Exercise set 2 Algorithms and Complexity 2019

You may collaborate and submit answers in groups of two (or at most three). Good solutions are complete and concise. Please mail to schmidt2@rsm.nl or hand in a hardcopy on the day of the deadline.

3. An instance of the MAX BISECTION problem consists of an undirected graph with vertex set $V = \{1, 2, ..., 2n\}$ and positive real edge weights w(i, j) for $\{i, j\} \in E$. The goal is to partition V into two parts V_1 and V_2 of size n, so that the total weight of the edges between V_1 and V_2 is as large as possible. Consider the following ILP.

$$\max \sum_{\{i,j\}\in E} w(i,j) z_{i,j}$$
s.t. $z_{i,j} \leq x_i + x_j$ for $\{i,j\}\in E$
 $z_{i,j} \leq 2 - x_i - x_j$ for $\{i,j\}\in E$
 $\sum_{i=1}^{2n} x_i = n$
 $x_i \in \{0,1\}$ for $i \in V$
 $z_{i,j} \in \{0,1\}$ for $\{i,j\}\in E$

- (a) Show that this ILP correctly models the MAX BISECTION problem.
- (b) Show that any optimal solution x and z of the ILP satisfies $z_{ij} = x_i + x_j 2x_i x_j$.

Next, let us consider the LP relaxation of this ILP, where the integrality constraints $x_i \in \{0, 1\}$ and $z_{i,j} \in \{0, 1\}$ are relaxed to the continuous constraints $0 \le x_i \le 1$ and $0 \le z_{i,j} \le 1$. Furthermore we define the auxiliary value $F(x) := \sum_{\{i,j\}\in E} w(i,j) (x_i + x_j - 2x_i x_j)$.

- (c) Prove that any feasible solution x and z of the LP relaxation satisfies the inequality $F(x) \geq \frac{1}{2} \sum_{\{i,j\} \in E} w(i,j) z_{i,j}$.
- (d) Consider a feasible solution for the LP with the property that for each edge $\{i, j\} \in E$ either $x_i \ge \frac{1}{2} \ge x_j$ or $x_j \ge \frac{1}{2} \ge x_i$ which has at least two fractional variables, x_i and x_j . Argue that it is possible to increase one variable by $\epsilon > 0$ and to decrease the other one by the same ϵ , such that the solution stays feasible for the LP, the value of F(x) does not decrease and one of the two variables becomes integer.
- (e) Use these arguments to design a polynomial time approximation algorithm for MAX BISECTION that yields at least 1/2 of the optimal objective value.
- 4. An instance of the MIN-RADIUS-FACILITY-LOCATION (MRFL) problem consists of an integer k, cities $\{1, \ldots, n\}$, and integer distances d(i, j) for every pair of cities i, j. The distances have the following properties for all cities x, y, z:

(a)
$$d(x, x) = 0$$
, (b) $d(x, y) = d(y, x)$, (c) $d(x, y) + d(y, z) \ge d(x, z)$.

If $C \subseteq \{1, \ldots, n\}$ is a set of cities and j is a city, we denote $dist(C, j) := \min\{d(i, j) : i \in C\}$ for the minimum distance from j to a city in C (so dist(C, j) = 0 if $j \in C$). The goal in the MRFL problem is to find a set C of size at most k minimizing the radius $r(C) := \max_{1 \le j \le n} dist(C, j)$.

Due 14 Oct 2019

¹Hint: Use the AM-GM inequality (stating that, for non-negative $a, b, 4ab \leq (a+b)^2$) to show that any feasible solution of the LP satisfies $\frac{1}{2}z_{i,j} \leq x_i + x_j - 2x_ix_j$ for every *i* and *j*.

- (a) Give a polynomial time that takes an instance of MRFL and a number t as input, and finds a set C of size at most k satisfying $r(C) \leq 2t$ if there exists a set C^* of size at most k with $r(C^*) \leq t$.
- (b) Use the algorithm from (a) to give a 2-approximation for MRFL. Your algorithm may run in pseudo-polynomial time.
- (c) **Bonus:**² Give a polynomial time 2-approximation for MRFL.

²You do not need to answer this question to get full points, but a fully correct answer to this question will give you full points for Question 4 plus a bonus point even when (a) and (b) are skipped.