
2MMD30: Graphs and Algorithms Lecture 6 by Jesper Nederlof, 26/02/2016

Solutions to exercises of lecture 6

Exercise 6.1. Download the excel sheet subsetsum.xls from http://www.win.tue.nl/~jnederlo/

2MMD30/. It was used to solve the instance

w = {3, 20, 58, 90, 267, 493, 869, 961, 1000, 1153, 1246, 1598, 1766, 1922}, t = 5842

of Subset Sum to find the solution 20, 58, 90, 869, 961, 1000, 1246, 1598. Are there more solutions?
If so, can you find one?

Solution: The excel sheet uses the following recurrence: for i = 0, . . . , 14, t = 0, . . . , 5842 let
A[i, j] be the number of subsets X from {1, . . . , i} such that

∑
e∈X we = j. We see that

A[i, j] =

{
0 if i = 0, j 6= 0, (6.1)

A[i− 1, j] +A[i− 1, j − wi] otherwise. (6.2)

Note that for convenience in excel we use a variant of the recurrence from the lecture notes. In
the excel sheet we see the table entries A[i, j] being computed. From the cell (7842, 16) we see there
are 5 solutions, and from (7842, 15) we see there are 4 subsets X of {1, . . . , 13} with

∑
e∈X we = t,

so 1 solution uses the integer 1922 and from the first 13 integers it will pick integers summing to
5842− 1922, so we continue to look at cell (5920, 14) and see the unique solution containing 1922
does not contain 1766, 1598, 1246 but contains 1153. Continuing like this we arrive at the solution
1922, 1766, 1246, 493, 90, 58.

Exercise 6.2. How many integers in {1, . . . , 100} are not divisible by 2, 3 or 7?

Solution: Use inclusion exclusion. Let U = {1, . . . , 100}, P1 = {i ∈ U : i is not a multiple of 2},
P2 = {i ∈ U : i is not a multiple of 2}, P3 = {i ∈ U : i is not a multiple of 2}. We need to compute
|P1 ∩ P2 ∩ P3| which equals by the inclusion exclusion formula

|U | − |P1| − |P2| − |P3|+ |P1 ∩ P2|+ |P2 ∩ P3|+ |P1 ∩ P3| − |P1 ∩ P2 ∩ P3|,

and these terms are more easily computed since, e.g., |P2 ∩ P3| is the number integers that are
simultaneously multiple of 3 and 7 (so equivalently, since 3 and 7 are co prime, a multiple of 21)
which are 21, 42, 63 and 84.

1

http://www.win.tue.nl/~jnederlo/2MMD30/
http://www.win.tue.nl/~jnederlo/2MMD30/


100− 50− 33− 14 + 16 + 4 + 7− 2 = 28

Exercise 6.3. At the 5th of December it is common in the Netherlands to buy presents for
each other. To do this when there are n persons p1, . . . , pn celebrating together, there are various
processes to pick a random permutation f : {1, . . . , n} ↔ {1, . . . , n}. We call a permutation good
if f(i) 6= i for every i. Suppose n = 5, how many good permutations are there?

Solution: Use inclusion exclusion. Let U be all permutations, and for i = 1, . . . , 5 let Pi be the
set of permutations f such that f(i) 6= i. We see that the number of good permutations (also called
derangements) equals | ∩5i=1 Pi|. We note that | ∩i∈F Pi| only depends on |F | by symmetry and

| ∩i∈F Pi| = number of permutations where f(i) = i for every i ∈ F = (5− |F |)!

since for all elements in F we have only one choice and for i /∈ F there are no restrictions so f can
be any permutation restricted to {1, . . . , 5} \F . By inclusion exclusion we see that | ∩5i=1 Pi| equals

∑
F⊆{1,...,5}

(−1)|F |(5− |F |)! =

5∑
i=0

(−1)i
(

5

i

)
(5− i)!

=

(
5

0

)
5!−

(
5

1

)
· 4! +

(
5

2

)
3!−

(
5

3

)
2! +

(
5

4

)
1!−

(
5

5

)
0!

= 120− 120 + 60− 20 + 5− 1 = 44.

Exercise 6.4. The n’th Fibonacci number fn is defined as follows: f1 = 1,f2 = 1 and for n > 2,
fn = fn−1 + fn−2. What is the running time of the following algorithm to compute fn?

Algorithm FIB2(n)
Output: fn

1: Initiate a table F with F [i] = −1 for i = 1, . . . , n
2: return FIBREC(n).

