Algorithms and Complexity (AC), week 5

Marie Schmidt

based on slides by Jesper Nederlof

LNMB, Sep-Nov 2019

Marie Schmidt Algorithms and Complexity (AC), week 5 1/33

Program for this week and the next

Dealing with NP-hard problems: Approximation

Basic definitions v/
Ad-hoc approaches v/
LP-based approaches
Approximation Schemes
In-approximability

Marie Schmidt Algorithms and Complexity (AC), week 5 2/33

LP-based approaches
Communication delay scheduling

LP-based approaches

1. Find an exact ILP formulation

2. Relax integrality constraints (ILP — LP)

3. Solve the LP relaxation in polynomial time

4. Round the optimal LP solution to approximate ILP solution (preserving
feasibility!)

Marie Schmidt Algorithms and Complexity (AC), week 5 3/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs Ji, ..., J,; precedence constraints between some
jobs

Goal: find a feasible schedule on n machines that obeys unit
communication delays and minimizes makespan

Marie Schmidt Algorithms and Complexity (AC), week 5 4/33

LP-based approaches
Communication delay scheduling

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs Ji, ..., J,; precedence constraints between some
jobs

Goal: find a feasible schedule on n machines that obeys unit
communication delays and minimizes makespan

e unit time jobs: job J, runs from S(J,) to C(J,) := S(J,) +1

Marie Schmidt Algorithms and Complexity (AC), week 5 4/33

LP-based approaches
Communication delay scheduling

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs Ji, ..., J,; precedence constraints between some
jobs

Goal: find a feasible schedule on n machines that obeys unit
communication delays and minimizes makespan

e unit time jobs: job J, runs from S(J,) to C(J,) := S(J,) +1

e precedence constraints = partial order " — " on the jobs

Marie Schmidt Algorithms and Complexity (AC), week 5 4/33

LP-based approaches
Communication delay scheduling

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs Ji, ..., J,; precedence constraints between some
jobs

Goal: find a feasible schedule on n machines that obeys unit
communication delays and minimizes makespan

e unit time jobs: job J, runs from S(J,) to C(J,) := S(J,) +

e precedence constraints = partial order " — " on the jobs
o if J, — Jp then C(J,;) < S(Up)

Marie Schmidt Algorithms and Complexity (AC), week 5 4/33

LP-based approaches
Communication delay scheduling

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs Ji, ..., J,; precedence constraints between some
jobs

Goal: find a feasible schedule on n machines that obeys unit
communication delays and minimizes makespan

e unit time jobs: job J, runs from S(J,) to C(J,) := S(J,) +

e precedence constraints = partial order " — " on the jobs
o if J, — Jp then C(J,;) < S(Up)
<= J, must be completed before J, is started

Marie Schmidt Algorithms and Complexity (AC), week 5 4/33

LP-based approaches
Communication delay scheduling

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs Ji, ..., J,; precedence constraints between some
jobs

Goal: find a feasible schedule on n machines that obeys unit
communication delays and minimizes makespan

e unit time jobs: job J, runs from S(J,) to C(J,) := S(J,) +

1

e precedence constraints = partial order " — " on the jobs
o if J, — Jp then C(J,;) < S(Up)
<= J, must be completed before J, is started

e unit communication delay for J, — Jp

Marie Schmidt Algorithms and Complexity (AC), week 5 4/33

LP-based approaches
Communication delay scheduling

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs Ji, ..., J,; precedence constraints between some
jobs

Goal: find a feasible schedule on n machines that obeys unit
communication delays and minimizes makespan

e unit time jobs: job J, runs from S(J,) to C(J,) := S(J,) +

e precedence constraints = partial order " — " on the jobs
o if J, — Jp then C(J;) < S(Up)
<= J, must be completed before J, is started

e unit communication delay for J, — Jp
if J, and Jp run on same machine then C(J,) < S(Jp)

Marie Schmidt Algorithms and Complexity (AC), week 5 4/33

LP-based approaches
Communication delay scheduling

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs Ji, ..., J,; precedence constraints between some
jobs

Goal: find a feasible schedule on n machines that obeys unit
communication delays and minimizes makespan

e unit time jobs: job J, runs from S(J,) to C(J,) := S(J,) +

1 '

e precedence constraints = partial order " — " on the jobs
o if J, — Jp then C(J;) < S(Up)
<= J, must be completed before J, is started

e unit communication delay for J, — Jp
if J, and Jp run on same machine then C(J,) < S
if J, and Jp run on different machines then C(J,)

(Jb)
+1<5(Jp)

Marie Schmidt Algorithms and Complexity (AC), week 5 4/33

LP-based approaches
Communication delay scheduling

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs Ji, ..., J,; precedence constraints between some
jobs

Goal: find a feasible schedule on n machines that obeys unit
communication delays and minimizes makespan

e unit time jobs: job J, runs from S(J,) to C(J,) := S(J,) +

1 '

e precedence constraints = partial order " — " on the jobs
o if J, — Jp then C(J;) < S(Up)
<= J, must be completed before J, is started

e unit communication delay for J, — Jp
if J, and Jp run on same machine then C(J,) < S
if J, and Jp run on different machines then C(J,)

(Jb)
+1<5(Jp)

e number n of machines is not a bottleneck

Marie Schmidt Algorithms and Complexity (AC), week 5 4/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (2)

e Four jobs Ji1,), J3, Js
e Precedence constraints:

J1 = JQ; J1 = J3; J2 = J4; J3 — J4;

Marie Schmidt Algorithms and Complexity (AC), week 5 5/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (2)

e Four jobs Ji1,), J3, Js
e Precedence constraints:

J1 = JQ; J1 = J3; J2 = J4; J3 — J4;

Lower bound:

Marie Schmidt Algorithms and Complexity (AC), week 5 5/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (2)

e Four jobs Ji1,), J3, Js
e Precedence constraints:

J1 = JQ; J1 = J3; J2 = J4; J3 — J4;

