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Our program for rest of week 3

e pseudo-polynomial time, strong NP-hardness & weak NP-hardness
e co-NP, co-NP versus NP

e An unsolvable problem
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Pseudo-polynomial time Subset Sum
Pseudopolynomial time

Strong / weak NP-hard

Subset Sum (SS)

Instance: positive integers a1, ..., a,; a bound b

Question: does there exist an index set J C {1,...,n} with 3°._,a; = b?

Example: (a1,...,a12) = (1,...,12), b = 50. Yes or no instance?
Yes: 1+2+3+44+6+74+84+9+10=50.
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Pseudo-polynomial time Subset Sum

Pseudopolynomial time
Strong / weak NP-hard

Subset Sum (SS)

Instance: positive integers a1, ..., a,; a bound b

Question: does there exist an index set J C {1,...,n} with 3°._,a; = b?

Example: (a1,...,a12) = (1,...,12), b = 50. Yes or no instance?
Yes: 1+2+3+44+6+74+84+9+10=50.

Theorem
SS is NP-hard (and NP-complete).

Proof:
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Pseudo-polynomial time Subset Sum

Pseudopolynomial time
Strong / weak NP-hard

Subset Sum (SS)

Instance: positive integers a1, ..., a,; a bound b

Question: does there exist an index set J C {1,...,n} with 3°._,a; = b?

Example: (a1,...,a12) = (1,...,12), b = 50. Yes or no instance?
Yes: 1+2+3+44+6+74+84+9+10=50.

Theorem
SS is NP-hard (and NP-complete).

Proof: by reduction from Ex-Cov.
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Pseudo-polynomial time Subset Sum

Pseudopolynomial time
Strong / weak NP-hard

Subset Sum (SS)

Instance: positive integers a1, ..., a,; a bound b

Question: does there exist an index set J C {1,...,n} with 3°._,a; = b?

Example: (a1,...,a12) = (1,...,12), b = 50. Yes or no instance?
Yes: 1+2+3+44+6+74+84+9+10=50.

Theorem
SS is NP-hard (and NP-complete).

Proof: by reduction from Ex-Cov.

Let (X = {x1,...,xm},{S1,...,Sn}) be an instance of Ex-Cov.

Define numbers a; as aj := > 1", ¢ - di with ¢;j =1 if x; € Sj and d; = (n+ 1)"*1.
Set b:=37 (n+1)~1

Marie Schmidt Algorithms and Complexity (AC), week 3 3/19



Pseudo-polynomial time Subset Sum

Pseudopolynomial time
Strong / weak NP-hard

Subset Sum (SS)

Instance: positive integers a1, ..., a,; a bound b

Question: does there exist an index set J C {1,...,n} with 3°._,a; = b?

Example: (a1,...,a12) = (1,...,12), b = 50. Yes or no instance?
Yes: 1+2+3+44+6+74+84+9+10=50.

Theorem
SS is NP-hard (and NP-complete).

Proof: by reduction from Ex-Cov.

Let (X = {x1,...,xm},{S1,...,Sn}) be an instance of Ex-Cov.

Define numbers a; as a; := > ¢;; - d; with ¢;; =1 if x; € S; and d; = (n+1)'~1.
Set b:=37 (n+1)~1

Show:

J index set of a solution to Ex-Cov < J index set of a solution to SS.
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Pseudo-polynomial time Subset Sum

Pseudopolynomial time
Strong / weak NP-hard

Subset Sum (SS)

Instance: positive integers a1, ..., a,; a bound b

Question: does there exist an index set J C {1,...,n} with 3°._,a; = b?

Example: (a1,...,a12) = (1,...,12), b = 50. Yes or no instance?
Yes: 1+2+3+44+6+74+84+9+10=50.

Theorem
SS is NP-hard (and NP-complete).

Proof: by reduction from Ex-Cov.

Let (X = {x1,...,xm},{S1,...,Sn}) be an instance of Ex-Cov.

Define numbers a; as a; := > ¢;; - d; with ¢;; =1 if x; € S; and d; = (n+1)'~1.
Set b:=37 (n+1)~1

Show:

J index set of a solution to Ex-Cov < J index set of a solution to SS.

Also: argue why this is a polynomial-time transformation.
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Pseudo-polynomial time Subset Sum
Pseudopolynomial time

Strong / weak NP-hard

size(l) = instance size
= length (number of symbols) of reasonable encoding of instance /

number(l)
= value of the largest number occuring in instance /
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Pseudo-polynomial time Subset Sum
Pseudopolynomial time

Strong / weak NP-hard

size(l) = instance size
= length (number of symbols) of reasonable encoding of instance /

number(l)
= value of the largest number occuring in instance /

Example

In an SS instance | = (A, b)
o number(l)= max{b, maxi_; a; }
o size(l)= O(logb+ >_7_, log a;).
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Pseudo-polynomial time Subset Sum
Pseudopolynomial time
Strong / weak NP-hard

An algorithm for SUBSET SUM

Define function Fk, c]:
Flk,c]=TRUE if and only if 3S C {1,...,k} : >, .sai=c¢
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Pseudo-polynomial time Subset Sum
Pseudopolynomial time
Strong / weak NP-hard

An algorithm for SUBSET SUM

Define function Fk, c]:
Flk,c]=TRUE if and only if 3S C {1,...,k} : >, .qai=c¢
We are interested in F[n, b]!
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Pseudo-polynomial time Subset Sum
Pseudopolynomial time
Strong / weak NP-hard

An algorithm for SUBSET SUM

Define function Fk, c]:
Flk,c]=TRUE if and only if 3S C {1,...,k} : >, .qai=c¢
We are interested in F[n, b]!

