
CHAPTER 0

Basics of probability theory

1. Introduction

In the next few weeks, we will study the so-called “probabilistic method”. This is the –
sometimes surprising – application of probability theory to problems in discrete mathematics,
or the design of algorithms.

Probability theory is a very wide area, but in this course we will only need a smaal subset
of it. This chapter serves as a brief recapitulation of those elements of (discrete) probability
theory that we will encounter in the course.

For a more thorough introduction to probability theory, see e.g. the books by Feller [Fel68a;
Fel68b], or Billingsley [Bil95].

2. Probability

2.1. Deterministic vs. random. Many phenomena in nature can be described determin-
istically. For example, Hooke’s law tells us that a spring, that is on one side attached to a fixed
object, and on the other side is pulled by a certain force, will be displaced by a distance that
is proportional to that force. Whenever we pull the same string by the same force, we will find
that is displaces by the same amount.

Other experiments have an uncertain outcome. For example, one cannot easily predict the
outcome of a coin toss or die roll, based on previous experiments. Although in principle one
should be able to compute the outcome of a die roll when all the influencing factors are precisely
known, for all practical purposes, the outcome is random.

2.2. Probability spaces. Probability theory is often introduced axiomatically. The start-
ing point is a (potentially uncountable) set Ω, called the sample space. The sample space
Ω is equipped with a so-called sigma-algebra F , on which a probability measure is defined. A
sigma-algebra F is a collection of subsets of the sample space satisfying the following properties:

(i) F is non-empty;
(ii) F is closed under taking complements, i.e. if A ∈ F , then Ā ≡ Ω \A ∈ F ;

(iii) F is closed under countable unions, i.e. if A1, A2, . . . ∈ F , then
⋃

iAi ∈ F .

In this course, our sample space will always be finite or countably infinity, and we will always
take he sigma-algebra to be the full power set of Ω. Hence, we will always suppress reference to
the underlying sigma-algebra; we include its definition here just for the sake of completeness.

Elements of the sigma-algebra are called events (so, in our situation, an event is just any
subset of the sample space Ω).

The sample space is just the set of all possible outcomes of a certain random experiment.
For example, a sample space associated with a die roll is Ω = {1, 2, 3, 4, 5, 6}, while an obvious
choice for the sample space of a single coin toss is Ω = {H,T}. Events have a nice interpretation
as well; when rolling a die, the event {2, 4, 6} means: rolling an even number.

Often, sample spaces and events will be much more elaborate. For example, a sample space
for rolling a die repeatedly until heads comes up, is given by Ω = {H,TH, TTH, TTTH, . . .}.
In this case, the sample space is countably infinite. The event {TH, TTTH, TTTTTH, . . .} is
interpreted as: an odd number of tails is rolled before heads is rolled.

Set theory is a useful language for events, as the set-theoretic operators ∪ (union), ∩ (in-
tersection), resp. ·̄ (complement) correspond to the logical operators OR, AND, resp. NOT.
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A function P : F → [0, 1] (sending events to real numbers in the interval [0, 1]) is called a
probability measure if it satisfies the following conditions:

(i) P (Ω) = 1;
(ii) If {A1, A2, . . .} is a countable collection of pairwise disjoint events, then P (

⋃
Ai) =∑

P (Ai).

For any event A, the quantity P (A) is to be interpreted as a probability. Then the first condition
simply states that the probability of the sure event Ω is 1, while the second condition states that
the probability of a union of pairwise disjoint events is simply the sum of their probabilities.

There are a number of properties of probability measures that follow from the definition.

(i) P (∅) = 0;
(ii) For all events A, P

(
Ā
)

= 1− P (A).
(iii) Union bound: For a sequence of events {A1, A2, . . .}, P (

⋃
iAi) ≤

∑
i P (Ai).

Example. Consider a finite state space Ω = {1, 2, . . . , n}. Let p1, p2, . . . , pn be real numbers
satisfying pi ≥ 0 for all i = 1, 2, . . . , n and

∑n
i=1 pi = 1, then P ({i}) = pi defines a probability

measure.

2.3. Random variables. A random variable is a function1 X : Ω → R. Note that
random variables form a real vector space.

Example. Suppose that we are betting e 1 that a coin toss comes up heads. We let X be
the pay-off of this bet, i.e. X = 1 if the coin comes up heads, and X = −1 if the coin comes up
tails.

We shall often write {X ≤ x} (and similar expressions) as a shorthand for the event {ω ∈
Ω : X(ω) ≤ x}, and we write P (X ≤ x) for the probability of this event.

When X takes values in a countable set, it is called a discrete random variable. In this
course, we will work exclusively with discrete random variables. If X is a discrete random
variable, then its density function is

p(x) = pX(x) = P (X = x) .