Lower bound: makespan > 3

Marie Schmidt Algorithms and Complexity (AC), week 5 5/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (2)

e Four jobs Ji1,), J3, Js
e Precedence constraints:

J1 = JQ; J1 = J3; J2 = J4; J3 — J4;

Lower bound: makespan > 3

e Simple schedule:
If all four jobs are run on different machines:

Marie Schmidt Algorithms and Complexity (AC), week 5 5/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (2)

e Four jobs Ji1,), J3, Js
e Precedence constraints:

J1 = JQ; J1 = J3; J2 = J4; J3 — J4;

Lower bound: makespan > 3

e Simple schedule:
If all four jobs are run on different machines: makespan=5

Marie Schmidt Algorithms and Complexity (AC), week 5 5/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (2)

e Four jobs Ji1,), J3, Js
e Precedence constraints:

J1 = JQ; J1 = J3; J2 = J4; J3 — J4;

Lower bound: makespan > 3

e Simple schedule:
If all four jobs are run on different machines: makespan=5

o Better schedule:

Marie Schmidt Algorithms and Complexity (AC), week 5 5/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (2)

e Four jobs Ji1,), J3, Js

e Precedence constraints:
J1 = JQ; J1 = J3; J2 = J4; J3 — J4;

Lower bound: makespan > 3

e Simple schedule:
If all four jobs are run on different machines: makespan=5

e Better schedule:
If all four jobs are run on same machine then makespan=4

Marie Schmidt Algorithms and Complexity (AC), week 5 5/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (3a)

Notation:
e Pred(J,) denotes the set of all predecessors Jp, of J, (with Jp — J,)
e Succ(J,) denotes the set of all successors Jp, of J, (with J, — Jp)

Marie Schmidt Algorithms and Complexity (AC), week 5 6/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (3a)

Notation:
e Pred(J,) denotes the set of all predecessors Jp, of J, (with Jp — J,)
e Succ(J,) denotes the set of all successors Jp, of J, (with J, — Jp)

Observation

At most one predecessor of J, can complete at C(J,) — 1.
At most one successor of J, can start at C(J,).

Marie Schmidt Algorithms and Complexity (AC), week 5 6/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (3a)

Notation:
e Pred(J,) denotes the set of all predecessors Jp, of J, (with Jp — J,)
e Succ(J,) denotes the set of all successors Jp, of J, (with J, — Jp)

Observation

At most one predecessor of J, can complete at C(J,) — 1.
At most one successor of J, can start at C(J,).

Modelling idea:

Introduce O-1-variable x,;, that indicates the delay of J, — J,

e x,, = 0 means that J, starts directly after J, on same machine
® Xy, = 1 means that J,, starts at time C(J,) + 1 or later

Marie Schmidt Algorithms and Complexity (AC), week 5 6/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (3a)

Notation:
e Pred(J,) denotes the set of all predecessors Jp, of J, (with Jp — J,)
e Succ(J,) denotes the set of all successors Jp, of J, (with J, — Jp)

Observation

At most one predecessor of J, can complete at C(J,) — 1.
At most one successor of J, can start at C(J,).

Modelling idea:

Introduce O-1-variable x,;, that indicates the delay of J, — J,

e x,, = 0 means that J, starts directly after J, on same machine
® Xy, = 1 means that J,, starts at time C(J,) + 1 or later

Corresponding inequality: C(Jp) > C(J2) + 1+ xap

Marie Schmidt Algorithms and Complexity (AC), week 5 6/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (3a)

Notation:
e Pred(J,) denotes the set of all predecessors Jp, of J, (with Jp — J,)
e Succ(J,) denotes the set of all successors Jp, of J, (with J, — Jp)

Observation

At most one predecessor of J, can complete at C(J,) — 1.
At most one successor of J, can start at C(J,).

Modelling idea:

Introduce O-1-variable x,;, that indicates the delay of J, — J,

e x,, = 0 means that J, starts directly after J, on same machine
® Xy, = 1 means that J,, starts at time C(J,) + 1 or later

Corresponding inequality: C(Jp) > C(J2) + 1+ xap

Observation
C(Jb) = max{C(Ja) +1+xp: Jy— Jb}

Marie Schmidt Algorithms and Complexity (AC), week 5 6/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (3b)

ILP formulation

min C

s.t. ZiePred(j) Xij 2 |Pred(-/)| -1 fOFj = 17 Y
ZIESucc(j) Xji 2 |Succ(j)| =1 forj=1,...,n

C,'+1+X,'j < CJ forJ,-%Jj
1< G < C forj=1,...,n
Xij € {07 1} for J; — JJ

Variables:

e (;: real variable encodes completion time of J;
e Xxj: 0-1-variable encodes delay of J; — J;

e (: real variable encodes makespan of schedule

Marie Schmidt Algorithms and Complexity (AC), week 5 7/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (3c)

LP relaxation

min C

st Dicpred(y X = [Pred(j)[—1 forj=1,....n

Yicsuce() Xi = |Succ(f)| =1 forj=1,....n
CG+l4+x; < G forJ,-%Jj
1< G < C forj=1,...,n
0<x; <1 for J; — J;

Variables:

e (;: real variable encodes completion time of J;

e Xx;i: real variable encodes relaxed delay of J; — J;
e (: real variable encodes makespan of schedule

Marie Schmidt Algorithms and Complexity (AC), week 5 8/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (4)

Approximation algorithm

1. Compute the optimal LP solution x,j‘ CJ* Cc*.
2. Round the LP solution to a feasible ILP-solution Xj;, (.N'J C.

How to round the LP solution

Marie Schmidt Algorithms and Complexity (AC), week 5 9/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (4)

Approximation algorithm

1. Compute the optimal LP solution x,j‘ CJ* Cc*.
2. Round the LP solution to a feasible ILP-solution Xj;, (.N'J C.

How to round the LP solution

For every precedence constraint J; — J; do:
If x;; < 1/2 then X; =0
If xi > 1/2 then X; =1