Dynamic programming algorithm to compute F[n, b]

Input: a set of positive integers ai, ..., an; a bound b
Output: 'YES' if there is a subset /” of index set / with 3., ai = b, 'NO’
otherwise
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Pseudo-polynomial time Subset Sum
Pseudopolynomial time
Strong / weak NP-hard

An algorithm for SUBSET SUM

Define function Fk, c]:
Flk,c]=TRUE if and only if 3S C {1,...,k} : >, .qai=c¢
We are interested in F[n, b]!

Dynamic programming algorithm to compute F[n, b]

Input: a set of positive integers ai, ..., an; a bound b
Output: 'YES' if there is a subset /” of index set / with 3., ai = b, 'NO’
otherwise

F[0,0] := TRUE, F[0,c]:= NO forall c =1,...,b
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Pseudo-polynomial time Subset Sum
Pseudopolynomial time
Strong / weak NP-hard

An algorithm for SUBSET SUM

Define function Fk, c]:
Flk,c]=TRUE if and only if 3S C {1,...,k} : >, .qai=c¢
We are interested in F[n, b]!

Dynamic programming algorithm to compute F[n, b]

Input: a set of positive integers ai, ..., an; a bound b
Output: 'YES' if there is a subset /” of index set / with 3., ai = b, 'NO’
otherwise

F[0,0] := TRUE, F[0,c] := NO forallc=1,...,b
for k=1,...,ndo
forc=1,...,bdo
Fli,c]=F[i—1,c]VF[i—1,c— aj]
end for
end for
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Pseudo-polynomial time Subset Sum
Pseudopolynomial time
Strong / weak NP-hard

An algorithm for SUBSET SUM

Define function Fk, c]:
Flk,c]=TRUE if and only if 3S C {1,...,k} : >, .qai=c¢
We are interested in F[n, b]!

Dynamic programming algorithm to compute F[n, b]

Input: a set of positive integers ai, ..., an; a bound b
Output: 'YES' if there is a subset /” of index set / with 3., ai = b, 'NO’
otherwise

F[0,0] := TRUE, F[0,c] := NO forall c=1,...,b
for k=1,...,ndo
forc=1,...,bdo
Fli,c] = F[i—1,c]V F[i — 1,c — ai]
end for
end for
return F[n, b]
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Pseudo-polynomial time Subset Sum
Pseudopolynomial time
Strong / weak NP-hard

An algorithm for SUBSET SUM

Define function Fk, c]:
Flk,c]=TRUE if and only if 3S C {1,...,k} : >, .qai=c¢
We are interested in F[n, b]!

Dynamic programming algorithm to compute F[n, b]

Input: a set of positive integers ai, ..., an; a bound b
Output: 'YES' if there is a subset /” of index set / with 3., ai = b, 'NO’
otherwise

F[0,0] := TRUE, F[0,c] := NO forall c=1,...,b
for k=1,...,ndo
forc=1,...,bdo
Fli,c] = F[i—1,c]V F[i — 1,c — ai]
end for
end for
return F[n, b]

Running time of this algorithm?
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Pseudo-polynomial time Subset Sum
Pseudopolynomial time
Strong / weak NP-hard

Pseudo-polynomial time

A decision problem X is solvable in pseudo-polynomial time,
if there exists an algorithm that solves instances / of X
in time polynomially bounded in size(l) and number(l).
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Pseudo-polynomial time

Subset Sum
Pseudopolynomial time
Strong / weak NP-hard

Pseudo-polynomial time

A decision problem X is solvable in pseudo-polynomial time,

if there exists an algorithm that solves instances / of X
in time polynomially bounded in size(l) and number(l).

Which of the decision problems we studied so far is solvable in pseudo-polynomial

time?
@ SAT? e IS?
@ SUBSET SUM e HC?
@ 3-SAT? e V(C?
@ PARTITION? e TSP?
o CLIQUE? @ Ex-Cov?
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Pseudo-polynomial time Subset Sum
Pseudopolynomial time
Strong / weak NP-hard

Pseudo-polynomial time

A decision problem X is solvable in pseudo-polynomial time,
if there exists an algorithm that solves instances / of X
in time polynomially bounded in size(l) and number(l).

Observation: number(l) is only relevant for problems that involve numbers (distances,
costs, weights, lengths, penalties, profits, time intervals, etc)

Which of the decision problems we studied so far is solvable in pseudo-polynomial

time?
@ SAT? e IS?
@ SUBSET SUM e HC?
@ 3-SAT? e V(C?
@ PARTITION? e TSP?
o CLIQUE? @ Ex-Cov?
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Pseudo-polynomial time Subset Sum
Pseudopolynomial time
Strong / weak NP-hard

Pseudo-polynomial time

A decision problem X is solvable in pseudo-polynomial time,
if there exists an algorithm that solves instances / of X
in time polynomially bounded in size(l) and number(l).

