
2MMD30: Graphs and Algorithms Lecture 7 by Jesper Nederlof, 02&04/03/2016

Treewidth.

Treewidth is a measure of how ‘tree-like’ a graph is. This will appear to be useful for two reasons:
1. Very many graphs problems can be solved fast on graphs of small treewidth, 2. many graphs
have small treewidth.

7.1 Weighted Independent Set on Trees Revisited

Let’s recall what we finished with previous time. Suppose we are given a rooted tree T = (V,E)
and a weight function ω : V → N. The goal is to find an independent set X ⊆ V maximizing∑

e∈X ω(e). Denote ch(v) to be the set of children of v (which is the empty set if v is a leaf of T).
Define A[v] to be the maximum weight of an independent set of T [v], then we have that

A[v] =

ω(v), if T [v] is a single node, (7.1)

max

 ∑
c∈ch(v)

T [c], ω(v) +
∑

c1∈ch(v)

∑
c2∈ch(c1)

T [c2]

 , otherwise. (7.2)

To see this, note that if T [v] is a single node, the maximum independent set is to include v.
Otherwise, an independent set may not include v, in which case it will induce an independent set
in T [c] for every child c of v, or it will include v, in which case it may not include any child of v
so it will induce a maximum independent set in T [c2] for all ‘grand-children’ of v (e.g., children of
children). It is easy to see that a näıve evaluation of 7.1 takes only O(n) time since there are at
most O(n) ‘child’ and ‘grandchild’ relations.

What allowed us to solve this problem so fast? The main point is that once we made a decision
on whether to include v, the subproblems become independent since v separates all subtrees from
each other. The notion of treewidth indicates how treelike the graph is and how good the above
strategy is going to work.

7.2 Definition of Treewidth

The definition of treewidth is always a bit hard to digest so examples are coming, but let’s first
just get it over with:

Definition 7.1. A tree decomposition of an (undirected) graph G = (V,E) is a pair (X,T) where
X = (X1 . . . , X`) with Xi ⊆ V and T is a tree with vertex set X such that

1

1.
⋃l
i=1Xi = V ,

2. E ⊆
⋃l
i=1Xi ×Xi (i.e. if (u, v) ∈ E, then both u and v are simultaneously in one bag Xi for

some i),

3. if v ∈ Xi and v ∈ Xj, then v ∈ Xj′ for all j′ on the path from i to j in T (i.e. the set of Xi

containing v form a connected subtree of T).

Definition 7.2. The width of a tree decomposition (X,T) where X = {X1, . . . , Xl} is maxli=1 |Xi|−
1. The treewidth of a graph G is the minimum width over all tree decompositions of G.

In the above definition of width it might look strange that we subtract 1; this is since it is nice
to have that trees and forests have treewidth 1 (we’ll see this in Exercise 7.1).

a b c

d

f g h

e
d

g
b

d
b a c

e
b

g h
e

f g
d

g
b e

Separates a, f
and ceh.

Figure 7.1: Example of a tree decomposition. The third property assures that for any bag Xi (in
the example Xi = {b, d, g}), all vertices not in Xi occur in one of the connected components of the
tree obtained by removing Xi from T . In the original graph, this means Xi is a separator.

It is important to know that the problem of determining whether the treewidth is at most w
parameterized by w is FPT.

7.3 Cops and Robber Interpretation of Treewidth

Let G = (V,E) be a graph and consider the following game: there is a robber r and w cops
c1, . . . , cw. One player controls the robber and the other player controls the cops. A position is
described by vertices vr, vc1, . . . , v

c
l ∈ V , where l ≤ w. In one turn, the cop-player removes a cop

from the board or, if l < w adds another one to an arbitrary position. During the move of the
cop-player the robber may move freely around the edges of G as long as he does not visit a vertex
occupied by a cop, he may use the knowledge of where the new cop will be added for this. The
game starts with zero cops and the robber at a position of his choice, and ends when an added cop
lands on the vertex where the robber is. See also the slides for examples.