Marie Schmidt Algorithms and Complexity (AC), week 5

9/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (4)

Approximation algorithm

1. Compute the optimal LP solution x,j‘ CJ* Cc*.
2. Round the LP solution to a feasible ILP-solution Xj;, (.N'J C.

How to round the LP solution

For every precedence constraint J; — J; do:
If x;; < 1/2 then X; =0
If xi > 1/2 then X; =1

For every job J; do:
(j'j = max{é;+1+)?g: J,-HJJ-}

Marie Schmidt Algorithms and Complexity (AC), week 5 9/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (4)

Approximation algorithm

1. Compute the optimal LP solution x,j‘ CJ* Cc*.
2. Round the LP solution to a feasible ILP-solution Xj;, (.N'J C.

How to round the LP solution

For every precedence constraint J; — J; do:
If x;; < 1/2 then X; =0
If xi > 1/2 then X; =1

For every job J; do:

G = max{é;+1+)?g: J,-HJJ-}

For the makespan do:
C = max{(G}

Marie Schmidt Algorithms and Complexity (AC), week 5 9/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (5)

Lemma (feasibility)

The rounded solution %;;, ;, C is feasible for the ILP.

Marie Schmidt Algorithms and Complexity (AC), week 5 10/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (5)

Lemma (feasibility)

The rounded solution %;;, ;, C is feasible for the ILP.

> % > [Pred()|~1 and 37 % > [Succ() -1,

iePred(j) ieSucc(j)

Marie Schmidt Algorithms and Complexity (AC), week 5 10/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (5)

Lemma (feasibility)

The rounded solution %;;, ;, C is feasible for the ILP.

> % > [Pred(j)|—1 and > % > [Succ(j)| -1,
icPred(j) i€Suce(j)
since for at most one i € Pred(j), we have x; < 1/2

Marie Schmidt Algorithms and Complexity (AC), week 5 10/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (5)

Lemma (feasibility)

The rounded solution %;;, ;, C is feasible for the ILP.

> % > [Pred(j)|—1 and > % > [Succ(j)| -1,
iePred(j) ieSucc(j)
since for at most one i € Pred(j), we have x; < 1/2
and for at most one i € succ(j), we have X < 1/2.

Marie Schmidt Algorithms and Complexity (AC), week 5 10/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (5)

Lemma (feasibility)

The rounded solution %;;, ;, C is feasible for the ILP.

> % > [Pred(j)|—1 and > % > [Succ(j)| -1,
iePred(j) ieSucc(j)
since for at most one i € Pred(j), we have x; < 1/2
and for at most one i € succ(j), we have X < 1/2.

Constraint on C;'s is satisfied by construction.

Marie Schmidt Algorithms and Complexity (AC), week 5 10/33

LP-based approaches

Communication delay scheduling

Lemma (guarantee, part 1)

For every constraint J; — J;, we have 1+%; < 5(1+ x3).

Proof:

Marie Schmidt Algorithms and Complexity (AC), week 5 11/33

LP-based approaches

Communication delay scheduling

Lemma (guarantee, part 1)

For every constraint J; — J;, we have 1+%; < 5(1+ x3).

Proof: trivial if X; = 0; if X; =1, use xa‘- >1/2.

Marie Schmidt Algorithms and Complexity (AC), week 5 11/33

LP-based approaches
Communication delay scheduling

Lemma (guarantee, part 1)

: o 4
For every constraint J; — J;, we have 1+ %; < 3(1+ x7).

Proof: trivial if X; = 0; if X; =1, use xa‘- >1/2.

Lemma (guarantee, part 2)

For every job J;, we have ; < %CJ*

Proof:

Marie Schmidt Algorithms and Complexity (AC), week 5 11/33

LP-based approaches
Communication delay scheduling

Lemma (guarantee, part 1)

: o 4
For every constraint J; — J;, we have 1+ %; < 3(1+ x7).

Proof: trivial if X; = 0; if X; =1, use xa‘- >1/2.

Lemma (guarantee, part 2)

For every job J;, we have ; < %CJ*

Proof: Induction on precedence constraint graph.

Marie Schmidt Algorithms and Complexity (AC), week 5 11/33

LP-based approaches
Communication delay scheduling

Lemma (guarantee, part 1)

: o 4
For every constraint J; — J;, we have 1+ %; < 3(1+ x7).

Proof: trivial if X; = 0; if X; =1, use xa‘- >1/2.

Lemma (guarantee, part 2)

For every job J;, we have ; < %CJ*

Proof: Induction on precedence constraint graph.
If [Pred(j)| =0, ;= C =1.

Marie Schmidt Algorithms and Complexity (AC), week 5 11/33

LP-based approaches
Communication delay scheduling

Lemma (guarantee, part 1)

: o 4
For every constraint J; — J;, we have 1+ %; < 3(1+ x7).

Proof: trivial if X; = 0; if X; =1, use xa‘- >1/2.

Lemma (guarantee, part 2)

For every job J;, we have ; < %CJ*

Proof: Induction on precedence constraint graph.
If [Pred(j)| =0, ;= C =1.
If |Pred(j)| > 1, we have that C; is by definition
max{é,-—i—l—&—)"(,-j J; —>JJ}

Marie Schmidt Algorithms and Complexity (AC), week 5 11/33

LP-based approaches
Communication delay scheduling

Lemma (guarantee, part 1)

: o 4
For every constraint J; — J;, we have 1+ %; < 3(1+ x7).

Proof: trivial if X; = 0; if X; =1, use xa‘- >1/2.

Lemma (guarantee, part 2)

For every job J;, we have ; < %CJ*

Proof: Induction on precedence constraint graph.
If [Pred(j)| =0, ;= C =1.
If |Pred(j)| > 1, we have that C; is by definition
max{Ci+ 1455 = 4} <max{4G +31+x): k- 4}

Marie Schmidt Algorithms and Complexity (AC), week 5 11/33

LP-based approaches
Communication delay scheduling

Lemma (guarantee, part 1)

: o 4
For every constraint J; — J;, we have 1+ %; < 3(1+ x7).

