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Program for this week and the next

Dealing with NP-hard problems: Approximation

Basic definitions
Ad-hoc approaches
LP-based approaches
Approximation Schemes
In-approximability
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Basic definitions

Basic definitions

We leave decision problems, and return to optimization problems
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We leave decision problems, and return to optimization problems

Definition

Let X be a minimization problem.
The optimal objective value of instance / is denoted opt(/).
The objective value returned by algorithm A is denoted A(/).

The (worst-case) approximation ratio of algorithm A is sup, A(/)/opt(/).

vidlTe U Algorithms and Complexity (AC), week 4 3/19



Basic definitions

Basic definitions

We leave decision problems, and return to optimization problems

Definition

Let X be a minimization problem.
The optimal objective value of instance / is denoted opt(/).
The objective value returned by algorithm A is denoted A(/).

The (worst-case) approximation ratio of algorithm A is sup, A(/)/opt(/).
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small approximation ratio = good
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We leave decision problems, and return to optimization problems

Definition

Let X be a minimization problem.
The optimal objective value of instance / is denoted opt(/).
The objective value returned by algorithm A is denoted A(/).

The (worst-case) approximation ratio of algorithm A is sup, A(/)/opt(/).

e approximation ratio always > 1
small approximation ratio = good

For maximization problems
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Basic definitions

We leave decision problems, and return to optimization problems

Definition

Let X be a minimization problem.
The optimal objective value of instance / is denoted opt(/).
The objective value returned by algorithm A is denoted A(/).

The (worst-case) approximation ratio of algorithm A is sup, A(/)/opt(/).

e approximation ratio always > 1
small approximation ratio = good

For maximization problems approximation ratio is inf; A(/)/opt(/)
always < 1; large guarantee = good
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Basic definitions
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Y,

We leave decision problems, and return to optimization problems

Definition

Let X be a minimization problem.
The optimal objective value of instance / is denoted opt(/).
The objective value returned by algorithm A is denoted A(/).

The (worst-case) approximation ratio of algorithm A is sup, A(/)/opt(/).

e approximation ratio always > 1
small approximation ratio = good

For maximization problems approximation ratio is inf; A(/)/opt(/)
always < 1; large guarantee = good

We aim for polynomial time algorithms with good approximation ratios
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Basic definitions

Basic definitions

Y,

We leave decision problems, and return to optimization problems

Definition

Let X be a minimization problem.
The optimal objective value of instance / is denoted opt(/).
The objective value returned by algorithm A is denoted A(/).

The (worst-case) approximation ratio of algorithm A is sup, A(/)/opt(/).

e approximation ratio always > 1
small approximation ratio = good

For maximization problems approximation ratio is inf; A(/)/opt(/)
always < 1; large guarantee = good

We aim for polynomial time algorithms with good approximation ratios
still possible for problems whose decision versions are NP-complete!
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Vertex cover

Makespan minimization
Intermezzo: Euler tours
Travelling Salesman

Ad-hoc approaches

Ad-hoc approaches
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Vertex cover

Makespan minimization
Intermezzo: Euler tours
Travelling Salesman

Ad-hoc approaches

Vertex cover (VC)

Instance: undirected graph G = (V, E)
Goal: find a vertex cover of smallest possible size
(vertex cover = subset of vertices that touches every edge)

How can we find a 'good’ vertex cover?

C U Algorithms and Complexity (AC), week 4

5/19



Vertex cover

Makespan minimization
Intermezzo: Euler tours
Travelling Salesman

Ad-hoc approaches

Vertex cover (VC)

Instance: undirected graph G = (V, E)
Goal: find a vertex cover of smallest possible size
(vertex cover = subset of vertices that touches every edge)

How can we find a 'good’ vertex cover?

Matching

Subset M C E of disjoint edges (e.g. eNe’ = 0, for distinct e, e’ € M)
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Goal: find a vertex cover of smallest possible size
(vertex cover = subset of vertices that touches every edge)

How can we find a 'good’ vertex cover?