Theorem 7.1. w + 1 cops can win if and only if the graph has treewidth at most w.

The proof of this theorem (in particular, the forward direction) is not that easy and will be
omitted.

2

d g
b d

b a c
e

b

g h
e f g

d
g
b e

g

d g
b

d
b a c

e
b

g h
e

f g
d

d b

g d

e b

g e

d g b
g
b e g

b

f g
f

c b
c

g b e

g e

g h

d g b
b

root

Figure 7.2: Example of a nice tree decomposition. Leaves are in black, introduce nodes in green,
forget nodes in red and join nodes in yellow.

7.4 Nice Tree decompositions

Algorithms using tree decompositions are often presented using nice tree decompositions:

Definition 7.3. A nice tree decomposition is a tree decomposition (X,T) where X = (X1 . . . , Xl),
T is a rooted tree and:

• every bag of T has at most two children,

• if a bag Xi has two children Xj , Xj′, then Xi = Xj = Xj′,

• if a bag Xi has one child Xj, then either

– |Xi| = |Xj |+ 1 and Xj ⊆ Xi; we say Xi introduces v, if Xi \Xj = {v}, or

– |Xi| = |Xj | − 1 and Xi ⊆ Xj; we say Xi forgets v, if Xj \Xi = {v}.

Lemma 7.1. Given a graph G and a tree decomposition of G of width w, we can compute a nice
tree decomposition of G of width w in polynomial time.

Proof. Pick a root arbitrarily. Add bags under the leaves that introduce all vertices of the original
leaves except one. If a bag Xi has a child Xj , add in the new treedecomposition bags between Xi

and Xj where, starting from Xi we first have a series of introduce vertices that introduce Xi \Xj

until we have a bag with set X∩Xj and then a series of forget bags that forget vertices from
Xj \Xi.

3

7.5 Weighted Independent Set on Graphs of Small Treewidth

Now let’s see how to generalize the approach from Section 7.1. First it is convenient to introduce
some notation that is useful in general. Assume we are given a nice tree decomposition (X,T).
Since T is rooted, we may refer to children and ancestors etc. For a bag i = 1, . . . , l, let Gi = (Vi, Ei)
be the subgraph of G induced by all vertices in bags that are descendants of bag i in T .

Theorem 7.2. There exists an algorithm that given a tree decomposition of G of width w solves
weighted Independent Set in O∗(2w) time.

Proof. We first define the table entries of the dynamic programming algorithm: for every bag
i = 1, . . . , l and subset Y ⊆ Xi we define

A[i, Y] = max{ω(W) : W is an independent set of Gi ∧W ∩Xi = Y }.

Or less formally, A[i, Y] is the maximum weight of an independent set of the graph Gi where we
have to include from Xi exactly the vertices Y (and no more).

The algorithm computes A[i, Y] for all bags i = 1, . . . , l and Y ⊆ Xi in a bottom-up fashion
(i.e. starting with the leaf bags and ending with the root bag). We now give the recurrence for
A[i, Y] that is used by the dynamic programming algorithm. In order to simplify notation let v be
the vertex introduced and contained in an introduce or leaf bag, and let j, j′ be the left and right
child of i in T if present.

• Leaf bag:
A[i, ∅] = 0, A[i, {v}] = ω(v)

• Introduce vertex bag:

A[i, Y] = A[j, Y], if v /∈ Y,
A[i, Y ∪ {v}] = A[j, Y] + ω(v), if N(v) ∩ Y = ∅,
A[i, Y ∪ {v}] = −∞, if N(v) ∩ Y 6= ∅.

If Y does not include v, v is not picked and hence not relevant and we can simply look the
table entry up in A[j, Y]. If Y includes v we either account for it if no neighbor of it is picked
as well (note that all neighbors of v in Gi need to be in Xi since the incident edges need to
be covered somewhere and if it is not in T [i] it is above and then the neighbor cannot be in
T [v] by the connectivity constraint), or return −∞ if a neighbor is included since then we
maximize over an empty set.