Proof: trivial if X; = 0; if X; =1, use xa‘- >1/2.

Lemma (guarantee, part 2)

For every job J;, we have ; < %CJ*
Proof: Induction on precedence constraint graph.
If [Pred(j)| =0, (; = C = 1.
If |Pred(j)| > 1, we have that C; is by definition
max{Ci+ 1455 = 4} <max{4G +31+x): k- 4}
We obtain:
Lemma (guarantee, part 3)
The makespan satisfies € < ic

Marie Schmidt Algorithms and Complexity (AC), week 5 11/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (7)

This poly-time approximation algorithm has approximation ratio 4/3.

Marie Schmidt Algorithms and Complexity (AC), week 5 12/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (8a): Gaps

Is this bound tight?

Marie Schmidt Algorithms and Complexity (AC), week 5 13/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (8a): Gaps

Is this bound tight?

° 3k+1j0bSA17...,Ak+1; B1,..‘7Bk; C1,...,Ck
o Precedence constraints:
A;—)B,-andA,-—)C,- ‘FOri:1,...,k
B,‘—)A,‘+13th[—>A,‘+1 fori:L...,k

Marie Schmidt Algorithms and Complexity (AC), week 5 13/33

LP-based approaches

Communication delay scheduling

Communication delay scheduling (8b): Integrality Gap

Not discussed

e Job are partitioned into k + 1 levels 0,1, ..., k, with 2/ jobs at level
e Every job at level / has two successors at level i + 1
Every job at level / has one predecessor at level i — 1

e opt;p < 3k+1 (x;j = 1/2 for all constraints J; — J;)

For large numbers of jobs, opt; p may come arbitrarily close to %optLP.

Therefore the integrality gap of our LP relaxation is 4/3.

Marie Schmidt Algorithms and Complexity (AC), week 5 14/33

Approximation Schemes

Makespan minimization revisited

Approximation Schemes

Marie Schmidt Algorithms and Complexity (AC), week 5 15/33

Approximation Schemes

Makespan minimization revisited

Approximation Schemes

Definition (for minimization problem)

A Polynomial Time Approximation Scheme (PTAS) is
a family of approximation algorithms A, for £ > 0
with approximation guarantee 1 + ¢, and
for every fixed ¢ running time polynomially bounded in instance size

Marie Schmidt Algorithms and Complexity (AC), week 5 16/33

Approximation Schemes

Makespan minimization revisited

Approximation Schemes

Definition (for minimization problem)

A Polynomial Time Approximation Scheme (PTAS) is
a family of approximation algorithms A, for £ > 0
with approximation guarantee 1 + ¢, and
for every fixed ¢ running time polynomially bounded in instance size

Typical running times for PTAS:
nl/E’ n2/6 , (1/5)1/5n4’ n2/€5, 31/5n3, (4/5)!,72/5

Marie Schmidt Algorithms and Complexity (AC), week 5 16/33

Approximation Schemes

Makespan minimization revisited

Approximation Schemes

Definition (for minimization problem)

A Polynomial Time Approximation Scheme (PTAS) is
a family of approximation algorithms A, for £ > 0
with approximation guarantee 1 + ¢, and
for every fixed ¢ running time polynomially bounded in instance size

Typical running times for PTAS:
nl/E’ n2/6 , (1/5)1/5n4’ n2/€5, 31/5n3, (4/5)!,72/5

For maximization problems
approximation guarantee of A, is 1 —¢

Marie Schmidt Algorithms and Complexity (AC), week 5

16/33

Approximation Schemes

Makespan minimization revisited

Makespan minimization (1)

Makespan minimization on m = 2 machines

Instance: n jobs with processing times py, ..., p,
Goal: assign jobs to two machines so that the makespan is minimized

Marie Schmidt Algorithms and Complexity (AC), week 5 17/33

Approximation Schemes

Makespan minimization revisited

Makespan minimization (1)

Makespan minimization on m = 2 machines

Instance: n jobs with processing times py, ..., p,
Goal: assign jobs to two machines so that the makespan is minimized

o Let L:=max{maxp;, 3> 7, p;}, and recall L < opt(/)

Marie Schmidt Algorithms and Complexity (AC), week 5 17/33

Approximation Schemes

Makespan minimization revisited

Makespan minimization (1)

Makespan minimization on m = 2 machines

Instance: n jobs with processing times py, ..., p,
Goal: assign jobs to two machines so that the makespan is minimized

o Let L:=max{maxp;, 3> 7, p;}, and recall L < opt(/)
e Let € > 0 be desired precision (for worst case ratio 1 + ¢)

Marie Schmidt Algorithms and Complexity (AC), week 5 17/33

Approximation Schemes Makespan minimization revisited

Makespan minimization (1)

Makespan minimization on m = 2 machines

Instance: n jobs with processing times py, ..., p,
Goal: assign jobs to two machines so that the makespan is minimized

o Let L:=max{maxp;, 3> 7, p;}, and recall L < opt(/)
e Let € > 0 be desired precision (for worst case ratio 1 + ¢)

Approximation algorithm
© Classify processing times into big (p; > €L) and small (p; < el)
© Compute all assignments of big jobs to machines

© For each such assignment,
add the small jobs greedily to the schedule for big jobs

@ Output the best schedule found

Marie Schmidt Algorithms and Complexity (AC), week 5 17/33

Approximation Schemes

Makespan minimization revisited

Makespan minimization (2)

Approximation algorithm

@ Classify processing times into big (p; > €L) and small (p; < el)
© Compute all assignments of big jobs to machines

© For each such assignment,
add the small jobs greedily to the schedule for big jobs

@ Output the best schedule found

Marie Schmidt Algorithms and Complexity (AC), week 5 18/33

Approximation Schemes

Makespan minimization revisited

Makespan minimization (2)

Approximation algorithm

@ Classify processing times into big (p; > €L) and small (p; < el)
© Compute all assignments of big jobs to machines

© For each such assignment,
add the small jobs greedily to the schedule for big jobs

@ Output the best schedule found

Analysis of the algorithm:

Marie Schmidt Algorithms and Complexity (AC), week 5 18/33

Approximation Schemes

Makespan minimization revisited

Makespan minimization (2)

Approximation algorithm

@ Classify processing times into big (p; > €L) and small (p; < el)
© Compute all assignments of big jobs to machines

© For each such assignment,
add the small jobs greedily to the schedule for big jobs

@ Output the best schedule found
Analysis of the algorithm:

@ running time?