Matching

Subset M C E of disjoint edges (e.g. eNe’ = 0, for distinct e, e’ € M)
Say M is maximal if there is no matching M’ such that M c M’.
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Vertex cover (VC)

Instance: undirected graph G = (V, E)
Goal: find a vertex cover of smallest possible size
(vertex cover = subset of vertices that touches every edge)

How can we find a 'good’ vertex cover?

Subset M C E of disjoint edges (e.g. eNe’ = 0, for distinct e, e’ € M)
Say M is maximal if there is no matching M’ such that M c M’.

Approximation algorithm for Vertex Cover
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Vertex cover (VC)

Instance: undirected graph G = (V, E)
Goal: find a vertex cover of smallest possible size
(vertex cover = subset of vertices that touches every edge)

How can we find a 'good’ vertex cover?

Subset M C E of disjoint edges (e.g. eNe’ = 0, for distinct e, e’ € M)
Say M is maximal if there is no matching M’ such that M c M’.

Approximation algorithm for Vertex Cover

1. Find a maximal matching M (iteratively pick edges not yet touched)
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Vertex cover (VC)

Instance: undirected graph G = (V, E)
Goal: find a vertex cover of smallest possible size
(vertex cover = subset of vertices that touches every edge)

How can we find a 'good’ vertex cover?

Matching

Subset M C E of disjoint edges (e.g. eNe’ = 0, for distinct e, e’ € M)
Say M is maximal if there is no matching M’ such that M c M’.

Approximation algorithm for Vertex Cover

1. Find a maximal matching M (iteratively pick edges not yet touched)
2. Output S = Uy, ,yem{u, v} (eg. all endpoint of M)
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Vertex cover
Makespan minimization

Ad-hoc approaches

Intermezzo: Euler tours
Travelling Salesman

Vertex cover (VC)

Instance: undirected graph G = (V, E)
Goal: find a vertex cover of smallest possible size
(vertex cover = subset of vertices that touches every edge)

How can we find a 'good’ vertex cover?

Matching

Subset M C E of disjoint edges (e.g. eNe’ = 0, for distinct e, e’ € M)
Say M is maximal if there is no matching M’ such that M c M’.

Approximation algorithm for Vertex Cover

1. Find a maximal matching M (iteratively pick edges not yet touched)
2. Output S = Uy, ,yem{u, v} (eg. all endpoint of M)

Theorem
This poly-time approximation algorithm has approximation ratio 2.
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Vertex cover

Makespan minimization
Intermezzo: Euler tours
Travelling Salesman

Ad-hoc approaches

Makespan minimization

Instance: m machines; n jobs with processing times py, ..., p,
Goal: assign jobs to machines so that the maximum workload (=
makespan) is minimized

Decision variant in NP, NP-hard (thus NP-complete) already for m = 2:
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Makespan minimization

Instance: m machines; n jobs with processing times py, ..., p,
Goal: assign jobs to machines so that the maximum workload (=
makespan) is minimized

Decision variant in NP, NP-hard (thus NP-complete) already for m = 2:
use a reduction from 2-PARTITION

List scheduling algorithm

Work through the job list one by one; in each step
assign current job to machine with currently smallest workload
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Instance: m machines; n jobs with processing times py, ..., p,
Goal: assign jobs to machines so that the maximum workload (=
makespan) is minimized

Decision variant in NP, NP-hard (thus NP-complete) already for m = 2:
use a reduction from 2-PARTITION

List scheduling algorithm

Work through the job list one by one; in each step
assign current job to machine with currently smallest workload
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Vertex cover
Makespan minimization

Ad-hoc approaches
PP Intermezzo: Euler tours

Travelling Salesman

Makespan minimization

Instance: m machines; n jobs with processing times py, ..., p,
Goal: assign jobs to machines so that the maximum workload (=
makespan) is minimized

Decision variant in NP, NP-hard (thus NP-complete) already for m = 2:
use a reduction from 2-PARTITION

List scheduling algorithm

Work through the job list one by one; in each step
assign current job to machine with currently smallest workload

List scheduling has approximation ratio 2.
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Vertex cover

Makespan minimization
Intermezzo: Euler tours
Travelling Salesman

List scheduling has approximation ratio 2.

Ad-hoc approaches

Proof:
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Theorem

List scheduling has approximation ratio 2.