• Forget bag:
A[i, Y] = max{A[j, Y], A[j, Y ∪ {v}]}

In the child bag the vertex v can either be in the independent set or not. We account for its
weight and whether this is a valid choice when it is introduced further down in the tree.

• Join bag:
A[i, Y] = A[j, Y] +A[j′, Y]− ω(Y)

The two independent sets of Gj and Gj′ together form an independent of Gi if they are
consistent in the overlapping vertex set S, and we take care that vertices in S are accounted
twice by subtracting this weight.

4

It is easy to see that using the above recurrences, A[r, Y] can be computed in O∗(2k) time for
every Y ⊆ Xr, if r is the root of T and it is follows by definition that maxY⊆Xr A[r, Y] equals the
maximum weight of an independent set.

7.6 Minimum Weight Dominating Set

A dominating set of a graph G = (V,E) is a subset X ⊆ V such that for every v ∈ V , either v ∈ X
or N(v)∩X 6= ∅. Equivalenty, for every v ∈ V it holds that N [v]∩X 6= ∅. In the minimum weight
dominating set problem we are given a graph G = (V,E) and weight function ω : V → N and need
to find a dominating set X minimizing ω(X). We will now see an algorithm solving this in linear
time on trees. As before we assume T is rooted and we use dynamic programming. The point of
this exercise is that we need to distinguish three cases now; for independent set we only needed to
know whether v is included or not to solve the subproblems independently, but for dominating set
we also need to know whether the vertex is already dominated if it is not included (i.e. in which
subproblem we pick a neighbor of v).

AD[v] = min weight of a dominating set of T [v] \ v
AI [v] = min weight of dominating set of T [v] that includes v

AE [v] = min weight of dominating set of T [v] that excludes v.

From the definition we see the minimum weight can be read off from min{AI [r], AE [r]}, where
r is the root of the tree. If v is a leaf we see that AE [v] =∞, AD[v] = 0 and AI [v] = ω(v). If v is
not a leaf, we have that

AD[v] =
∑

c∈ch(v)

min{AI [c], AE [c]}

AI [v] = ω(v) +
∑

c∈ch(v)

min{AD[c], AI [c]}

AE [v] = min
c∈ch(v)

{
AI [c] +

∑
c′∈ch(v)\c

min{AI [c′], AE [c′]}
}
.

To see that this is true, note that for AD[v] the problem splits into independent subproblems as
before, for AI [v] we have that v is included so we account for its weight and solve the subproblems
induced by the subtrees rooted at the children of v independently: we may decide whether to
include each child or not and if we do not include it we have that it is already dominated to we
refer to AD[c]. For AE [c], v still needs to be dominated so we go over all possibilities of which child
is picked and given such a picked vertex we go over all possibilities of the other children (which
again induce independent subproblems)Note that a näıve evaluation of this recurrence would result
in a quadratic time algorithm, it is easy to make it run in linear time but that is not really relevant
for us.

5

7.7 k-path is FPT

In the k-path problem we are given an undirected graph G = (V,E) and an integer k and need to
determine whether there exists a simple path in G on at least k vertices. This problem is NP-hard
since it reduces to Hamiltonian path in the special case k = n. Using a similar approach as in
the previous sections, one can find an algorithm that given a graph G with tree decomposition of
width w and integer k, determines whether a k path exists in O∗(wO(w)) time. We will explore this
direction more in the exercises, but on a high level the intuition is that we need table entries for
all possible ways a partial path can be connected. This is about equal to the number of matchings
on w vertices and there are wO(w) matchings on w vertices which is the reason we arrive at the
running time O∗(wO(w)), informally.