@ approximation guarantee?

Marie Schmidt Algorithms and Complexity (AC), week 5 18/33

Approximation Schemes

Makespan minimization revisited

Makespan minimization (2)

Approximation algorithm

© Classify processing times into big (p; > €L) and small (p; < L)

@ Compute all assignments of big jobs to machines

© For each such assignment,
add the small jobs greedily to the schedule for big jobs

© Output the best schedule found

Running time:

Marie Schmidt Algorithms and Complexity (AC), week 5 19/33

Approximation Schemes

Makespan minimization revisited

Makespan minimization (2)

Approximation algorithm

© Classify processing times into big (p; > €L) and small (p; < L)

@ Compute all assignments of big jobs to machines

© For each such assignment,
add the small jobs greedily to the schedule for big jobs

© Output the best schedule found

Running time:
Step 1 & 4:

Marie Schmidt Algorithms and Complexity (AC), week 5 19/33

Approximation Schemes

Makespan minimization revisited

Makespan minimization (2)

Approximation algorithm

© Classify processing times into big (p; > €L) and small (p; < L)

@ Compute all assignments of big jobs to machines

© For each such assignment,
add the small jobs greedily to the schedule for big jobs

© Output the best schedule found

Running time:
Step 1 & 4: O(n)

Marie Schmidt Algorithms and Complexity (AC), week 5 19/33

Approximation Schemes

Makespan minimization revisited

Makespan minimization (2)

Approximation algorithm

© Classify processing times into big (p; > €L) and small (p; < L)

@ Compute all assignments of big jobs to machines

© For each such assignment,
add the small jobs greedily to the schedule for big jobs

© Output the best schedule found

Running time:
Step 1 & 4: O(n)
Step 2 & 3:

Marie Schmidt Algorithms and Complexity (AC), week 5 19/33

Approximation Schemes

Makespan minimization revisited

Makespan minimization (2)

Approximation algorithm

© Classify processing times into big (p; > €L) and small (p; < L)

@ Compute all assignments of big jobs to machines

© For each such assignment,
add the small jobs greedily to the schedule for big jobs

© Output the best schedule found

Running time:
Step 1 & 4: O(n)
Step 2 & 3:

@ number of big jobs:

Marie Schmidt Algorithms and Complexity (AC), week 5 19/33

Approximation Schemes

Makespan minimization revisited

Makespan minimization (2)

Approximation algorithm

© Classify processing times into big (p; > €L) and small (p; < L)

@ Compute all assignments of big jobs to machines

© For each such assignment,
add the small jobs greedily to the schedule for big jobs

© Output the best schedule found

Running time:
Step 1 & 4: O(n)
Step 2 & 3:

@ number of big jobs: < 2/¢

Marie Schmidt Algorithms and Complexity (AC), week 5 19/33

Approximation Schemes

Makespan minimization revisited

Makespan minimization (2)

Approximation algorithm

© Classify processing times into big (p; > €L) and small (p; < L)

@ Compute all assignments of big jobs to machines

© For each such assignment,
add the small jobs greedily to the schedule for big jobs

© Output the best schedule found

Running time:
Step 1 & 4: O(n)
Step 2 & 3:

@ number of big jobs: < 2/¢
o number of assignments of big jobs per machine; 22/¢

Marie Schmidt Algorithms and Complexity (AC), week 5

19/33

Approximation Schemes

Makespan minimization revisited

Makespan minimization (2)

Approximation algorithm

© Classify processing times into big (p; > €L) and small (p; < L)

@ Compute all assignments of big jobs to machines

© For each such assignment,
add the small jobs greedily to the schedule for big jobs

© Output the best schedule found

Running time:
Step 1 & 4: O(n)
Step 2 & 3:
@ number of big jobs: < 2/¢
o number of assignments of big jobs per machine; 22/¢

e step 3 in O(2%/¢ - n)

Marie Schmidt Algorithms and Complexity (AC), week 5

19/33

Approximation Schemes

Makespan minimization revisited

Approximation algorithm

© Classify processing times into big (p; > L) and small (p; < eL)
@ Compute all assignments of big jobs to machines

@ For each such assignment,
add the small jobs greedily to the schedule for big jobs

@ Output the best schedule found

Approximation ratio:

Marie Schmidt Algorithms and Complexity (AC), week 5 20/33

Approximation Schemes

Makespan minimization revisited

Approximation algorithm

© Classify processing times into big (p; > L) and small (p; < eL)
@ Compute all assignments of big jobs to machines

@ For each such assignment,
add the small jobs greedily to the schedule for big jobs

@ Output the best schedule found

Approximation ratio:e One of the 22/ assignments agrees with
the assignment of big jobs in optimal schedule

Marie Schmidt Algorithms and Complexity (AC), week 5 20/33

Approximation Schemes

Makespan minimization revisited

Approximation algorithm

© Classify processing times into big (p; > L) and small (p; < eL)
@ Compute all assignments of big jobs to machines

@ For each such assignment,
add the small jobs greedily to the schedule for big jobs

@ Output the best schedule found

Approximation ratio:e One of the 22/ assignments agrees with
the assignment of big jobs in optimal schedule
e Let B denote the makespan (of big jobs) in that assignment

