
plane, 2
simple, 2
simply connected, 3
subdivision, 2
subgraph, 2
triconnected, 2
undirected, 2
union, 2
width, 7

Left-right partition, 14
LR-partition, 14

Outer vertex, 18
Outerplanarity, 7

measure, 7

Palm tree, see Depth First Search, tree
Partition

aligned, 14
Left-right, 14

9

10 INDEX

LR-partition, 14
Path

addition, see Algorithm, Hopcroft and
Tarjan

definition, 2
length, 2

PC-tree, 23
Planarity

clustered, 8
constrained, 6
simultaneous, 8
upward, 7

Plane dual, 4
Plane graph

Dual, 4

Returning edge, 10
Root

of connected component, 23

Separation pair, 3
Simultaneous embedding, 8

geometric, 8
with fixed edges, 8

Simultaneous Planarity, 8
Spanning tree, see Tree, spanning a graph
Split

component, 3
operation, 3

SPQR-tree, 3
St-numbering, 20

Tree
BC-tree, 3
PC-tree, 23
PQ-tree, 22
spanning a graph, 2
SPQR tree, 3

Triconnected component, 3

Upward planarity, 7

Vertex
adjacent, 2
outer, 18
virtual, 21

Virtual edge
of a bush, 21
of a skeleton, 3

Virtual vertex, 21

Width
of a graph, 7