Observation: number(l) is only relevant for problems that involve numbers (distances,
costs, weights, lengths, penalties, profits, time intervals, etc)

Which of the decision problems we studied so far is solvable in pseudo-polynomial

time?
@ SAT e IS
@ SUBSET SUM e HC
@ 3-SAT e VC
@ PARTITION? e TSP?
e CLIQUE @ Ex-Cov
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Pseudo-polynomial time Subset Sum
Pseudopolynomial time
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Pseudo-polynomial time

A decision problem X is solvable in pseudo-polynomial time,
if there exists an algorithm that solves instances / of X
in time polynomially bounded in size(l) and number(l).

Observation: number(l) is only relevant for problems that involve numbers (distances,
costs, weights, lengths, penalties, profits, time intervals, etc)

Which of the decision problems we studied so far is solvable in pseudo-polynomial

time?
@ SAT e IS
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Pseudo-polynomial time Subset Sum
Pseudopolynomial time
Strong / weak NP-hard

Pseudo-polynomial time

A decision problem X is solvable in pseudo-polynomial time,
if there exists an algorithm that solves instances / of X
in time polynomially bounded in size(l) and number(l).

Observation: number(l) is only relevant for problems that involve numbers (distances,
costs, weights, lengths, penalties, profits, time intervals, etc)

Which of the decision problems we studied so far is solvable in pseudo-polynomial

time?
o SAT e IS @ SUBSET SUM o HC
@ 3-SAT e VC @ PARTITION
i e TSP
e CLIQUE @ Ex-Cov (exercise)
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Pseudo-polynomial time Subset Sum
Pseudopolynomial time
Strong / weak NP-hard

Strong NP-hardness

A decision problem X is strongly NP-hard,
if there exists a polynomial p: N — N
such that
restriction of X to instances / with number(l) < p(size(l)) is NP-hard.
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Subset Sum
Pseudopolynomial time
Strong / weak NP-hard

Pseudo-polynomial time

Strong NP-hardness

A decision problem X is strongly NP-hard,
if there exists a polynomial p: N — N

such that
restriction of X to instances / with number(l) < p(size(l)) is NP-hard.

SAT, CLIQUE, IS, VC, HC, TSP are strongly NP-hard

L]
e unary NP-hard = strongly NP-hard
e weak NP-hard = NP-hard, but may be solvable in pseudo-polynomial time
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Subset Sum
Pseudopolynomial time
Strong / weak NP-hard

Pseudo-polynomial time

Strong NP-hardness

Definition
A decision problem X is strongly NP-hard,
if there exists a polynomial p: N — N

such that
restriction of X to instances / with number(l) < p(size(l)) is NP-hard.

SAT, CLIQUE, IS, VC, HC, TSP are strongly NP-hard

L]
e unary NP-hard = strongly NP-hard
e weak NP-hard = NP-hard, but may be solvable in pseudo-polynomial time

If decision problem X
is strongly NP-hard and solvable in pseudo-polynomial time

then P=NP.
7/19
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Pseudo-polynomial time Subset Sum
Pseudopolynomial time
Strong / weak NP-hard

Strong NP-hardness

THREE PARTITION

Instance: positive integers a, . .., az, with Z?:"I ai = nA
Question: does there exists a partition of the index set {1,...,3n}
into n three-element subsets Ty,..., T, such that

every three-element set T satisfies ). _rai = A
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Pseudo-polynomial time Subset Sum
Pseudopolynomial time
Strong / weak NP-hard

Strong NP-hardness

THREE PARTITION

Instance: positive integers a, . .., az, with Z?:"I ai = nA
Question: does there exists a partition of the index set {1,...,3n}
into n three-element subsets Ty,..., T, such that

every three-element set T satisfies ). _rai = A

THREE PARTITION is strongly NP-complete.
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Pseudo-polynomial time Subset Sum
Pseudopolynomial time
Strong / weak NP-hard

Strong NP-hardness

THREE PARTITION

Instance: positive integers a, . .., az, with Z?:"l ai = nA
Question: does there exists a partition of the index set {1,...,3n}
into n three-element subsets Ty,..., T, such that
every three-element set T satisfies ). _rai = A

Theorem
THREE PARTITION is strongly NP-complete.

Proof: proof in Garey-Johnson shows that

SAT <,<3DM <, 4 — PARTITION <, 3 — PARTITION

Where the instance / constructed in the proof of 3DM <, 4 — PARTITION has
number(l) < 28| A]*.
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coNP

Excursion: Logical formulas
TAUTOLOGY is coNP-complete
NP versus coNP

NP versus coNP

Recall:

Definition

A decision problem X lies in the complexity class NP,
if the YES-instances of X possess certificates of polynomial length
that can be verified in polynomial time
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coNP

Excursion: Logical formulas
TAUTOLOGY is coNP-complete
NP versus coNP

NP versus coNP

Recall:

Definition

A decision problem X lies in the complexity class NP,
if the YES-instances of X possess certificates of polynomial length
that can be verified in polynomial time

A decision problem X is NP-complete,
if X € NP and all problems Y € NP can be reduced to it.
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coNP

Excursion: Logical formulas
TAUTOLOGY is coNP-complete
NP versus coNP

NP versus coNP

Recall:

Definition

A decision problem X lies in the complexity class NP,
if the YES-instances of X possess certificates of polynomial length
that can be verified in polynomial time

A decision problem X is NP-complete,
if X € NP and all problems Y € NP can be reduced to it.