Proof:
1.) Lower bounds:
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Theorem

List scheduling has approximation ratio 2.

Proof:

1.) Lower bounds:
opt(/) > maxp;
opt(/) > %31 pi
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Ad-hoc approaches

Theorem

List scheduling has approximation ratio 2.

Proof:

1.) Lower bounds:

opt(/) > maxp;

opt(l) = & iy pi

2.) Consider machine j that determines the makespan
Consider last job i assigned to machine j
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Theorem

List scheduling has approximation ratio 2.

Proof:

1.) Lower bounds:
opt(/) > maxp;
opt(/) > %31 pi

2.) Consider machine j that determines the makespan
Consider last job i assigned to machine j
Consider the moment when i was assigned to j
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Makespan minimization
Intermezzo: Euler tours
Travelling Salesman

Ad-hoc approaches

Theorem

List scheduling has approximation ratio 2.

Proof:

1.) Lower bounds:
opt(/) > maxp;
opt(/) > %31 pi

2.) Consider machine j that determines the makespan
Consider last job i assigned to machine j

Consider the moment when i was assigned to j

At this moment j has workload at most L >0, pi < opt(/)
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Ad-hoc approaches

Theorem

List scheduling has approximation ratio 2.

Proof:

1.) Lower bounds:

opt(/) > maxp;

opt(l) = & iy pi

2.) Consider machine j that determines the makespan
Consider last job i assigned to machine j

Consider the moment when i was assigned to j

At this moment j has workload at most L >0, pi < opt(/)
job i adds p; < max; pi < opt(/) to workload of j
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Ad-hoc approaches

Theorem

List scheduling has approximation ratio 2.

Proof:

1.) Lower bounds:

opt(/) > maxp;

opt(l) = & iy pi

2.) Consider machine j that determines the makespan
Consider last job i assigned to machine j

Consider the moment when i was assigned to j

At this moment j has workload at most L >0, pi < opt(/)
job i adds p; < max; pi < opt(/) to workload of j

Thus A(1) < 250, pir + pi < 20PT(1)
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Vertex cover

Makespan minimization
Intermezzo: Euler tours
Travelling Salesman

Ad-hoc approaches

Theorem

List scheduling has approximation ratio 2.

Proof:

1.) Lower bounds:

opt(/) > maxp;

opt(l) = & iy pi

2.) Consider machine j that determines the makespan
Consider last job i assigned to machine j

Consider the moment when i was assigned to j

At this moment j has workload at most L >0, pi < opt(/)
job i adds p; < max; pi < opt(/) to workload of j

Thus A(1) < 250, pir + pi < 20PT(1)

Is this bound tight?
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Vertex cover

Makespan minimization
Intermezzo: Euler tours
Travelling Salesman

Ad-hoc approaches

Theorem

List scheduling has approximation ratio 2.

Proof:

1.) Lower bounds:
opt(/) > maxp;
opt(/) > %31 pi

2.) Consider machine j that determines the makespan
Consider last job i assigned to machine j

Consider the moment when i was assigned to j

At this moment j has workload at most L >0, pi < opt(/)
job i adds p; < max; pi < opt(/) to workload of j

Thus A(1) < 250, pir + pi < 20PT(1)

Is this bound tight?

Can sharpen above analysis to guarantee 2 — 1/m (exercise).
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cover
span minimization

Intermezzo: Euler tours

Travelling Salesman

Ad-hoc approaches

Intermezzo: Euler tours

7 brldges of Konmgsberg (Kalingrad): can a tour cross all bridges once?
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Vertex cover
Makespan minimization
Ad-hoc approaches paj
Intermezzo: Euler tours
Travelling Salesman

Intermezzo: Euler tours

e Multi-graph: G = (V, E) but now E may be a multi-set
e.g. some edge {u, v} may occur multiple times
e A Eulerian tour of a graph is a tour visiting all edges exactly once.
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e Multi-graph: G = (V, E) but now E may be a multi-set
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Intermezzo: Euler tours

Euler tour

Instance: A graph G = (V, E).
Question: Is there an Euler tour?
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Euler tour

Instance: A graph G = (V, E).
Question: Is there an Euler tour?