Marie Schmidt Algorithms and Complexity (AC), week 5 20/33

Approximation Schemes

Makespan minimization revisited

Approximation algorithm

© Classify processing times into big (p; > L) and small (p; < eL)
@ Compute all assignments of big jobs to machines

@ For each such assignment,
add the small jobs greedily to the schedule for big jobs

@ Output the best schedule found

Approximation ratio:e One of the 22/ assignments agrees with
the assignment of big jobs in optimal schedule

e Let B denote the makespan (of big jobs) in that assignment

o If Greedy does not increase B: optimal schedule found

Marie Schmidt Algorithms and Complexity (AC), week 5 20/33

Approximation Schemes

Makespan minimization revisited

Approximation algorithm

© Classify processing times into big (p; > L) and small (p; < eL)
@ Compute all assignments of big jobs to machines

@ For each such assignment,
add the small jobs greedily to the schedule for big jobs

@ Output the best schedule found

Approximation ratio:e One of the 22/ assignments agrees with
the assignment of big jobs in optimal schedule
e Let B denote the makespan (of big jobs) in that assignment
o If Greedy does not increase B: optimal schedule found
If Greedy increases B: difference in workload between our schedule
and optimal schedule

Marie Schmidt Algorithms and Complexity (AC), week 5 20/33

Approximation Schemes

Makespan minimization revisited

Approximation algorithm

© Classify processing times into big (p; > L) and small (p; < eL)
@ Compute all assignments of big jobs to machines

@ For each such assignment,
add the small jobs greedily to the schedule for big jobs

@ Output the best schedule found

Approximation ratio:e One of the 22/ assignments agrees with
the assignment of big jobs in optimal schedule
e Let B denote the makespan (of big jobs) in that assignment
o If Greedy does not increase B: optimal schedule found
If Greedy increases B: difference in workload between our schedule
and optimal schedule < ¢L

Marie Schmidt Algorithms and Complexity (AC), week 5 20/33

Approximation Schemes

Makespan minimization revisited

Approximation algorithm
© Classify processing times into big (p; > L) and small (p; < eL)
@ Compute all assignments of big jobs to machines

@ For each such assignment,
add the small jobs greedily to the schedule for big jobs

@ Output the best schedule found

Approximation ratio:e One of the 22/ assignments agrees with
the assignment of big jobs in optimal schedule
e Let B denote the makespan (of big jobs) in that assignment
o If Greedy does not increase B: optimal schedule found
If Greedy increases B: difference in workload between our schedule
and optimal schedule < ¢L

>

20)
opt(/

—|

Marie Schmidt Algorithms and Complexity (AC), week 5 20/33

Approximation Schemes

Makespan minimization revisited

Approximation algorithm
© Classify processing times into big (p; > L) and small (p; < eL)
@ Compute all assignments of big jobs to machines

@ For each such assignment,
add the small jobs greedily to the schedule for big jobs

@ Output the best schedule found

Approximation ratio:e One of the 22/ assignments agrees with
the assignment of big jobs in optimal schedule
e Let B denote the makespan (of big jobs) in that assignment
o If Greedy does not increase B: optimal schedule found
If Greedy increases B: difference in workload between our schedule
and optimal schedule < ¢L

A (1) opt(l)+eL
opt(!) < opt(l)

Marie Schmidt Algorithms and Complexity (AC), week 5 20/33

Approximation Schemes

Makespan minimization revisited

Approximation algorithm

© Classify processing times into big (p; > L) and small (p; < eL)
@ Compute all assignments of big jobs to machines

@ For each such assignment,
add the small jobs greedily to the schedule for big jobs

@ Output the best schedule found

Approximation ratio:e One of the 22/ assignments agrees with
the assignment of big jobs in optimal schedule
e Let B denote the makespan (of big jobs) in that assignment
o If Greedy does not increase B: optimal schedule found
If Greedy increases B: difference in workload between our schedule
and optimal schedule < ¢L

A (1) opt(l)+eL opt(l)+eopt(/)
opt(!) < opt(l) < opt(l)

Marie Schmidt Algorithms and Complexity (AC), week 5 20/33

Approximation Schemes

Makespan minimization revisited

Approximation algorithm

© Classify processing times into big (p; > L) and small (p; < eL)
@ Compute all assignments of big jobs to machines

@ For each such assignment,
add the small jobs greedily to the schedule for big jobs

@ Output the best schedule found

Approximation ratio:e One of the 22/ assignments agrees with
the assignment of big jobs in optimal schedule
e Let B denote the makespan (of big jobs) in that assignment
o If Greedy does not increase B: optimal schedule found
If Greedy increases B: difference in workload between our schedule
and optimal schedule < ¢L

A (1) < opt(l)+eL < opt(l)+eopt(/)

opt(l) — opt(l) — opt(l) =1l+e¢

Marie Schmidt Algorithms and Complexity (AC), week 5 20/33

Approximation Schemes

Makespan minimization revisited

Makespan minimization (3)

Theorem

Makespan minimization on m = 2 machines has a PTAS.

More precisely, for any € < 1, a (1 + €)-approximation can be found in
time O(2%/¢ - n).

Marie Schmidt Algorithms and Complexity (AC), week 5 21/33

Approximation Schemes Makespan minimization revisited

Fully Polynomial Time Approximation Schemes

Definition (for minimization problem)

A Fully Polynomial Time Approximation Scheme (FPTAS) is
a family of approximation algorithms A for e > 0

with approximation guarantee 1 + ¢, and

running time polynomially bounded in instance size and %

For maximization problems
approximation guarantee of A. is 1 — ¢

Marie Schmidt Algorithms and Complexity (AC), week 5 22/33

In-approximability

Summary: approximation algorithms

@ 2-approximation for (weighted) vertex cover

o 3-approximation for metric TSP

° %—approximation for communication delay scheduling

@ (1 + &)-approximation for makespan minimization

Marie Schmidt Algorithms and Complexity (AC), week 5 23/33

c number
ion delay scheduling
In-approximability The gap technique
Traveling Salesman Problem

Summary: approximation algorithms

@ 2-approximation for (weighted) vertex cover
o 3-approximation for metric TSP
° %—approximation for communication delay scheduling

@ (1 + &)-approximation for makespan minimization

Are these the best polynomial-time approximation algorithms for these
problems that are possible?