Now we define:

Definition

A decision problem X lies in the complexity class coNP,
if the NO-instances of X possess certificates of polynomial length
that can be verified in polynomial time
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coNP

Excursion: Logical formulas
TAUTOLOGY is coNP-complete
NP versus coNP

NP versus coNP

Recall:

Definition

A decision problem X lies in the complexity class NP,
if the YES-instances of X possess certificates of polynomial length
that can be verified in polynomial time

A decision problem X is NP-complete,
if X € NP and all problems Y € NP can be reduced to it.

Now we define:

Definition

A decision problem X lies in the complexity class coNP,
if the NO-instances of X possess certificates of polynomial length
that can be verified in polynomial time

A decision problem X is coNP-complete,
if X € coNP and all problems Y € colNP can be reduced to it.
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coNP

NP versus coNP Excursion: Logical formulas

TAUTOLOGY is coNP-complete
NP versus coNP

Non-HAMILTONICITY

Instance: an undirected graph G = (V, E)
Question: is G not Hamiltonian?

Un-Satisfiability (UNSAT)

Instance:

a set of logical variables X := {x1,...,xn} and a set of clauses C over X
Question: Is there no truth assignment for X that simultaneously satisfies all clauses in
c?

TAUTOLOGY
Instance: a set of logical variables X := {x1,...,xn} and a formula ® in CNF over X

Question: are all truth settings for X satisfying for ®?
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coNP

NP versus coNP Excursion: Logical formulas

TAUTOLOGY is coNP-complete
NP versus coNP

Non-HAMILTONICITY

Instance: an undirected graph G = (V, E)
Question: is G not Hamiltonian?

Un-Satisfiability (UNSAT)

Instance:
a set of logical variables X := {x1,...,xn} and a set of clauses C over X

Question: Is there no truth assignment for X that simultaneously satisfies all clauses in
c?

TAUTOLOGY

Instance: a set of logical variables X := {x1,...,xn} and a formula ® in CNF over X

Question: are all truth settings for X satisfying for ®?

Theorem

Non-HAMILTONICITY, UNSAT and TAUTOLOGY are coNP-complete.
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coNP

NP versus coNP Excursion: Logical formulas

TAUTOLOGY is coNP-complete
NP versus coNP

Non-HAMILTONICITY

Instance: an undirected graph G = (V, E)
Question: is G not Hamiltonian?

Un-Satisfiability (UNSAT)

Instance:
a set of logical variables X := {x1,...,xn} and a set of clauses C over X

Question: Is there no truth assignment for X that simultaneously satisfies all clauses in
c?

TAUTOLOGY

Instance: a set of logical variables X := {x1,...,xn} and a formula ® in CNF over X

Question: are all truth settings for X satisfying for ®?

Lemma

If X is NP-complete, X is coNP-complete.
= NP-completeness of Non-HAMILTONICITY & UNSAT
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coNP
Excursion: Logical formulas
NP versus coNP TAUTOLOGY is coNP-complete
NP versus coNP

Excursion: Logical formulas

Let X be a set of logical variables.
@ Truth assignment: t : X — {true, false}

@ Literals: We call x and —x literals corresponding to variable x € X. t(—x) = true
& t(x) = false

@ (disjunctive) clause over X: disjunction of literals, e.g., (x1 V —x2 V...V xi).
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coNP

Excursion: Logical formulas
TAUTOLOGY is coNP-complete
NP versus coNP

NP versus coNP

Excursion: Logical formulas

Let X be a set of logical variables.
@ Truth assignment: t : X — {true, false}

@ Literals: We call x and —x literals corresponding to variable x € X. t(—x) = true
& t(x) = false

@ (disjunctive) clause over X: disjunction of literals, e.g., (x1 V —x2 V...V xi).

@ conjunctive clause over X: conjunction of literals, e.g., (-x1 Ax2 A ... A Xj).
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coNP

Excursion: Logical formulas
TAUTOLOGY is coNP-complete
NP versus coNP

NP versus coNP

Excursion: Logical formulas

Let X be a set of logical variables.
@ Truth assignment: t : X — {true, false}

@ Literals: We call x and —x literals corresponding to variable x € X. t(—x) = true
& t(x) = false

(disjunctive) clause over X: disjunction of literals, e.g., (x1 V =x2 V...V xk).

conjunctive clause over X: conjunction of literals, e.g., (—x1 A x2 A ... A X;j).

logical formula in X:
(general) logical expression in variables from X, e.g.,
[(Xl \Y ﬁXz) AN (X]_ V X3)] \ ﬁ(X]_ \2 Xz)
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coNP

Excursion: Logical formulas
TAUTOLOGY is coNP-complete
NP versus coNP

NP versus coNP

Excursion: Logical formulas

Let X be a set of logical variables.
@ Truth assignment: t : X — {true, false}
@ Literals: We call x and —x literals corresponding to variable x € X. t(—x) = true
& t(x) = false
o (disjunctive) clause over X: disjunction of literals, e.g., (x1 V —x2 V...V xk).
@ conjunctive clause over X: conjunction of literals, e.g., (-x1 Ax2 A ... A Xj).