Theorem (Euler in 1736, first theorem in graph theory!!)
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Intermezzo: Euler tours

Euler tour

Instance: A graph G = (V, E).
Question: Is there an Euler tour?

Theorem (Euler in 1736, first theorem in graph theory!!)

A connected graph has a Euler tour iff all vertices have even degree.

(In a multi-graph G = (V/, E) the degree of vertex v € V' is the number
of edges {u,v} € E.)
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Euler tour

Instance: A graph G = (V, E).
Question: Is there an Euler tour?

Theorem (Euler in 1736, first theorem in graph theory!!)

A connected graph has a Euler tour iff all vertices have even degree.

(In a multi-graph G = (V/, E) the degree of vertex v € V' is the number
of edges {u,v} € E.)
Proof sketch:
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Intermezzo: Euler tours

Euler tour

Instance: A graph G = (V, E).
Question: Is there an Euler tour?

Theorem (Euler in 1736, first theorem in graph theory!!)

A connected graph has a Euler tour iff all vertices have even degree.

(In a multi-graph G = (V/, E) the degree of vertex v € V' is the number
of edges {u,v} € E.)
Proof sketch:

(—) the tour enters and leaves vertices consecutively; ends at start.
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Intermezzo: Euler tours

Euler tour

Instance: A graph G = (V, E).
Question: Is there an Euler tour?

Theorem (Euler in 1736, first theorem in graph theory!!)

A connected graph has a Euler tour iff all vertices have even degree.

(In a multi-graph G = (V/, E) the degree of vertex v € V' is the number

of edges {u,v} € E.)

Proof sketch:
(—) the tour enters and leaves vertices consecutively; ends at start.
(+) start at any vertex v walk along unused edges as long as possible
If we end at v and edges are left incident to a visited vertex v,
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Euler tour

Instance: A graph G = (V, E).
Question: Is there an Euler tour?

Theorem (Euler in 1736, first theorem in graph theory!!)

A connected graph has a Euler tour iff all vertices have even degree.

(In a multi-graph G = (V/, E) the degree of vertex v € V' is the number
of edges {u,v} € E.)
Proof sketch:
(—) the tour enters and leaves vertices consecutively; ends at start.
(+) start at any vertex v walk along unused edges as long as possible
If we end at v and edges are left incident to a visited vertex v,
walk from u and insert obtained tour in previous tour.
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Y,

Euler tour

Instance: A graph G = (V, E).
Question: Is there an Euler tour?

Theorem (Euler in 1736, first theorem in graph theory!!)

A connected graph has a Euler tour iff all vertices have even degree.

(In a multi-graph G = (V/, E) the degree of vertex v € V' is the number
of edges {u,v} € E.)
Proof sketch:
(—) the tour enters and leaves vertices consecutively; ends at start.
(+) start at any vertex v walk along unused edges as long as possible
If we end at v and edges are left incident to a visited vertex v,
walk from u and insert obtained tour in previous tour.
(This is a constructive polynomial-time algorithm)
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Vertex cover

Makespan minimization
Intermezzo: Euler tours
Travelling Salesman

Ad-hoc approaches

Travelling Salesman Problem

TSP (Optimization version)

Instance: cities 1,. .., n; distances d(/, )
Goal: find roundtrip of smallest possible length

NP-complete (reduction from Hamiltonian cycle)
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Ad-hoc approaches

Travelling Salesman Problem

TSP (Optimization version)

Instance: cities 1,. .., n; distances d(/, )
Goal: find roundtrip of smallest possible length

NP-complete (reduction from Hamiltonian cycle)

Assumption: metric TSP

We now assume that the distances satisfy the triangle inequality
d(x,y) +d(y,z) > d(x,z) for all cities x,y,z

Important example: Points in the plane (triangle ineq. by Pythagoras).
Even here, still NP-complete (harder reduction, beyond scope for us)
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Vertex cover
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Intermezzo: Euler tours
Travelling Salesman

Ad-hoc approaches

Travelling Salesman Problem

TSP (Optimization version)

Instance: cities 1,. .., n; distances d(/, )
Goal: find roundtrip of smallest possible length

NP-complete (reduction from Hamiltonian cycle)