How do we prove such a statement?

— Inapproximability

Marie Schmidt Algorithms and Complexity (AC), week 5 23/33

ber
ion delay scheduling
In-approximability

In-approximability (1)

Chromatic number (COLORING)

Instance: an undirected graph G = (V, E)
Goal: find proper coloring of V with smallest possible number of colors
(colors 1,2, ..., k; adjacent vertices receive different colors)

Marie Schmidt Algorithms and Complexity (AC), week 5 24/33

Chromatic number

Communication delay scheduling
In-approximability The gap technique

Travel alesman Problem

In-approximability (1)

Chromatic number (COLORING)

Instance: an undirected graph G = (V, E)
Goal: find proper coloring of V with smallest possible number of colors
(colors 1,2, ..., k; adjacent vertices receive different colors)

Chromatic number x(G) = minimum number of colors in proper coloring

Marie Schmidt Algorithms and Complexity (AC), week 5 24/33

Chromatic number

Communication delay scheduling
In-approximability The gap technique

Traveling Salesman Problem

In-approximability (1)

Chromatic number (COLORING)

Instance: an undirected graph G = (V, E)
Goal: find proper coloring of V with smallest possible number of colors
(colors 1,2, ..., k; adjacent vertices receive different colors)

Chromatic number x(G) = minimum number of colors in proper coloring

Fact
There exists polynomial time transformation from 3-SAT to COLORING

such that
satisfiable 3-SAT instances translate into graphs with x(G) < 3
unsatisfiable 3-SAT instances translate into graphs with x(G) > 4

Marie Schmidt Algorithms and Complexity (AC), week 5 24/33

Chromatic number

Communication delay scheduling
In-approximability The gap technique

Traveling Salesman Problem

In-approximability (1)

Chromatic number (COLORING)

Instance: an undirected graph G = (V, E)
Goal: find proper coloring of V with smallest possible number of colors
(colors 1,2, ..., k; adjacent vertices receive different colors)

Chromatic number x(G) = minimum number of colors in proper coloring

There exists polynomial time transformation from 3-SAT to COLORING
such that
satisfiable 3-SAT instances translate into graphs with x(G) < 3
unsatisfiable 3-SAT instances translate into graphs with x(G) > 4

If COLORING has poly-time approximation algorithm with ratio r < 4/3,
then P=NP.

Marie Schmidt Algorithms and Complexity (AC), week 5 24/33

ication delay scheduling
In-approximability
alesman Problem

In-approximability (2)

Communication delay scheduling (COMM-DEL

Instance: unit time jobs Ji, ..., J,;
precedence constraints between some jobs
Goal: find a feasible schedule on n machines
that obeys unit communication delays and minimizes makespan

Marie Schmidt Algorithms and Complexity (AC), week 5 25/33

Chromatic number

Communication delay scheduling
In-approximability The gap technique

Traveling Salesman Problem

In-approximability (2)

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs Ji, ..., J,;
precedence constraints between some jobs
Goal: find a feasible schedule on n machines
that obeys unit communication delays and minimizes makespan

Fact (Hoogeveen, Lenstra & Veltman, 1994)

There exists poly-time transformation from 3-SAT to COMM-DELAY

such that
satisfiable 3-SAT instances translate into /s with opt(/) < 6
unsatisfiable 3-SAT instances translate into graphs with opt(/) > 7

Marie Schmidt Algorithms and Complexity (AC), week 5 25/33

Chromatic number

Communication delay scheduling
In-approximability The gap technique

Traveling Salesman Problem

In-approximability (2)

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs Ji, ..., J,;
precedence constraints between some jobs
Goal: find a feasible schedule on n machines
that obeys unit communication delays and minimizes makespan

Fact (Hoogeveen, Lenstra & Veltman, 1994)

There exists poly-time transformation from 3-SAT to COMM-DELAY
such that
satisfiable 3-SAT instances translate into /s with opt(/) < 6
unsatisfiable 3-SAT instances translate into graphs with opt(/) > 7

Theorem

If COMM-DELAY has poly-time approximation algo with ratio r < 7/6,
then P=NP.

Marie Schmidt Algorithms and Complexity (AC), week 5 25/33

Chromatic number

Communication delay scheduling
In-approximability The gap technique

Traveling Salesman Problem

In-approximability (3)

The Gap Technique is a method for establishing in-approximability
of a minimization problem X with integral objective values:

1. Take an NP-hard problem Y

2. Construct a poly-time transformation from Y to X
such that
YES-instances of Y translate into X-instances with value < A
NO-instances of Y translate into X-instances with value > B

3. Conclude:
If X has poly-time approximation algorithm with ratio r < B/A
then P=NP

Marie Schmidt Algorithms and Complexity (AC), week 5 26/33

Chromatic number

Communication delay scheduling
In-approximability The gap technique

Traveling Salesman Problem

In-approximability (4)

TSP (Optimization version)

Instance: cities 1,. .., n; distances d(/,)
Goal: find roundtrip of smallest possible length

Theorem

If TSP has poly-time approximation algo with ratio r < oo,
then P=NP.

Proof:

Marie Schmidt Algorithms and Complexity (AC), week 5 27/33

Chromatic number

Communication delay scheduling
In-approximability The gap technique

Traveling Salesman Problem

In-approximability (4)

TSP (Optimization version)

Instance: cities 1,. .., n; distances d(/,)
Goal: find roundtrip of smallest possible length

Theorem

If TSP has poly-time approximation algo with ratio r < oo,
then P=NP.