Now we’ll use this algorithm as a subroutine to solve the k-path problem in O∗(kk) time. Assume
that the graph is connected. If not we can simply look for k-paths in all connected components
independently. Pick a vertex s of the input graph arbitrarily and perform a DFS from s. Consider
the DFS tree resulting from this. If it has height at least k, G clearly has a k-path since any path
from the root to a leaf is a k-path. Otherwise, let l1, . . . , lp be the leaves of the DFS tree ordered
as visited by the DFS and let Li be all vertices on the path from s to li in the DFS tree.

We claim that (X,T) where X = {L1, . . . , Lp} and T the path with edges (Li, Li+1) is a tree
decomposition of G. To see this, note that clearly Property 1 is met since all vertices are on some
path from s to li; for Property 2, all edges are indeed in some bag since by the property of a DFS
tree all edges are between a vertex and one of his ancestors, so both lie on some path from a leaf
to the root simultaneously. For the third property, note that a vertex v is contained in all bags Li
where li is a leaf of the subtree rooted at v and these leafs are consecutive numbered since they are
visited consecutively in the DFS.

Thus we found a polynomial time algorithm that either finds a k-path or a tree decomposition
of width at most k, and using the mentioned O∗(wO(w))-time algorithm in the latter case we get
an O∗(kO(k)) time algorithm for k-path.

7.8 Approximation of Weighted Independent Set on Planar Graphs

Now we return to a problem already studied in the beginning of this course. Given a planar
graph G = (V,E) and weights ω : V → N we want to find an independent set X ⊆ V such that
ω(X) ≥ (1− ε)OPT where OPT is the maximum of ω(X) over all independent sets X of G. The
following theorem will be highly useful for that (and it also has other uses beyond approximation).

Theorem 7.3. Given a planar graph G = (V,E) and a spanning tree S of G of height1 at most h,
a tree decomposition of G of width at most 3h can be found in polynomial time.

Proof sketch, will not be examined. First triangulate the graph (i.e. add edges until all faces are
formed by three edges). If we find a tree decomposition of the new graph, it will also be a tree
decomposition of the original graph since the added edges only make Property 2 more strict. Assign
a root to S arbitrarily.

Then look at the dual graph but only have edges of the dual graph between two faces that share
an edge not in S. Call this graph T . It is easy to see that T has no cycles since if it would it needs
to cross S since S is spanning. We’ll show in a second that T is connected, so it has to be a tree.

1The maximum number of edges on the path from the root to a leaf, where the maximum is taken over all leaves.

6

For every face i we have a bag Xi containing all vertices incident to that face and also all
ancestors of these vertices in S. It is clear that all vertices and edges are in some bag, and for
Property 3. it can be seen that the set of bags containing any vertex v induce a connected graph
in T since we can walk around the faces incident to all edges of S[v]2

Since all bags contain the root of S, it follows that T is connected by the previous argument, so
indeed (X,T) is a tree decomposition. The width is at most 3h since for any face the three incident
vertices each have at most 3h+ 1 ancestors in S.

Baker’s layering approach Now let us see how Theorem 7.3 can be used for approximating
the maximum weight independent set. We’ll see an algorithm with running time O∗(23/ε), which
improves the algorithm taking O∗(2O(1/ε2)) time algorithm we have seen in lecture 3/4.

The algorithm is as follows:

Algorithm apxis(G = (V,E), ε), Assumes G planar
Output: The weight of an independent set of weight ≥ (1 − ε)OPT , where OPT is maximum

weight of an independent set of G.
1: Choose a vertex s ∈ V arbitrarily
2: Perform a breadth-first search from s
3: For i = 0, . . . , n, let Li be all vertices at distance i from s (e.g., at depth i in the BFS tree)
4: For i = 0, . . . , k−1, let Vi be the union of all sets Lj where i 6= j mod k (i.e., k is not a divisor

of i− j)
5: Set max = −∞.
6: for l = 0 to k − 1 do
7: Compute a tree decomposition of G[Vi] of width 3k

to find such tree decomposition, split G[Vi] into connected components and find

tree decomposition of each connected component separately as follows:

add a vertex z on the place of s in the embedding and add an edge from z to every vertex

in La, where a is the smallest integer such that La is in the connected component.