@ logical formula in X:
(general) logical expression in variables from X, e.g.,
[(Xl \Y ﬁXz) AN (X]_ V X3)] \ ﬁ(X]_ \2 Xz)

@ logical formula in conjunctive normal form (CNF):
conjunction of disjunctive clauses, e.g. (x1V —x2) A (x1 V x3)

@ logical formula in disjunctive normal form (DNF):
disjunction of conjunctive clauses, e.g. (x1 A =x2) V (x1 A x3)
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coNP

Excursion: Logical formulas
TAUTOLOGY is coNP-complete
NP versus coNP

NP versus coNP

Excursion: Logical formulas

Let X be a set of logical variables.
@ Truth assignment: t : X — {true, false}
@ Literals: We call x and —x literals corresponding to variable x € X. t(—x) = true
& t(x) = false
o (disjunctive) clause over X: disjunction of literals, e.g., (x1 V —x2 V...V xk).
@ conjunctive clause over X: conjunction of literals, e.g., (-x1 Ax2 A ... A Xj).

@ logical formula in X:
(general) logical expression in variables from X, e.g.,
[(Xl \Y ﬁXz) AN (X]_ V X3)] \ ﬁ(X]_ \2 Xz)
@ logical formula in conjunctive normal form (CNF):
conjunction of disjunctive clauses, e.g. (x1V —x2) A (x1 V x3)
@ logical formula in disjunctive normal form (DNF):
disjunction of conjunctive clauses, e.g. (x1 A =x2) V (x1 A x3)

Satisfiability (SAT) - as we use it / CNF-SAT

Instance: set of logical variables X := {x1,...,xn}, logical formula ¢ in CNF
Question: does there exist a truth assignment for X that satisfies 7

NP-complete (Cook-Levin)
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coNP

Excursion: Logical formulas
TAUTOLOGY is coNP-complete
NP versus coNP

NP versus coNP

Excursion: Logical formulas

Let X be a set of logical variables.
@ Truth assignment: t : X — {true, false}
@ Literals: We call x and —x literals corresponding to variable x € X. t(—x) = true
& t(x) = false
o (disjunctive) clause over X: disjunction of literals, e.g., (x1 V —x2 V...V xk).
@ conjunctive clause over X: conjunction of literals, e.g., (-x1 Ax2 A ... A Xj).

@ logical formula in X:
(general) logical expression in variables from X, e.g.,
[(Xl \Y ﬁXz) AN (X]_ V X3)] \ ﬁ(X]_ \2 Xz)
@ logical formula in conjunctive normal form (CNF):
conjunction of disjunctive clauses, e.g. (x1V —x2) A (x1 V x3)
@ logical formula in disjunctive normal form (DNF):
disjunction of conjunctive clauses, e.g. (x1 A =x2) V (x1 A x3)

Satisfiability (SAT) - more general

Instance: set of logical variables X := {x1,...,xan}, (any) logical formula
Question: does there exist a truth assignment for X that satisfies 7

NP-complete (in NP & generalization of CNF-SAT)
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coNP

Excursion: Logical formulas
TAUTOLOGY is coNP-complete
NP versus coNP

NP versus coNP

Excursion: Logical formulas

Let X be a set of logical variables.
@ Truth assignment: t : X — {true, false}
@ Literals: We call x and —x literals corresponding to variable x € X. t(—x) = true
& t(x) = false
o (disjunctive) clause over X: disjunction of literals, e.g., (x1 V —x2 V...V xk).
@ conjunctive clause over X: conjunction of literals, e.g., (-x1 Ax2 A ... A Xj).

@ logical formula in X:
(general) logical expression in variables from X, e.g.,
[(Xl \Y ﬁXz) AN (X]_ V X3)] \ ﬁ(X]_ \2 Xz)

@ logical formula in conjunctive normal form (CNF):
conjunction of disjunctive clauses, e.g. (x1V —x2) A (x1 V x3)

@ logical formula in disjunctive normal form (DNF):
disjunction of conjunctive clauses, e.g. (x1 A =x2) V (x1 A x3)

DNF-SAT

Instance: set of logical variables X := {x1,...,xn}, logical formula ® in DNF
Question: does there exist a truth assignment for X that satisfies &7

In P.
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coNP

Excursion: Logical formulas
TAUTOLOGY is coNP-complete
NP versus coNP

NP versus coNP

Excursion: Logical formulas

Can

Marie Schmidt

we transform any logical formula into CNF?

commutative, associative, distributive: (x1 Ax2) Vxz = (x1 Vx3) A (x2 V x3)
=(h A k) =-hV -k (De Morgan's law)

=(x Vy) = —-x A -y (De Morgan's law)
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NP versus coNP TAUTOLOGY is coNP-complete
NP versus coNP