Algorithm FIBREC(n)
Output: fn

1: if n = 1 or n = 2 then return 1
2: if F [n] = −1 then
3: x← FIBREC(n− 1)+FIBREC(n− 2)
4: F [n]← x
5: return x.
6: else
7: return F [n].
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Solution: O(n) time. To see this, note that in the execution, the condition at Line 2 applies only
once for every n. Intuitively, we could still look at the recursion tree of this algorithm, but it will
be a very unbalanced tree of depth n where, if the left child is evaluated before the right child, the
right child is a leaf since the condition at Line 2 will not apply.

Exercise 6.5. Let G be bipartite graph with parts A,B, |A| = |B| = n. Use inclusion exclusion to
count the number of perfect matchings of G in O∗(2n) time. Can you do with polynomial space?

Solution: Use inclusion exclusion. A pseudo-matching of G = (A∪̇B,E) is a set of edges M ⊆ E
such that for every a ∈ A there exists exactly one e ∈ M incident to a. Note that if M ⊆ E is a
pseudo-matching, and for every b ∈ B there exists an edge e ∈M incident to b, then M is a perfect
matching. Thus, if U is the set of all pseudo-matchings of G and for every b ∈ B, Pb is the set of
all pseudo-matchings M such that there exists at least1 one e ∈M containing b, then | ∩b∈B Pb| is
the number of perfect matchings of G. By inclusion exclusion we have that

|
⋂
b∈B

Pb| =
∑
F⊆B

(−1)|F ||
⋂
b∈F

Pb|.

Now, note that |
⋂

b∈F Pb| is the number of pseudo-matchings that do contain any edge incident
to a vertex of F , which is the number of pseudo-matchings in G[A∪B \F,E]. This number if easily
computed in polynomial time: in a pseudo-matching every vertex in A needs to pick a neighbor in
B but these choices are independent so we see that

|
⋂
b∈F

Pb| =
∏
a∈A
|N(a) \ F |,

so this can clearly be computed in polynomial time and thus the inclusion exclusion formula can
be computed in O∗(2n) time.

Exercise 6.6. In the Weighted Steiner Tree problem we are given a graph G = (V,E), a weight
function ω : E → N and a set of terminals T ⊆ V . We need to find a connected tree (S,E′)
minimizing

∑
e∈E′ ω(e) such that T ⊆ S ⊆ V . Solve this problem in time O∗(2n−k), where |V | = n

and |T | = k.

Solution: Iterate over all relevant candidates for subset S, and for each such subset, compute a
minimum spanning tree of G[S]. Return the minimum tree found. This gives a valid solution and
also the optimum solution since once we fixed S the optimal way of connecting the vertex set is via
a minimum spanning tree. The running time is O∗(2n−k) since there are at most 2n−k candidates
for S and minimum spanning tree can be done in polynomial time.

Exercise 6.7. In the Set Partition and Set Cover problems we are given sets A1, . . . , Am ⊆ U where
|U | = n. In the Set Cover problem we need to find X ⊆ {1, . . . ,m} such that

⋃
i∈X Ai = U . In the

Set Partition problem we need to find X ⊆ {1, . . . ,m} such that
⋃

i∈X Ai = U and Ai ∩ Aj = ∅
for every i, j ∈ X with i 6= j. Solve both problems in O∗(2n) time. Can you also solve both in
O∗(2n) time and polynomial space?2 Note: O∗(·) suppresses factors polynomial in the input size,
so O∗(2nm100) is also O∗(2n).

1Of course, the definition of perfect matching requires exactly one, but since we have only n edges, this is equivalent
here.

2I do not expect you to reproduce the O∗(2n) time polynomial space algorithm for Set Partition.
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Solution: Both problems can be done with both dynamic programming and inclusion exclusion.
For dynamic programming, define table entries A[i, Y ] for i = 1, . . . ,m and Y ⊆ U which contains
the minimum size of a subset X ⊆ {1, . . . , i} such that

⋃
i∈X Ai ⊆ X (and

⋃
i∈X Ai = X for Set

Partition). We see for Set Cover that

A[i, Y ] =


∞ if i = 0, Y 6= ∅ (6.3)

0 if i = 0, Y = ∅, (6.4)

min{A[i− 1, Y ], 1 +A[i− 1, Y \Ai]} otherwise. (6.5)

And we see for Set Partition that

A[i, Y ] =


∞ if i = 0, Y 6= ∅ (6.6)

0 if i = 0, Y = ∅, (6.7)

min{A[i− 1, Y ], 1 +A[i− 1, Y \Ai]} if Ai ⊆ Y (6.8)

A[i− 1, Y ] otherwise. (6.9)