The indicator random variable 1A of an event A is the random variable

1A(ω) =

{
1 if ω ∈ A
0 if ω 6∈ A

.

Example. As a more elaborate example, that fits more to the contents of the course, suppose
that we start out with the complete graph on n vertices. For each of the

(
n
2

)
edges in this graph,

we toss a coin, and remove the edge if it comes up heads. In this setting, both the number
of edges in the resulting graph, and the number of isolated vertices in the resulting graph are
random variables.

2.4. Independence. Two events A1, A2 ⊆ Ω are called independent if P (A1 ∩A2) =
P (A1)P (A2) (and they are called dependent otherwise). In words, two events are independent
if the probability of both occurring at the same time is just the product of the probabilities of
the separate events.

This definition extends to more than two events. A set of events A is called independent if
for all subsets A′ ⊆ A,

P

( ⋂
A∈A′

A

)
=
∏
A∈A′

P (A) .

It is also possible to define independence for random variables. Two random variables X1

and X2 are independent, if and only if

P (X1 ≤ x1 and X2 ≤ x2) = P (X1 ≤ x1)P (X2 ≤ x2) .

for all x1 and x2.

1If we are working with a general sigma-algebra, X is required to be a measureable function.
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2.5. Conditional probability. The conditional probability of A1 given A2 is defined
as

P (A1 | A2) =
P (A1 ∩A2)

P (A2)
.

Note that this definition only makes sense if P (A2) > 0. The expression P (A1 | A2) is inter-
preted as the probability that the outcome of the experiment is in A1, given that we already
know that it is in A2.

Note that if A1 and A2 are independent, then P (A1 | A2) = P (A1).

3. Expected value

The expectation of a discrete random variable X with density function p is defined as

E [X] =
∑
x

xp(x).

Suppose that X and Y are random variables, and that λ is a real number, then

E [X + Y] = E [X] + E [Y] , and E [λX] = λE [X] .

This is referred to as linearity of expectation. Shockingly, it holds for any pair of random
variables, regardless of their dependence.

Note that expectation does not behave as nicely as one would hope for general functions of
random variables, for example, in general we do not have E [XY] = E [X]E [Y], except when X
and Y are independent.

Example. Let X be a random variable that takes either of the values 1,−1, each with
probability 1/2, and suppose that Y = X (so, obviously, X and Y are dependent). We com-
pute E [X] = E [Y] = 0.

The random variable X+Y has expectation 0 as well, thus confirming linearity of expectation
in this case. On the other hand, XY = X2, which attains the value 1 with probability 1,
so E [XY] = 1.

4. Variance

Suppose that X is a random variable with expected value µ = E [X]. Then its variance is
defined as

Var (X) = E
[
(X− µ)2

]
.

Note that the variance of a random variable is always non-negative. It can be used as a crude
measure of deviation from the mean. Using linearity of expectation, we find that

Var (X) = E
[
X2
]
− E [X]2 ,

which in many cases provides a more useful expression to compute the variance of a random
variable.

5. Some standard distributions

The probabilistic structure of a random variable is called its distribution. There is a number
of standard distributions that we will often encounter in this course.

5.1. Binomial distribution. We say that X follows a binomial distribution with pa-
rameters n and p (which we will denote by X ∼ BIN (n, p)) if it takes values in {0, 1, . . . , n}
and has density function

p(x) =

(
n

i

)
pi(1− p)n−i.

A binomial random variable is interpreted as the number of successes in n (independent)
trials, if the success probability is p.
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Example. Suppose that we throw a biased coin (with probability p of heads) n times, then
the number of heads observed in this sequence follows a binomial distribution.

• E [X] = np;
• Var (X) = np(1− p).

5.2. Geometric distribution. We say that X follows a geometric distribution with
parameter p (which we will denote by X ∼ GEO (p)) if it takes values in {1, 2, . . .} and has
density function

p(x) = p(1− p)x−1.
A binomial random variable counts the number of (independent) trials until the first success

occurs, when the probability of success is p.

Example. Suppose that we toss a biased coin (with probability p of heads) until heads comes
up for the first time, then the number of trials follows a geometric distribution.

• E [X] = 1
p ;

• E [X] = 1−p
p2

.

Remark. The random variable X− 1 (i.e. the number of failures before the first success) is
referred to as a geometric random variable as well. In that case, the geometric distribution has
density function p(x) = p(1− p)x, x = 0, 1, . . ., and expectation 1−p

p . (Note that Var (X− 1) =

Var (X).)
You should always specify which of the two interpretations of “geometric random variable”

you use, in order to avoid confusion.
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