A BFS tree from z will be of height at most k so we can use Theorem 7.3

to get a tree decomposition of the graph without the added vertex use Exercise 7.3
8: Compute a maximum weight independent set of G[Vi] as outlined in Section 7.5
9: if found weight > max then set max = found weight

10: return max

Algorithm 1: Baker’s layering approach for the Max Weight Independent Set problem.

Let us first see whether the output of apxis is indeed as promised. Denote Vi = V \ Vi, i.e. Vi
are all vertices in Lj such that i ≡ j(mod k). We see that the sets V0, . . . , Vk−1 partition V . Thus,
if I is a maximum weight independent (i.e. ω(I) = OPT), then for some l = 1, . . . , k we have that
ω(I ∩ Vi) ≤ OPT/k and thus ω(I ∩ VI) ≥ OPT − OPT/k ≥ OPT (1 − ε). Since in iteration l of
Line 6 we find the maximum weight independent set of G[Vi] the algorithm finds max ≥ ω(I ∩VI),
so max ≥ OPT (1− ε).

2This is not a rigorous argument, formally one should use induction here (where the leaves are the base case).

7

For the running time of the algorithm, note that Line 8 is the only part that does not take
time polynomial in the input size, which takes O∗(23k) time so the algorithm takes O∗(23/ε) time.
To see that we indeed obtain a tree decomposition of G[Vi] of width 3k in the way described, first
note that Lb separates all vertices in La from all vertices in Lc for a < b < c since if there would
be an edge between a vertex in u ∈ La and v ∈ Lc then v would be at distance at most b from
s, contradicting it is in Lc. Thus, G[Vi] splits into separate connected components induced by
consecutive layers La, La+1 . . . ,. It is easy to see that from tree decompositions of the connected
components we can obtain a tree decomposition of same width of the whole graph by adding an
empty bag connected the tree decompositions, so now it is sufficient to find tree decompositions of
the connected components. To do this, consider one connected component and let a be the smallest
integers such that it contains La. We see that if we add z at the place of s and add edges to all
vertices in La we still have a planar graph since in the original graph there was a tree rooted at s
and leaves at La with no vertices in Lb for a > b. Now performing a BFS from z in this graph gives
a BFS tree of height at most k by definition of the layers so we may use Theorem 7.3 to obtain a
tree decomposition of this connected component with z added of width at most 3k. As asked in
Exercise 7.3, this tree decomposition can easily be modified to obtain a tree decomposition of the
connected component.

7.9 Graph Minors

For a graph G = (V,E) and an edge (u, v) ∈ E, we can contract e as follows: delete vertices u, v
from G and add a new vertex wu,v adjacent to (N(u) ∪N(v)). We say that a graph H is a minor
of a graph G if H can be obtained from a subgraph of G using edge contractions. Or equivalenty,
we can obtain H from G by removing vertices and removing and contracting edges. We call such
a series of operations a minor model.

The (l×l)-grid is the graph on vertices vi,j for 1 ≤ i, j ≤ l with edges (vi,j , vi+1,j) and (vi,j , vi+1,j)
for all relevant i, j.

Theorem 7.4 (Grid Minor Theorem). For every integer l, every planar graph either has a (l× l)-
grid as a minor or treewidth at most 9l. Moreover, there exists a polynomial time algorithm that
either finds such a minor model or tree decomposition.

Unfortunately, the proof of this theorem is beyond the scope of this course, but we describe
some intuition here3: we would either like to separate vertices in the ‘west’ from ‘east’ or vertices
from ‘south’ to ‘north’. If both are not possible, max flow min cut tells us there must be many
disjoint paths from vertices in the west to east and south to north, and all these disjoint paths
together can be used to find a grid minor.

We’ll see in the exercises that the grid minor theorem has many uses for designing algorithms.