Assumption: metric TSP

We now assume that the distances satisfy the triangle inequality
d(x,y)+d(y,z) > d(x,z) for all cities x, y, z

Important example: Points in the plane (triangle ineq. by Pythagoras).
Even here, still NP-complete (harder reduction, beyond scope for us)

Can we approximate the metric TSP?
Lower bounds:

o opt(/) > length of minimum spanning tree MST
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Vertex cover

Makespan minimization
Intermezzo: Euler tours
Travelling Salesman

Ad-hoc approaches

Travelling Salesman Problem

TSP (Optimization version)

Instance: cities 1,. .., n; distances d(/, )
Goal: find roundtrip of smallest possible length

NP-complete (reduction from Hamiltonian cycle)

Assumption: metric TSP

We now assume that the distances satisfy the triangle inequality
d(x,y)+d(y,z) > d(x,z) for all cities x, y, z

Important example: Points in the plane (triangle ineq. by Pythagoras).
Even here, still NP-complete (harder reduction, beyond scope for us)

Can we approximate the metric TSP?

Lower bounds:
e opt(/) > length of minimum spanning tree MST
e opt(/) > twice the length of min. weight perfect matching, if n even
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Ad-hoc approaches

ble-tree algorithm

Vertex cover

Makespan minimization
Intermezzo: Euler tours
Travelling Salesman

P N S
0
>4
) ¥ ) 2
O/ §0)
3 (A
s AW
D) D)
&) N\
()
SN
( 7 ) ®) Y
O—O—® Q) ®
S X
1O 9
D) D)
W 0

@
D
>
e
'
7
D)

Algorithms and Complexity (AC), week 4

12/19



Vertex cover

Makespan minimization
Intermezzo: Euler tours
Travelling Salesman

ble-tree algorithm

© Compute a minimum spanning tree MST

Ad-hoc approaches
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Vertex cover

Makespan minimization
Intermezzo: Euler tours
Travelling Salesman

Double-tree algorithm

© Compute a minimum spanning tree MST

Ad-hoc approaches

@ Double every edge in MST to get a Eulerian graph
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Vertex cover

Makespan minimization
Intermezzo: Euler tours
Travelling Salesman

Double-tree algorithm

© Compute a minimum spanning tree MST

Ad-hoc approaches

@ Double every edge in MST to get a Eulerian graph
© Compute a Euler tour in the doubled MST
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Vertex cover

Makespan minimization
Intermezzo: Euler tours
Travelling Salesman

Double-tree algorithm

© Compute a minimum spanning tree MST

@ Double every edge in MST to get a Eulerian graph
© Compute a Euler tour in the doubled MST

@ Shortcut the Euler tour to a TSP tour

Ad-hoc approaches
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Vertex cover

Makespan minimization
Intermezzo: Euler tours
Travelling Salesman

Ad-hoc approaches

Double-tree algorithm

©@ Compute a minimum spanning tree MST

© Double every edge in MST to get a Eulerian graph
© Compute a Euler tour in the doubled MST

@ Shortcut the Euler tour to a TSP tour
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Vertex cover

Makespan minimization
Intermezzo: Euler tours
Travelling Salesman

Ad-hoc approaches

Double-tree algorithm

©@ Compute a minimum spanning tree MST

© Double every edge in MST to get a Eulerian graph
© Compute a Euler tour in the doubled MST

@ Shortcut the Euler tour to a TSP tour

The Double-tree algorithm has approximation ratio 2.
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Vertex cover
Makespan minimization

Ad-hoc approaches
PP Intermezzo: Euler tours

Travelling Salesman

Double-tree algorithm

©@ Compute a minimum spanning tree MST

© Double every edge in MST to get a Eulerian graph
© Compute a Euler tour in the doubled MST

@ Shortcut the Euler tour to a TSP tour

The Double-tree algorithm has approximation ratio 2.