And A[n,U ] can be computed in O∗(2n) time in both cases.
For the inclusion-exclusion approach, set cover is quite a bit easier than set partition, so let

us do that one first. We let l = 1, . . . ,m and will determine whether there exists X of size l. We
apply inclusion exclusion with universe3 {X ⊆ {1, . . . ,m} : |X| = l}. For every e ∈ U we define a
property Pe which is {X ⊆ {1, . . . ,m} : |X| = l ∧ e ∈

⋃
i∈X Ai}. We see that |

⋂
e∈U Pe| > 0 if and

only if there exists a set X as sought in the set cover problem of size l. Moreover, for |
⋂

e∈U Pe|
the choices of whether Ai is included or not are almost independent and in particular we see that

|
⋂
e∈F

Pe| =
(
|{i ∈ {1, . . . ,m} : Ai ∩ F = ∅}|

l

)
.

Thus indeed the inclusion exclusion formula in this case can be evaluated in O∗(2n) time.
For set partition, we use a similar application, but we use that a tuple of sets form a set partition

if and only if they form a set cover and there sizes add up to U : we use as universe in the inclusion
exclusion formula the set {X ⊆ {1, . . . ,m} :

∑
i∈X |Ai| = n}. For every e ∈ U we define a property

Pe which is {X ⊆ {1, . . . ,m} : e ∈
⋃

i∈X Ai ∧
∑

i∈X |Ai| = n}. We see that |
⋂

e∈U Pe| > 0 if and
only if there exists a set X as sought in the set partition problem of size l. Moreover, for |

⋂
e∈U Pe|

the choices of whether Ai is included or not are almost, and we can use dynamic programming:
Define

AF [i, j] = |{X ⊆ {1, . . . , i} :
∑
e∈X
|Ae| = n ∧ for every e ∈ X : Ae ∩ F = ∅}|.

We see that |
⋂

e∈F Pe| = AF [n, n] and for fixed F , AF [n, n] can be computed in polynomial time
using dynamic programming based on the recurrence

AF [i, j] =


0 if i = 0, j 6= 0 (6.10)

1 if i = 0, j = 0, (6.11)

AF [i− 1, j] if Ai ∩ F 6= ∅ (6.12)

AF [i− 1, j] +AF [i− 1, j − |Ai|] otherwise. (6.13)

3which we won’t denote by U this time since it already is used in the problem description
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Thus indeed the inclusion exclusion formula in this case can be evaluated in O∗(2n) time.

Exercise 6.8.[Floyd Warshall] Suppose we are given a graph G = (V,E) with for every edge
(u, v) ∈ E a distance d(u, v). Let V = {1, . . . , n}. The goal of this exercise if to compute for
every pair i, j ∈ V the shortest path from i to j in a total of O(n3) time. Show how to do this

with dynamic programming. Specifically, let d
(k)
i,j be the length of the shortest path from i to j for

which all intermediate vertices are in the set {1, . . . , k} (see also p630 of the book ‘Introduction to
Algorithms’ by Cormen et al.).

Solution:

d
(k)
i,j =

{
d(i, j) if k = 0 (6.14)

min{d(k−1)i,j , d
(k−1)
i,k + d

(k−1)
k,j } if k ≥ 1. (6.15)

And straightforward evaluation indeed results in an O(n3) time algorithm since the distances can

be read off from d
(n)
i,j .

Exercise 6.9. First solve Knapsack in time O(n lg(vmaxn)vmax) where vmax = maxi vi. How can
you use is to solve Knapsack in time O(n lg(vmaxn)vmax/S), if all values are divisible by S? Argue
one could construct an approximation scheme for knapsack similar as in Subsection 6.1.1.4

Solution: For integers i = 1, . . . , n and t = 1, . . . , nvmax define A[i, t] to be min{
∑

e∈X we :∑
e∈X ve ≥ t}. We see that

A[i, j] =


0 if i = 0, j ≤ 0, (6.16)

∞ if i = 0, j > 0, (6.17)

min{A[i− 1, j], wi +A[i− 1, j − vi]} otherwise. (6.18)

And the optimum value of the knapsack instance can be found by looking for the largest v such
that A[n, v] ≤W . We can use this exactly as in Subsection 6.1.1 if all values are divisible by S by
simply dividing all values by S and looking for the largest v such that A[n, v] ≤ W in the divided
instance. By first rounding the values to the nearest multiple of S and then dividing by S this
gives us an O(n3/ε) approximation algorithm (e.g., if maximum value V is possible it returns a
valid solution of value at least (1− ε)V ) for Knapsack.

4I do not expect you to reproduce the approximation scheme for Knapsack.
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