Excursion: Logical formulas

Can we transform any logical formula into CNF?

e commutative, associative, distributive: (x1 Ax2) Vx3 = (x1 Vx3) A (x2 V x3)
o /=1

o —(h Ah)=-hV -k (De Morgan's law)

@ —(xVy)=-xA-y (De Morgan's law)
Example:

[(x1 A =x2) V (x1 A x3)] A —(x1 V x2)
= [(x1 A =x2) Vxa] A [(x1 A =x2) V x3] A (mxa A —x2)
=x1 A (X1 Vx3)A(—x2 Vx3) A—xi A —xz
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e commutative, associative, distributive: (x1 Ax2) Vxs = (x1 Vx3) A (x2 V x3)
o /=1
o —(h Ah)=-hV -k (De Morgan's law)
@ —(xVy)=-xA-y (De Morgan's law)
Example 2:

D=1 A1)V AYy2)V...V(xa A yn)
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ANxaVy:V...Vxa) A1 Vy2 V...V x,)
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Excursion: Logical formulas
TAUTOLOGY is coNP-complete
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NP versus coNP

Excursion: Logical formulas

Can we transform any logical formula into CNF?
e commutative, associative, distributive: (x1 Ax2) Vxs = (x1 Vx3) A (x2 V x3)
o /=1
@ —(h Ah)=-hV -k (De Morgan's law)

—(xVy)=-xA -y (De Morgan's law)

Example 2:

=1 A1)V AY2)V...V (X A Yn)
=(x1VxeV...Vxa)) A(y1 Vxa V...V xp)
ANx1Vy2V...Vxa) Ay Vy2 V...V xa)

Ao AL Vy2V...Vyn)

Naive approach leads to formula of exponential length here!
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Excursion: Logical formulas

Can we transform any logical formula into CNF?
e commutative, associative, distributive: (x1 Ax2) Vxs = (x1 Vx3) A (x2 V x3)
o /=1
o —(h Ah)=-hV -k (De Morgan's law)
@ —(xVy)=-xA-y (De Morgan's law)
Example 2:

D=1 A1)V AYy2)V...V(xa A yn)
=(x1VxeV...Vx)) A(ya Vxe V...V xp)
ANxaVy:V...Vxa) A1 Vy2 V...V x,)

AN ANaVy2V...Vya)

But: 'more general SAT" is in NP, and CNF-SAT is NP-complete:
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But: 'more general SAT" is in NP, and CNF-SAT is NP-complete:
there must be a way of writing ® as a CNF formula!
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Excursion: Logical formulas

Can we transform any logical formula into CNF?
e commutative, associative, distributive: (x1 Ax2) Vxs = (x1 Vx3) A (x2 V x3)
o /=1
o —(h Ah)=-hV -k (De Morgan's law)
@ —(xVy)=-xA-y (De Morgan's law)
Example 2:

D=1 A1)V AYy2)V...V(xa A yn)
=(x1VxeV...Vx)) A(ya Vxe V...V xp)
ANxaVy:V...Vxa) A1 Vy2 V...V x,)

AN ANaVy2V...Vya)

But: 'more general SAT" is in NP, and CNF-SAT is NP-complete:

there must be a way of writing ® as a CNF formula!

Idea: Write (xi Ayi) = (=x; V =y VZi)) A (i V =z) A (yi V —zi)

We then obtain a clause ®’ in X' = X U{z,...,z,} of polynomial length.
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Excursion: Logical formulas

Can we transform any logical formula into CNF?
e commutative, associative, distributive: (x1 Ax2) Vxs = (x1 Vx3) A (x2 V x3)
o /=1
o —(h Ah)=-hV -k (De Morgan's law)
@ —(xVy)=-xA-y (De Morgan's law)
Example 2:

D=1 A1)V AYy2)V...V(xa A yn)
=(x1VxeV...Vx)) A(ya Vxe V...V xp)
ANxaVy:V...Vxa) A1 Vy2 V...V x,)

AN ANaVy2V...Vya)

But: 'more general SAT" is in NP, and CNF-SAT is NP-complete:
there must be a way of writing ® as a CNF formula!
Idea: Write (xi Ayi) = (=x; V =y VZi)) A (i V =z) A (yi V —zi)
We then obtain a clause ®’ in X' = X U{z,...,z,} of polynomial length.
For general approach to transform logical formulas to CNF, see, e.g., wikipedia:
Tseytin transformation
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coNP
Excursion: Logical formulas
NP versus coNP TAUTOLOGY is coNP-complete
NP versus coNP

Back to TAUTOLOGY

TAUTOLOGY
Instance: a set of logical variables X := {x1,...,xn} and DNF-formula ¢ over X
Question: are all truth settings for X satisfying assignments for C?

Theorem

TAUTOLOGY is coNP-complete.

Proof:

Marie Schmidt Algorithms and Complexity (AC), week 3 13/19



coNP

Excursion: formulas
NP versus coNP TAUTOLO oNP-complete
NP versus coN

Back to TAUTOLOGY

TAUTOLOGY
Instance: a set of logical variables X := {x1,...,xn} and DNF-formula ¢ over X
Question: are all truth settings for X satisfying assignments for C?