A(I) < twice length of MST < 2 - opt(/)
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Intermezzo: Euler tours
Travelling Salesman

Christofides-Serdyukov algorithm

Ad-hoc approaches
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© Compute a minimum spanning tree MST
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Vertex cover

Makespan minimization
Intermezzo: Euler tours
Travelling Salesman

Ad-hoc approaches

Christofides-Serdyukov algorithm

© Compute a minimum spanning tree MST

© Compute a minimum perfect matching M for odd-degree cities in MST

(n)
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Vertex cover

Makespan minimization
Intermezzo: Euler tours
Travelling Salesman

Ad-hoc approaches

Christofides-Serdyukov algorithm

© Compute a minimum spanning tree MST

© Compute a minimum perfect matching M for odd-degree cities in MST
number of odd-degree cities always even! (sum of degrees even)

© Can find min perfect matching in poly time (non-trivial)
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Y,

Vertex cover

Makespan minimization
Intermezzo: Euler tours
Travelling Salesman

Ad-hoc approaches

Christofides-Serdyukov algorithm

© Compute a minimum spanning tree MST

© Compute a minimum perfect matching M for odd-degree cities in MST
number of odd-degree cities always even! (sum of degrees even)

© Can find min perfect matching in poly time (non-trivial)
@ Construct the union of MST and M to get a Eulerian graph
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Vertex cover

Makespan minimization
Intermezzo: Euler tours
Travelling Salesman

Ad-hoc approaches

Christofides-Serdyukov algorithm

Compute a minimum spanning tree MST

Compute a minimum perfect matching M for odd-degree cities in MST
number of odd-degree cities always even! (sum of degrees even)

Can find min perfect matching in poly time (non-trivial)

Construct the union of MST and M to get a Eulerian graph
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Construct a Euler tour in MST union M
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Vertex cover

Makespan minimization
Intermezzo: Euler tours
Travelling Salesman

Ad-hoc approaches

Christofides-Serdyukov algorithm

Compute a minimum spanning tree MST

Compute a minimum perfect matching M for odd-degree cities in MST
number of odd-degree cities always even! (sum of degrees even)

Can find min perfect matching in poly time (non-trivial)
Construct the union of MST and M to get a Eulerian graph
Construct a Euler tour in MST union M

Shortcut the Euler tour to a TSP tour
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Vertex cover
Makespan minimization

Ad-hoc approaches
PP Intermezzo: Euler tours

Travelling Salesman

Christofides-Serdyukov algorithm

Compute a minimum spanning tree MST

Compute a minimum perfect matching M for odd-degree cities in MST
number of odd-degree cities always even! (sum of degrees even)

Can find min perfect matching in poly time (non-trivial)
Construct the union of MST and M to get a Eulerian graph
Construct a Euler tour in MST union M

0000 OO

Shortcut the Euler tour to a TSP tour

Vid c U Algorithms and Complexity (AC), week 4 15/19



Vertex cover

Makespan minimization
Intermezzo: Euler tours
Travelling Salesman

Ad-hoc approaches

Christofides-Serdyukov algorithm

Compute a minimum spanning tree MST

Compute a minimum perfect matching M for odd-degree cities in MST
number of odd-degree cities always even! (sum of degrees even)

Can find min perfect matching in poly time (non-trivial)
Construct the union of MST and M to get a Eulerian graph
Construct a Euler tour in MST union M

Shortcut the Euler tour to a TSP tour

0000 OO

Theorem

The Christofides-Serdyukov algorithm has approximation ratio 1.5.

Proof: A(I) < length of MST plus weight of matching
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Vertex cover

Makespan minimization
Intermezzo: Euler tours
Travelling Salesman

Christofides-Serdyukov algorithm

Compute a minimum spanning tree MST

Ad-hoc approaches

Compute a minimum perfect matching M for odd-degree cities in MST
number of odd-degree cities always even! (sum of degrees even)

Can find min perfect matching in poly time (non-trivial)
Construct the union of MST and M to get a Eulerian graph
Construct a Euler tour in MST union M

Shortcut the Euler tour to a TSP tour

0000 OO

Theorem

The Christofides-Serdyukov algorithm has approximation ratio 1.5.

Proof: A(I) < length of MST plus weight of matching
weight of matching < 1/2 length of a tour visiting all odd degree vertices
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Makespan minimization

Ad-hoc approaches
PP Intermezzo: Euler tours

Travelling Salesman

Christofides-Serdyukov algorithm

Compute a minimum spanning tree MST

Compute a minimum perfect matching M for odd-degree cities in MST
number of odd-degree cities always even! (sum of degrees even)

Can find min perfect matching in poly time (non-trivial)
Construct the union of MST and M to get a Eulerian graph
Construct a Euler tour in MST union M

Shortcut the Euler tour to a TSP tour

0000 OO

Theorem

The Christofides-Serdyukov algorithm has approximation ratio 1.5.