Proof: Assume there is a polynomial-time approximation algorithm A with
approximation ratio r < oo for the TSP.

Marie Schmidt Algorithms and Complexity (AC), week 5 27/33

Chromatic number

Communication delay scheduling
In-approximability The gap technique

Traveling Salesman Problem

In-approximability (4)

TSP (Optimization version)

Instance: cities 1,. .., n; distances d(/,)
Goal: find roundtrip of smallest possible length

Theorem

If TSP has poly-time approximation algo with ratio r < oo,
then P=NP.

Proof: Assume there is a polynomial-time approximation algorithm A with
approximation ratio r < oo for the TSP. Then the following polynomial-time
algorithm solves HC:

Marie Schmidt Algorithms and Complexity (AC), week 5 27/33

Chromatic number

Communication delay scheduling
In-approximability The gap technique

Traveling Salesman Problem

In-approximability (4)

TSP (Optimization version)

Instance: cities 1,. .., n; distances d(/,)
Goal: find roundtrip of smallest possible length

Theorem

If TSP has poly-time approximation algo with ratio r < oo,
then P=NP.

Proof: Assume there is a polynomial-time approximation algorithm A with
approximation ratio r < oo for the TSP. Then the following polynomial-time
algorithm solves HC:
@ Transform an instance / defined by a graph G = (V, E) of HC into an
instance I’ of TSP by defining distances
C N 1 if {i,j} € E
d(i.j) = { r-|V| ogher];zvise

Marie Schmidt Algorithms and Complexity (AC), week 5 27/33

Chromatic number

Communication delay scheduling
In-approximability The gap technique

Traveling Salesman Problem

In-approximability (4)

TSP (Optimization version)

Instance: cities 1,. .., n; distances d(/,)
Goal: find roundtrip of smallest possible length

Theorem

If TSP has poly-time approximation algo with ratio r < oo,
then P=NP.

Proof: Assume there is a polynomial-time approximation algorithm A with
approximation ratio r < oo for the TSP. Then the following polynomial-time
algorithm solves HC:
@ Transform an instance / defined by a graph G = (V, E) of HC into an
instance I’ of TSP by defining distances
. 1 if {i,j} e E
d(i.j) = { r-|V| oghejr];zvise
@ Solve TSP in that graph using A

Marie Schmidt Algorithms and Complexity (AC), week 5 27/33

umber

ion delay scheduling
In-approximability ni
Traveling Salesman Problem

In-approximability (4)

TSP (Optimization version)

Instance: cities 1,. .., n; distances d(/,)
Goal: find roundtrip of smallest possible length

Theorem

If TSP has poly-time approximation algo with ratio r < oo,
then P=NP.

Proof: Assume there is a polynomial-time approximation algorithm A with
approximation ratio r < oo for the TSP. Then the following polynomial-time
algorithm solves HC:
@ Transform an instance / defined by a graph G = (V, E) of HC into an
instance I’ of TSP by defining distances
. 1 if {i,j} e E
d(i.j) = { r-|V| oghejr];zvise
@ Solve TSP in that graph using A
e If A(I") < |V, return 'YES', if A(I") > |V/|, return 'NO'.

Marie Schmidt Algorithms and Complexity (AC), week 5

27/33

Other examples of approximation schemes

Other examples of approximation schemes: Euclidean TSP

Euclidean TSP

Instance: Points (xi, 1), - -, (Xn, ¥a) in the plane R? in the plane
Goal: Find a Round-tour visiting the total (Euclidean distance)

Theorem (Arora, Mitchell)

There is an (1 + €)-approximation algorithm for Euclidean TSP running
in time O(n®()),

e The running time was later improved to O(n(log n)/¢) by Arora.

e Result was found independently by Arora and Mitchell,
both received the Godel prize for it.

o We'll skip a detailed exposition of this algorithm in this course.

Marie Schmidt Algorithms and Complexity (AC), week 5

28/33

Other examples of approximation schemes

Other examples of approximation schemes: Knapsack

Knapsack

Instance: Items 1, ..., n, each with a weight w; and value v;; an integer v.
Goal: Find a subset X C {1,...,n} maximizing » ;. v; under the
constraint that >, w; < W.

Knapsack is weakly NP-Complete.
Theorem (Folklore)

There is an algorithm (1 — €)-approximation algorithm for Knapsack
running in time O(n3/¢).

o We'll see the algorithm in week 7.

Marie Schmidt Algorithms and Complexity (AC), week 5 29/33

Other examples of approximation schemes

Other examples of approximation schemes: Planar
Independent Set

Planar graph: A graph that admit a drawing in R? without crossing of
edges.

Planar Independent Set

Instance: A planar graph G.
Goal: Find a independent of G of maximum size.

Planar independent set is NP-complete.

Theorem (Baker)

There is an algorithm (1 — €)-approximation algorithm for Planar
Independent Set running in time O(2°(/2)n*).

o We'll see the algorithm in week 8.

Marie Schmidt Algorithms and Complexity (AC), week 5

30/33

Other examples of approximation schemes

Thank you! Goodbye! Enjoy the rest of the course!

Marie Schmidt Algorithms and Complexity (AC), week 5 31/33

Other examples of approximation schemes

Recommended reading

Cormen, Leiserson, Rivest and Stein ‘Introduction to Algorithms':
o Chapter 35 (Approximation Algorithms)

Garey, Johnson 'Computers and Intractability’
o Chapter 6 (Coping with NP-complete problems)

Marie Schmidt Algorithms and Complexity (AC), week 5 32/33

Other examples of approximation schemes

Algorithms and Complexity (AC), week 5 33/33

	LP-based approaches
	Communication delay scheduling

	Approximation Schemes
	Makespan minimization revisited

	In-approximability
	Chromatic number
	Communication delay scheduling
	The gap technique
	Traveling Salesman Problem

	Other examples of approximation schemes