Theorem

TAUTOLOGY is coNP-complete.

Proof: We show: CNF-SAT <, TAUTOLOGY .
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Back to TAUTOLOGY

TAUTOLOGY

Instance: a set of logical variables X := {x1,...,xn} and DNF-formula ¢ over X
Question: are all truth settings for X satisfying assignments for C?

TAUTOLOGY is coNP-complete.

Proof: We show: CNF-SAT <, TAUTOLOGY .

TAUTOLOGY

Instance: a set of logical variables X := {x1,...,xp} and a DNF-formula ® over X
Question: is there a truth setting for X satisfying for —®?
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TAUTOLOGY

Instance: a set of logical variables X := {x1,...,xn} and DNF-formula ¢ over X
Question: are all truth settings for X satisfying assignments for C?

TAUTOLOGY is coNP-complete.
Proof: We show: CNF-SAT <, TAUTOLOGY .

TAUTOLOGY

Instance: a set of logical variables X := {x1,...,xp} and a DNF-formula ® over X
Question: is there a truth setting for X satisfying for —®?

Let X’ be a set of logical variables and ®’ a CNF-formula on X.
Then ¢ := —®’ is a DNF-formula on X (De-Morgan’s law).
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Back to TAUTOLOGY

TAUTOLOGY

Instance: a set of logical variables X := {x1,...,xn} and DNF-formula ¢ over X
Question: are all truth settings for X satisfying assignments for C?

TAUTOLOGY is coNP-complete.

Proof: We show: CNF-SAT <, TAUTOLOGY .

TAUTOLOGY

Instance: a set of logical variables X := {x1,...,xp} and a DNF-formula ® over X
Question: is there a truth setting for X satisfying for —®?

Let X’ be a set of logical variables and ®’ a CNF-formula on X.
Then ¢ := —®’ is a DNF-formula on X (De-Morgan’s law).

Thus (X, ®) is an instance of TAUTOLOGY
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TAUTOLOGY is coNP-complete
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NP versus coNP

Back to TAUTOLOGY

TAUTOLOGY

Instance: a set of logical variables X := {x1,...,xn} and DNF-formula ¢ over X
Question: are all truth settings for X satisfying assignments for C?

Theorem
TAUTOLOGY is coNP-complete.

Proof: We show: CNF-SAT <, TAUTOLOGY .

TAUTOLOGY

Instance: a set of logical variables X := {x1,...,xp} and a DNF-formula ® over X
Question: is there a truth setting for X satisfying for —®?

Let X’ be a set of logical variables and ®’ a CNF-formula on X.
Then ¢ := —®’ is a DNF-formula on X (De-Morgan’s law).

Thus (X, ®) is an instance of TAUTOLOGY which is satisfiable if and only in (X', ®’)
is satisfiable.
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coNP
Excursion: Logical formulas
NP versus coNP TAUTOLOGY is coNP-complete
NP versus coNP

NP versus coNP (3)

Problems in NP N coNP have
e good certificates for YES-instances
e good certificates for NO-instances

Marie Schmidt
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coNP
Excursion: al formulas
TAUT coNP-complete

NP versus coNP

NP versus coNP

NP versus coNP (3)

Problems in NP N coNP have
e good certificates for YES-instances
e good certificates for NO-instances

Example

Linear Programming (LP):
Instance: a matrix A; vectors ¢ and b; a bound t
Question: does there exist a real vector x with Ax < b and cx < t?

e LP liesin NP
e LP lies in coNP (LP-duality)

o MaxFlow in NP
o MaxFlow in coNP
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coNP
Excursion: Logical formulas
NP versus coNP TAUTOLOGY is coNP-complete
NP versus coNP

The Soviet railway system problem

Fig. 2. From Harris and Ross [11]: Schematic diagram of the railway network of the Western Soviet Union
and Eastern European countries, with a maximum flow of value 163,000 tons from Russia to Eastern Europe,
and a cut of capacity 163,000 tons indicated as “The bottleneck™

Marie Schmidt Alg

ithms and Complexity (AC), week 3




coNP
Excursion: Logical formulas
NP versus coNP TAUTOLOGY is coNP-complete
NP versus coNP

NP versus coNP (4)

e FACT: If P = coNP then P = NP (P closed under complementation)

Marie Schmidt
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NP versus coNP (4)

e FACT: If P = coNP then P = NP (P closed under complementation)
e FACT: P C NP coNP
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TAUTOLOGY is coNP-complete
NP versus coNP

NP versus coNP

NP versus coNP (4)

FACT: If P = coNP then P = NP (P closed under complementation)
FACT: P C NP N coNP

Some people think that P # NP N coNP

Some people think that P = NP N coNP

e Most people think that NP # coNP
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Some people think that P = NP N coNP

e Most people think that NP # coNP
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Hence:
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FACT: If P = coNP then P = NP (P closed under complementation)
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Some people think that P # NP N coNP

Some people think that P = NP N coNP

e Most people think that NP # coNP

Theorem

If coNP contains some NP-complete problem X, then NP=coNP.