Proof: A(I) < length of MST plus weight of matching
weight of matching < 1/2 length of a tour visiting all odd degree vertices
< 1/2 length of a tour visiting all vertices
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Vertex cover

Makespan minimization
Ad-hoc approaches P |nirEat
Intermezzo: Euler tours

Travelling Salesman

Christofides-Serdyukov algorithm

Compute a minimum spanning tree MST

Compute a minimum perfect matching M for odd-degree cities in MST
number of odd-degree cities always even! (sum of degrees even)

Can find min perfect matching in poly time (non-trivial)
Construct the union of MST and M to get a Eulerian graph
Construct a Euler tour in MST union M

0000 OO

Shortcut the Euler tour to a TSP tour

Theorem

The Christofides-Serdyukov algorithm has approximation ratio 1.5.

Proof: A(I) < length of MST plus weight of matching
weight of matching < 1/2 length of a tour visiting all odd degree vertices
< 1/2 length of a tour visiting all vertices

A(I) < length of MST plus weight of matching < opt(/) + opt(/)/2
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Vertex cover
Makespan minimization

Ad-hoc approaches

Intermezzo: Euler tours
Travelling Salesman

Christofides-Serdyukov algorithm

Compute a minimum spanning tree MST

Compute a minimum perfect matching M for odd-degree cities in MST
number of odd-degree cities always even! (sum of degrees even)

Can find min perfect matching in poly time (non-trivial)
Construct the union of MST and M to get a Eulerian graph
Construct a Euler tour in MST union M

0000 OO

Shortcut the Euler tour to a TSP tour

Theorem

The Christofides-Serdyukov algorithm has approximation ratio 1.5.

Proof: A(I) < length of MST plus weight of matching
weight of matching < 1/2 length of a tour visiting all odd degree vertices
< 1/2 length of a tour visiting all vertices

A(I) < length of MST plus weight of matching < opt(/) + opt(/)/2
Where did we use the triangle inequality?
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LP-based approaches

1. Find an exact ILP formulation
2. Relax integrality constraints (ILP — LP)
3. Solve the LP relaxation in polynomial time
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Weighted vertex cover
LP-based approaches

LP-based approaches

1. Find an exact ILP formulation

2. Relax integrality constraints (ILP — LP)

3. Solve the LP relaxation in polynomial time

4. Round the optimal LP solution to approximate ILP solution (preserving
feasibility!)
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Weighted vertex cover
LP-based approaches

Weighted vertex cover (VC)

Instance: a graph G = (V, E); weights w : V — R*
Goal: find a vertex cover of smallest possible weight
(e.g. find a vertex cover X C V minimizing 3 .\, w(v))
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Weighted vertex cover
LP-based approaches

Weighted vertex cover (VC)

Instance: a graph G = (V, E); weights w : V — R*
Goal: find a vertex cover of smallest possible weight
(e.g. find a vertex cover X C V minimizing 3 .\, w(v))

ILP formulation

minimize > .\, w(v)-x,
subject to x,+x, > 1 for every edge {u,v} € E
x, € {0,1}  for every vertex v € V
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Weighted vertex cover
LP-based approaches

Weighted vertex cover (VC)

Instance: a graph G = (V, E); weights w : V — R*
Goal: find a vertex cover of smallest possible weight
(e.g. find a vertex cover X C V minimizing 3 .\, w(v))

ILP formulation

minimize > .\, w(v)-x,
subject to x,+x, > 1 for every edge {u,v} € E
x, € {0,1}  for every vertex v € V

LP relaxation

minimize Y .\, w(v)-x,
subject to  x, +x, > 1 for every edge {u,v} € E
0<x,<1 (orsimply0<x,) forveV
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Weighted vertex cover