7.10 Exercises

Exercise 7.1. Show how to build a tree decomposition of any tree of width 1. How would you
win the cops and robber game if you control the two cops?

3Which will not be examined

8

Exercise 7.2. Explain why every n-vertex graph has treewidth at most n − 1, can you find an
n-vertex graph with treewidth n− 1?

Exercise 7.3. Show that removing a vertex does not increase the treewidth.

Exercise 7.4. Give an algorithm that given a graph G and tree decomposition of G of width at
most w, determines whether G is 3-colorable in O∗(3w) time.

Exercise 7.5. Show that any complete bipartite graph where both parts have n vertices has
treewidth at most n.

Exercise 7.6. Show that the l × l-grid has treewidth at most l.

Exercise 7.7. A graph is called outerplanar if it can be drawn in the plane such that all vertices are
on the outerface. Show there is a constant c such that that every outerplanar graph has treewidth
at most c.

Exercise 7.8. Show that every graph has treewidth at most 9
√
n, conclude that 3-coloring,

dominating set and independent set can be solved in time O∗(2O(
√
n)) on planar graphs.

Exercise 7.9. Show that every graph has treewidth at most O(
√
n) using Baker’s layering approach

combined with Theorem 7.3.

Exercise 7.10. In the minor checking problem we are given graphs G and H and need to determine
whether H is a minor of G. Why is this an NP-hard problem (hint: show it reduces to a famous
NP-hard problem by fixing H to be a specific n-vertex graph)?

Exercise 7.11. In this exercise we are going to find an O∗(2O(
√
k))-time algorithm that given a

planar graph G and integer k, determines whether G has a vertex cover of size k.

1. Show that in the (l × l)-grid, the minimum vertex cover is of size Ω(l2).

2. Show that if H is a minor of G and G has a vertex cover of size k, then so does H.

3. Show that given a graph G and tree decomposition of G of width w, we can find the minimum
vertex cover in O∗(2w) time.

4. Use the grid minor theorem to give an O∗(2O(
√
k))-time algorithm for the mentioned problem.

Exercise 7.12. Use the same approach as in the previous exercise to solve k-path in planar graphs

in time O∗(
√
k
O(
√
k)

). You may use as a blackbox an algorithm that given a graph G, integer k
and tree decomposition of G of width w, determines whether G has a k-path in O∗(ww) time.

Exercise 7.13. Give an O∗(ck)-time algorithm that takes as input a planar graph G and integer
k and determines whether G has a dominating set of size at most k, for some c. Hint: perform a
BFS from an arbitrary node, conclude that G has no dominating set if the BFS tree is too high.

9

Exercise 7.14. In the following game Alice and Bob need to find out whether an undirected graph
G has an Hamiltonian cycle. Unfortunately, they both have different parts from the graph and
communication between the two is costly.

Suppose G = (V,E), S ⊆ V and G[S] two connected components A,B ⊆ V . Suppose Alice
knows only G[A∪ S] and Bob knows only G[B ∪ S], how much bits of information does Alice need
to send to Bob so Bob can figure out whether G has a Hamiltonian cycle (given an infinite amount
of time) if |S| = 4, 5? Can you find a sufficient number of bits for any |S|?

For |S| = 0, 1 the answer is always no since the graph is disconnected or 1-connected. For |S| = 2
Alice only needs to send one bit indicating whether there is an Hamiltonian path of G[A∪ S] with
endpoints in S.

Exercise 7.15. Give an algorithm that given a graph G and tree decomposition of G of width at
most w, finds the minimum weight dominating set in O∗(9w) time.

10

	Treewidth.
	Weighted Independent Set on Trees Revisited
	Definition of Treewidth
	Cops and Robber Interpretation of Treewidth
	Nice Tree decompositions
	Weighted Independent Set on Graphs of Small Treewidth
	Minimum Weight Dominating Set
	k-path is FPT
	Approximation of Weighted Independent Set on Planar Graphs
	Graph Minors
	Exercises