Hence:
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coNP

Excursion: Logical formulas
TAUTOLOGY is coNP-complete
NP versus coNP

NP versus coNP

NP versus coNP (4)

FACT: If P = coNP then P = NP (P closed under complementation)
FACT: P C NP N coNP

Some people think that P # NP N coNP

Some people think that P = NP N coNP

e Most people think that NP # coNP

Theorem

If coNP contains some NP-complete problem X, then NP=coNP.
Hence:

e X being NP-complete is indication for X ¢ coNP

e X being coNP-complete is indication for X ¢ NP
e X € NP N coNP is indication for X not being (co)NP-complete
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coNP
Excursion: al formulas
TAUT coNP-complete

NP versus coNP

NP versus coNP

NP versus coNP (5)

Example
Factoring (LP):

Instance: integers y, I, u (given in binary).

Question: Is there an integer x that divides y and satisfies / < x < u?
in P? strongly NP-complete? weakly NP-complete? in NP? in co-NP?

Note: basic arithmetic (division, multiplication) is in polynomial time. Primality
testing is in P.
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coNP
Excursion: al formulas
TAUT coNP-complete

NP versus coNP

NP versus coNP

NP versus coNP (5)

Example
Factoring (LP):

Instance: integers y, I, u (given in binary).

Question: Is there an integer x that divides y and satisfies / < x < u?
in P? strongly NP-complete? weakly NP-complete? in NP? in co-NP?

Note: basic arithmetic (division, multiplication) is in polynomial time. Primality
testing is in P.

Many cryptographic protocols are based on the difficulty of factoring large
composite integers - an algorithm that efficiently factors an arbitrary integer
would render these insecure.
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An unsolvable decision problem

An unsolvable decision problem (not discussed)

Problem: CheckTermination (also called ‘Halting Problem’

Input: two text pieces textl and text2
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An unsolvable decision problem (not discussed)

Problem: CheckTermination (also called ‘Halting Problem’

Input: two text pieces textl and text2

Question: does the C4+ program listed in textl
terminate on the input in text2?

Suppose there exists an algorithm for CheckTermination
Then there is a C++ program CT (textl,text2) implementing this

e We construct a new C++ program wrong that takes input text3

First, wrong checks whether the C++ program listed in text3
terminates on the input in text3 using CT (text3,text3)
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An unsolvable decision problem

An unsolvable decision problem (not discussed)

Problem: CheckTermination (also called ‘Halting Problem’

Input: two text pieces textl and text2

Question: does the C4+ program listed in textl
terminate on the input in text2?

Suppose there exists an algorithm for CheckTermination
Then there is a C++ program CT (textl,text2) implementing this

e We construct a new C++ program wrong that takes input text3
First, wrong checks whether the C++ program listed in text3
terminates on the input in text3 using CT (text3,text3)

o If text3 does terminate, then wrong(text3) goes into an infinite loop
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An unsolvable decision problem

An unsolvable decision problem (not discussed)

Problem: CheckTermination (also called ‘Halting Problem’

Input: two text pieces textl and text2

Question: does the C4+ program listed in textl
terminate on the input in text2?

Suppose there exists an algorithm for CheckTermination
Then there is a C++ program CT (textl,text2) implementing this

e We construct a new C++ program wrong that takes input text3
First, wrong checks whether the C++ program listed in text3
terminates on the input in text3 using CT (text3,text3)

If text3 does terminate, then wrong(text3) goes into an infinite loop
If text3 does not terminate, then wrong(text3) stops
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An unsolvable decision problem

An unsolvable decision problem (not discussed)

Problem: CheckTermination (also called ‘Halting Problem’

Input: two text pieces textl and text2

Question: does the C4+ program listed in textl
terminate on the input in text2?

Suppose there exists an algorithm for CheckTermination
Then there is a C++ program CT (textl,text2) implementing this

e We construct a new C++ program wrong that takes input text3
First, wrong checks whether the C++ program listed in text3
terminates on the input in text3 using CT (text3,text3)

If text3 does terminate, then wrong(text3) goes into an infinite loop
If text3 does not terminate, then wrong(text3) stops

e What does CT(textd text4) do if text4 is the C++ code of wrong???
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An unsolvable decision problem

An unsolvable decision problem (not discussed)

Problem: CheckTermination (also called ‘Halting Problem’

Input: two text pieces textl and text2

Question: does the C4+ program listed in textl
terminate on the input in text2?

Suppose there exists an algorithm for CheckTermination
Then there is a C++ program CT (textl,text2) implementing this

e We construct a new C++ program wrong that takes input text3
First, wrong checks whether the C++ program listed in text3
terminates on the input in text3 using CT (text3,text3)

If text3 does terminate, then wrong(text3) goes into an infinite loop
If text3 does not terminate, then wrong(text3) stops

e What does CT(textd text4) do if text4 is the C++ code of wrong???
e Conclusion: There is no algorithm for CheckTermination

e Technique is called diagonalization. Also used to show there are decision
problems that can be solved in O(n°), but not in O(n°~') time
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An unsolvable decision problem

Recommended Reading

Cormen, Leiserson, Rivest and Stein ‘Introduction to Algorithms':
o Chapter 26 (Maximum flow)
o Chapter 29 (Linear Programming, duality)
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