LP-based approaches

Approximation algorithm

1. Compute the optimal LP solution x;
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LP-based approaches

Approximation algorithm

1. Compute the optimal LP solution x;
2. Round the LP solution x; to a feasible ILP-solution X,:
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Weighted vertex cover

LP-based approaches

Approximation algorithm

1. Compute the optimal LP solution x;
2. Round the LP solution x; to a feasible ILP-solution X,:
If x} <1/2then X, =0
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Weighted vertex cover
LP-based approaches

Approximation algorithm

1. Compute the optimal LP solution x;

2. Round the LP solution x; to a feasible ILP-solution X,:
If x} <1/2then X, =0
If x3 >1/2 then %, =1

Theorem
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Weighted vertex cover
LP-based approaches

Approximation algorithm

1. Compute the optimal LP solution x;

2. Round the LP solution x; to a feasible ILP-solution X,:
If x} <1/2then X, =0
If x3 >1/2 then %, =1

Theorem

This poly-time approximation algorithm has approximation ratio 2.

Proof:
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Weighted vertex cover
LP-based approaches

General approach is centered around three values: opt,, 5, opt,p, app (result of
the rounding)

opt;p < optyp < app < 2o0pt;p
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Weighted vertex cover
LP-based approaches

General approach is centered around three values: opt,, 5, opt,p, app (result of
the rounding)

Observation
opt;p < opt;p < app < 2opt;p

For minimization, want opt,, to be a good lower bound of opt,, -
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Weighted vertex cover
LP-based approaches

General approach is centered around three values: opt,, 5, opt,p, app (result of
the rounding)

opt;p < opt;p < app < 2opt;p
For minimization, want opt,, to be a good lower bound of opt,, -

Integrality gap

Define the integrality gap of an LP-relaxation to be
the supremum (over all instances) of opt, »/opt,p.
(for maximization, use infimum)

Two examples (with unit weights)
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the rounding)

opt;p < optyp < app < 2o0pt;p

For minimization, want opt,, to be a good lower bound of opt,, -

Integrality gap

Define the integrality gap of an LP-relaxation to be
the supremum (over all instances) of opt, »/opt,p.
(for maximization, use infimum)

Two examples (with unit weights)

e Odd cycle on 2k + 1 vertices yields
opt,p=k+3, optyp=k+1 app=2k+1.
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Weighted vertex cover
LP-based approaches

General approach is centered around three values: opt,, 5, opt,p, app (result of
the rounding)

opt;p < opt;p < app < 2opt;p

For minimization, want opt,, to be a good lower bound of opt,, -

Integrality gap

Define the integrality gap of an LP-relaxation to be
the supremum (over all instances) of opt, »/opt,p.
(for maximization, use infimum)

Two examples (with unit weights)

e Odd cycle on 2k + 1 vertices yields
opt,p =k+32, opt,p=k+1, app=2k+1.
o Complete graph on 2k vertices yields
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Weighted vertex cover
LP-based approaches

General approach is centered around three values: opt, 5, opt,p, app (result of
the rounding)

opt;p < optyp < app < 2o0pt;p

For minimization, want opt,, to be a good lower bound of opt,, -

Integrality gap

Define the integrality gap of an LP-relaxation to be
the supremum (over all instances) of opt, »/opt,p.
(for maximization, use infimum)

Two examples (with unit weights)

e Odd cycle on 2k + 1 vertices yields
opt,p=k+3, optyp=k+1 app=2k+1.
o Complete graph on 2k vertices yields
opt,p = k, opt;p=2k—1, app=2k.
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Weighted vertex cover
LP-based approaches

General approach is centered around three values: opt,, 5, opt,p, app (result of
the rounding)

opt;p < optyp < app < 2o0pt;p

For minimization, want opt,, to be a good lower bound of opt,, -

Integrality gap

Define the integrality gap of an LP-relaxation to be
the supremum (over all instances) of opt, »/opt,p.
(for maximization, use infimum)

Two examples (with unit weights)

e Odd cycle on 2k + 1 vertices yields

opt,p=k+3, optyp=k+1 app=2k+1.
o Complete graph on 2k vertices yields

opt,p = k, opt;p=2k—1, app=2k.

Therefore the integrality gap of the LP relaxation is opt, p/opt;p = 2
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